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ABSTRACT

The singularity expansion method (SEM)

natural resonances of a horizontal wire and

39762

has been applied to determine

perpendicular crossed wires

oriented over an imperfect ground plane, In order to account for the imper-

fect conductivity of the ground, the Sommerfeld formulation is used and a

theoretical-numerical solution obtained. Sample results are presented for

both the frequency domain and the SEM solutions.
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I. INTRODUCTION

An electromagnetic pulse such as the nuclear EMP or the lightning

EMP will induce current and charge densities on aircraft and missile

surfaces. These distributions represent the external electromagnetic

fields that are in general related linearly to the interior fields (equip-

ment currents and voltages). Acquiring a knowledge of the exterior fields

is the first step in determining terminal currents and voltages induced

within an illuminated aeronautical system. Transfer functions, either

theoretical or experimental, are used to relate the voltage and/or current

at a particular location to the most significant point or points of entry

for the electromagnetic energy.

A number” of simulation facilities have been constructed to test the

response of aircraft and missiles to nuclear EMP. Tests can be conducted

as an aircraft flies by the simulator but this procedure has its difficul-

ties. Recently a wooden platform has been constructed to simulate in-flight

testing while the aircraft sits on the platform; one purpose of such a

facility is to decrease ground interactions. In many of the existing

facilities the aircraft must rest on a pad of finite conductivity. Thus

a theoretical model is needed for the interpretation of the “fly-by” test

as well as for the extrapolation of the test data from ground based measure-

ments to predict the inflight mode response.

In contrast to nuclear-EMP testing lightning-EMP testing has

not evolved to the level of sophistication of nuclear EMP testing.
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Probably this is a result of the lightning pulse not being well

defj.ned and the accompanying nonlinear environment not beLng well

understood. However lightning-EMT testing requires many of the

same considerations as nuclear–EM3?, simulating the appropriate

electromagnetic environment and quantifying the effects of the

physical limitations of the simulator configuration.

In order to

or missile to an

both convenience

gain insight into the response of an a~rcraft

electromagnetic pulse, a w%re model is used for

and accuracy [1]. When an aircraEt/missile (or

the wire model) is located near an imperfect ground plane as in

the usual test configuration, the induced surface currents are

affected by two principle processes. First, the scatterer is

exposed to tiledirect radiation and the gound reflected radiation.

Second, the induced surface currents fnteract with the ground plane.

Tl~e first process is well understood for both perfect and imperfect

ground planes, and is straight forward to analyze [2]. However the

second process being much more complicated is very difficult to

analyze, particularly when the ground is an imperfect conductor [3].

A general formula~ion based on the singularity expansion method

is developed for horizontal wire scatterers oriented over an imper-

‘-crtground plane. In order to account for the imperfect conduc-

tivity the exact Sommerfeld formulation is used [4]. Accordingly a

system of integral equations are derived and solved utilizing a

ilumerical solution technique. Natural frequencies for a single

hor~.zontal wire and For a horizontal wire cross are obtained.

Because 03 the complexity of the Sommerfeld inte~rals as they



appeared in the kernel of the integrs,l equations the computer CPU

time would be prohibitive for a parametric study. Therefore

sufficient data is presented only for fiducial purposes. Frequency

domain results for plane wave excitation are presented along with

natural frequencies.
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11. FORMULATION

Frequency Domain Considerations

For an arbitrary configuration of horizontal wires oriented

over an imperfec~ ground plane the individual wire currents Lnduced

by an incident electromagnetic field are obtained by solving a

system of linear integral equations [5],

N

lJ inc
I. (R’i)G(!t.,L’i)dl,’

ref
= j4nw~o(E + E ) (1)

1 3 i tji=l tj
.
L.
1

ref
where E‘?c and E

tJ
are the components of the

tj

reflected electric f%elds along the jth wire of

incident and ground

a system of N wires,

Ii(!L’i) is the current on the ith wire at position L’i ,

G(j, t’i) = cos(aj-:i){(—-::’ @ko- gl+ ~sH+ C@+ y:~v}

+ sin (13j-cii) (2)A (go-gl+gsH+@~yax

e-yo)?o

EO=R
o

-YOR1.
gl=e

‘1

(3)

<4)

(5)
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-2
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Jo(kp)Adk

o Y2 Ul+yz U.
o 1

“(z-zo)z+pz

J(Z+ZO)2+pz

ry--
X+yz

(7)

(8)

(9)

(lo)

(11)

