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Abstract

The simulator studied consists of a pair of current loops
(similar to a Helmholtz pair) and the generalization to two and
three pairs. The loops are constrained to lie on the surface of
a sphere. The loop positions and current ratios are found that
minimize r.m.s. error functions defined in terms of integrals over
the volume and surface of spherical test volumes. The functions
are also minimized for various (easily realizable) integer ratios
of currents for the two-pair case. Spatial error plots are
included as well as mutual inductances needed to calculate the
low-frequency driving-point impedance. Figures of merit and
efficieéncy as defined by Chen and Baum are evaluated and discussed.
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I. INTRODUCTION

The study described in this report was motivated by the
necd for practical design information for a low-frequency, uni-
form magnetic-field EMP simulator using simple currcnt loops.
Such a simulator could be used to measure EMD magnctic field
interaction with systems situated in the close-in region of a
nuclear burst. (Knowledge of the magnetic field characteristios
at the point of simulator application would be required.) The
simulator could be used to measure field pcenetration through
poor conductors such as earth, the induced currents on scatter-
ing objects of various shapes, or the field penctration throuph
points of entry into highly-conducting shields.

The simulator loops are assumed to lie on the surface of
a sphere and are in pairs; the loops of each pair are symmetri- .)
cally placed on each side of the cquator. This gecomelry is
illustrated in Figure 1. Configurations with one, two, and
three pairs were studied.

The approach toward optimizing the loop currents and posi-
tions for maximunm field uniformity is a departurc from the
approach that becgan with Ampere's loop, the Helmbholtz pair, and
Maxwell's threece~loop combination. This classical approach is
described and generalized by Garrett (Ref. 1). 1Its basic prin-
ciple is to attain uniformily by forcing Lo zero as many as

possible of the lowest order derivatives of the field at the

1. Garrett, M.¥., "Axially Syvmmetric Systems for Generating .
and Measuring Magnetic Fields,” Part I, Journal of Applicd
Physicg, Vol. 22, No. 9, pp. 1091-1107, Sceptember 1951,

]
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center of the geometry. This procedure is equivalent to
forcing the low-order coefficients to zero in the Legendre-~
function expansion of the field potential.

In the present study, it was recognized that uniformity
was desired in a finite-size ''test volume.'" Or possibly it
would be the effect of a uniform field, the induced currents in
a test object, that should be optimized. Therefore, optimiza-
tion was performed using two separate criteria, both defined as
minimizations of relative errors calculated in an integral sense.
The first was defined in the sense of a volume integral over a
spherical test volume; the second was defined in the sense of a
surface integral over a sphere. In both cases, as the radii of
the spheres were allowed to become small, the optimum loop cur-
rents and positions approached those predicted by the classical
theory. For test volumes of a realistic size, however, these
parameters are significantly different.

After finding the optimum loop currents and positions for
the two-pair case, physically realizable (fractions-of-small-
integers) current ratios were defined close to the optimum
values. New optimum positions were found while holding the cur-
rent ratios constant to determine the effect on field uniformity
of given realizable current ratios. It was found that little
degradation occurred in the relative errors. This will be
elaborated in the body of the report.

Finally, mutual inductances were calculated for the one-
pair and two-pair cases. These can be combined with the self
inductance of the current loops to obtain the driving point in-

ductance for simulators under study.

10



II. ANALYSIS

In this section, the Legendre function expansions for the

field components Br and B, are derived from the expressions for

9
a single loop given by Smythe (Ref. 2). The two optimization
methods are then defined. That is, quantities Xy (for the volume-
integral method), and Xg (for the surface-integral method) are
defined, where these quantities are functions of the loop cur-
rents and positions (the "parameters'). The parameter values
that minimize Xy OF Xg represent a solution of the optimization
problem. Since it is the relative currents that determine field
uniformity (independent of their absolute magnitude), one current
is set  to unity and the other currents are allowed to vary to mini-
mize Xy OT Xg- Therefore, for L pairs of loops, there are (L - 1)
current parameters and L position (polar-angle) parameters for a
total of (2L - 1) parameters.

Concluding this section is a brief discussion of the numeri-
cal methods used to minimize Xy and Xg -
1. FIELD ANALYSIS

The magnetic field due to a circular current loop is givaen

by Smythe (Ref. 2) as

B = 2l sing § <£>n—1 Pl(cosa) P (cos®) (1a)
r 23. n=1 a n n
; @ n-1
- _ ¥l sina i(ﬁ) 1 1
BO 2a nzl n\a pn(COSCL) P—n(cose) (1b)

2. Smythe, William R., Static and Dvnamic Electricitv, p. 275, -
McGraw-Hill Book Co., Inc., New York, 1950.

S11



where the current loop lies on a sphere of radius a at angle «
from the z axis (i.c., a is the spherical polar coordinate 0 of .
the loop). Equations 1 yield the magnetic field at points (r,0)
such that r < a (the field is independenti of ¢).

If a second current loop is present in the symmetrically
opposite position (i.e., at 6 = 1 - @) and carries the same cur-
rent, the symmetry properties of the Legendre function result in

the even terms canceling and the odd terms adding to yield

I sina 214
B, = Misine  j (—) Pl(cosa) P_(coso) (2a)
n=1(2)=""
1 sina 1\t g 1
Be = - R: Siha Z —(—) P (cosa) P _(cosB) (2b)
a _ n\a n n
n=1(2)e
where the notation n = nl(nz)n3 indicates that the summation is ‘l‘
. . /
over n., (n1 + nz), Cee, (n1 + mnz), cees Mg Finally, il L

pairs of current loops are present with the pair at a, and

mo- oy carrying current Ig, the resulting magnetic ficld is
given by
U If ): r n-1 1
B =& I, sina (—) plicosa,) P (coso) (3a)
r a 0=1 L 2 n=1(2)e a n L n
L n-1
U . 1(r 1 1
B, = - = Z I, sina z —(—) P (cosa,) P (cos@)
3] & o2q £