(I<j- X’i) Cos c,i + (Yj-y ’i) sin ai

-(xj-x’i)sin ui+(yj-y ’ )COSCX
i i

z
o

(12)

(13) ‘-

(14)

(15)

(16)

Here (X’i,y’i. Zo) , the coordinates of !.’i along the ith wire;

(Xi,vi, zo), the coordinates of points E. along the .i.thwire; and
7..

the a~gles a. and, w. are ill.ustrate.d in Fi8ure 1.
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Figure 1: Two horizontal wit-e segments above an
imperfect ground. z L ~.
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When the horizontal wires are joined additional considerations

must be made. First the wires must satisfy Kirchhoff’s current

law, the sum of the wire currents must equal zero at the junction.

Second the charge per unit length on the wires are required to

satisfy the Wu-King [6] junction condition, i.e. for an n-wire

junction

ql+l = q2,)2 = q3@3 = --- = qnqn

w-here q is the charge per unit length given by
i

qi
d

dii
Ii(fli)

junction pt.

(17)

(18)

and

“i= 2[’n(*I -0“’7721 (19)

In addition

required to

Due to

be solved a

to the junction conditions the wire currents are

vanish at the open ends,

the complexity of the system of integral equations to

numerical solution technique is employed, in particular,

the method of moments, This procedure involves dividing the

wire structure into electrically short segments. On each segment,

the wire current is approximated by some convenient function, here

a sinusoidal c~rrent expansion is used. Therefore the current on

the nth segment of the jth wire with end currents I.(!. ,n) and
.3 J

Ij(f,j,n+l) is represented by .

9



. .

I,i(.tj ) = e.
T,(!I~,n+l)sfn [ko(lj-Lj ~)]+ I,j(~j,n)sin[ko(fi .,n+l-Lj)]

sin[ko(R
j ,n+l-~j ,n)]

(20)

Upon introducing the segmental current representation into the

system oE.integral equations, a system of linear equations for the

segment end currents can be obtained by enforcing the resulting

equations at a discrete set of points, namely, the end points of

the wire segments.

The resulting sys~e~ Of linear equations is of the form

where 5=N1+N2+N3+ --- is the total number of unknown currents

after requiring the currents at the open ends to be zero. The

(21)

integral equation is enforced at the ends of all wire segments

excluding open wire ends and junction points, which yields N-NW

equations where N is the total number of wires intersecting.
w

Applying the Wu-Jiing junction condition yields FI~r-NJ equations

where ~
J

is the total number of junctions. Applying the Kirchhoff

current law at the junctions yields an additional NJ equations.

Hence the to~al number of equations is equal to N the total number
Y

of unknown currents.

Computation of the system matrix elements Smn can be simpli-

fied hy mathematical manfpu~apjon and integration by parCs. ~OW-

ever the Sommerfeld terms accouting for the imperfect ground require

o

a double numerical integration, one inte~ral over the wire segment
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and the other integral over an infinite range. These integrals

occur in the expressions for
%H

and gv, see (5) and (6). To

perform the evaluation a deformed contour similar to the one

suggested by Miller et al [7] is chosen. The deformation of the

contour is permissible since all the branch points and poles of

the integrand lie in the second and forth quadrants of the complex

i plane.

~sH
= 2j

+2

8V = -2~

+2

Accordingly

v 1.

x Io(Ap)ld~

X Jo(B~)6da (23)

~~~)ere 6=k+jA1 and I is the modified Bessel function of the
o

first kind. The choice of X1 , a real constant, as the limit of

the first integrals in (22) a“nd (23) is made to render the inte-

grands of the second integrals sufficiently smooth for rapid

convergence when a Gaussi,an-I,aguerre interpolator quadrature
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formula is used. For real frequencies AI = 5ko/2~ provLdes good

results. Some experimentation is required to choose an appropriate

value for 1
I

when complex frequencies are,considered. The first

integrals in (22) and (23) are evaluated by using the Gaussian

interpolator quadrature.

Both the Gaussian and Gaussian–Laguerre quadrature formulas

are derived by using convenient interpolating polynomials. Theoret-

ically, the more roots of the polynomials (increasing the order)

the more accurate the results will be. However this occurs at the

expense of computer CPU time. For the data that will be presented

subsequently, the number of roots of the Gaussian quadrature is

denoted NIG and the number of.roots for the Gaussian-Laguerre

quadrature is NIL. Both NIG and NIL are varied to achieve the

desired accuracy within che limitations of available CPU time.

Singularity Expansion Method

In order to employ the singularity expansion method (SEM) the

foregoing frequency domain formulation is extended into the complex

s-plane, where s = jw . Basically the SEll solut~on technique

provides a solution f-or the induced current in terms of a simple

pole expansion in the frequency domain and corresponding damped

sinusoids in the time domain. To construct the

obtain the natural frequencies (poles), natural

coefficients [8]. Only the natural frequencies

solutions one must.

modes and coupling

are expected to

sensitive to the properties of an imperfect ground plane. Hence

this report will concen~rate on obtaining data for the natural

Frequencies.
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The natural frequencies are the simple poles of the solutions

for the surface current and charge in the complex s-domain. In

order to obtain the natural frequencies the system of equatione in

(21

are

lar

are used. By observing that the singularities of the current

those complex frequencies for which the system matrix is singu-

i.e. det[Smn] = O , the natural frequencies are obtained by

searching for the roots of the determinant of the system matrix.

For the data reported here the roots were obtained via a Muller

iteration scheme [9].
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111. FREQUENCY DOMAIN RESULTS

In order to verffy the numerical procedures and algorithms

Frequency domain, domain data is obtained for two simple wire

confi.gura~ions, a single horizontal wire and a horizontal wire

cross. Both configurations have been studied extensively by

other authors for both free space conditions and perfect ground

plane conditions [10,11].

The single horizontal wire oriented over.an imperfect ground

is illust-rated in Figure 2. For plane wave incidence normal to

the ground and with the electric field directed parallel to the

cylinder, typical induced axial currents are exhibired in Figure 3

for resonant conditions (for comparison see Table 5). Corresponding

results for a perfect ground would show significant variation of

the current magnitude with height above the ground. From the

analysis of Taylor et al. [12] one obtains for the current at the

center of the horizontal wire

i’rlc
I=j~~

[

cos(k!L/2)-l.

c
cos(k!l/2) 1

where

(24)

(26)
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Figure 2: Single horizontal cylinder oriented
over an imperfect ground plane.
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DISTA~~CE ALONG CYLINDER AXIS

Current distribution along a horizontal cylinder over an

imperfect ground and illuminated by a plane wave propagating

normal to the ground with the electric field directed parallel

to the cylinder.



(27)

(23)

q = 120i7
o

For the parameters presented in Figure 3, (24) yields

]1/
~ 0.0108 /38.4° A/V/’m

~inc

when ‘n/a = 4 and. f = 119.7 MHz. The agreement between the fore–

going result and the numerically obtained value in Fi8ure. 3 is

satisfactory since (.24)was derived using transmission line theory

that requires (koh)2 <<1 whereas the sample calculation considered

koh = 0.501.

A second configuration is also considered. It isa horizontal

wire cross oriented over an imperfect ground as shown in Figure 4.

With the structure illuminated from above and the electric field

directed parallel to the !?,land k; elements, the current distri-

butions are computed and displayed in Figure 5.
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P.I+,t]’= 2!,2= L = 30m

9.,’/ .!] = 0.5, L/a = 20,

h/L = 0.1233, :- = 23.88E
0

= 0.00?88 Si,
‘8
TTIG = NIL = 2

f =3.58 ~IZ

- Ii

Ti,gure 5: current distribution inciuced on

perpendicular crossed cylinders
oriented horizontally over an
imperfect ground plane for plane
,wave il,luminatio~l propagating normal
to tke grouncl with the electric field
parailel EO the y-axia.
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Iv. SINGULARITY EXPANSION METHOD RESULTS

In order to have confidence in the numerically obtained

results the dependence of the results upon the various numerical

solution parameters is investigated. Considering the single

cylinder, Table 1 illustrates typical dependence on the parameters

used to evaluate the Sommerfeld integrals (22) and (23). At the

lower conductivity substantial variation in the first natural

frequency is exhibited. Also the natural frequencies depend upon

the number of current segments used. This dependence is exhibited

in Table 2, Generally when the length of a current segment is

greater than a/z and less than ~a, good results are obtaiied.

Finally the numerically obtained results are compared with the

results of independent (hut less rigorous) formulations. These

data are shown in Table 3.

Obtaining the natural frequencies for various ground conduc-

tivities becomes increasingly more difficult as the conductivity

is decreased. In Figure 6 the natural frequencies of a cylinder

are displayed in the complex s-plane with conductivity of the

ground as a parameter. For high conductivities the natural

frequencies approach the value obtained for a perfect ground [10].

But for low conductivities numerical difficulties begin to occur

for o c O.IS/m, which prevented convergence to the free space
!3-

result. The dotted line is expected to give the true variation.
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TABLE 1: First Natural Frequency of a Cylinder
over an Imperfect Ground for Various
Numerical Parameters

(1/a=20., h/a=4, I=lm, SR=I)

0 NIG NIL
‘I

Slk/c

1.2S/m 4 4 5ko/2~ -0.1598 + j 2.551

6 6 5ko/2n -0.1598 + j 2.551

6 15 5ko/2~ -0.1566 +j 2.565

0.06S/m 6 15 7ko/2n -0.460 + j 2.584

6 15 9ko/2T -0.442 + j2.650

6 15 llko/2m -0.423 +j2.719

TABLE 2: First Natural Frequency of a Cylinder

over an Imperfect Ground Versus the
Number of Current Segments

(.L/a=200, h/a=40, NTIL=NIG =2,

!=lm, o=l.2x108S/m,cR=l)

N s~klc

10 -0.0293 +j 3.061

16 -0.0392 +j3.018

25 -0.0481 +j 2.980

40 -0.0549 +j 2.925

50 -0.0570 +j 2.906

80 -0.0593 +j2.879
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TABLE 3: First Natural Frequency of a Cylinder
over an Imperfect Ground as Obtained

by Different Analyses.

(!L/a=20, h/a=4, L=lm, u=120S/m, ER=l)

ANALYSIS slL/c

Sonumerfeld-Integral Formulation -0.0915 +-j 2.599

Riggs and Shumpert [13] –0.0875 +j 2.526

Reflection Coeff-icient Formulation [14] -0.1246 + j2.562

TABLE 4: First Natural Frequency of a Cylinder

over an Imperfect Ground versus

Dielectric Constant.

(L/a=20., h/a=4, !2=l.Om, o=O.12S/m)

‘R
sl!L/c

1 -0.3320 +j 2.5182

10 -0.3135 +j 2.5856

20 -0.2741 +j 2.6140

25 -0.2594 +j 2.6189

35 -0.2379 +j 2.6232
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Note that when numerical difficulties occur the natural frequency

is close to the free space value.

The dependence of the natural frequencies of a horizontal

cylinder upon the permittivity of the ground and the height above

the ground 5s exhibited in Tables 4 and 5. These data are not

intended to be sufficient to provide the complete parametric

behavior. They are presented to be a basis of comparison for a

more efficient (i.e. less expensive) algorithm developed by using

an approximate solution techni~ue.
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Mode

Sy,l,l

sy,l,2

sy,2,2

sy,3,1

as,l

TABLE 5: First Natural Frequency of a Cylinder

over an Imperfect Ground Versus Height.

(k/a=20., .L=l.Om, ff=O.12S/m, eR=l)

h/a slk/c

4 =0.3320 + j 2.5182

6 -0.2940 + j 2.4899

8 -0.3133 i- j 2.4324

10 -0.3511 +j 2.3768

w -0.4242 + j 2.503

TABLE 6: Natural Frequencies of Horizontal

Crossed Wires over an Imperfect
Ground (!1+L;=L=2L2> L/a=20, k;/kl

=0.5, h/1,=0.2, L=lm, cr=O.lS/m,

Eg=20&o)

sL/c

Free Space Perfect Ground Imperfect Ground

-0.2923+j 2.319 -0.0513+j 2.361 -0.0965+j 2.222

-().3426+j 3.726 -0.1021+j 3.769 -0.0927+.j 3.715

-0.6786+j 6.066 -o,3909+j 5.741 -0.44 +j 5,781

-1.0166+j 8.139 -0.6691+j 7.581 -0.69 +j 7.59

-0.4242+j 2.503 -0.0898+j 2.592 -0,2621+j 2.620
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v. CONCLUSION

By extending the Sommerfeld formulation treating infinitesimal

dipoles over an imperfect ground plane, a formulation is developed

for treating horizontal wire configurations in proximity to an

imperfect ground. Numerical resul~s are obtained for a single

wire and perpendicularly crossed wires.

Structure resonances are obtained by utilizing the singularity

expansion method. Sample results are presented and comparisons are

made with the results of other more approximate formulations.

Because of the inordinant amount of CPU time required parameter

studies are not presented. However sufficient data are provided

to verify more efficient algorithms that may be developed.
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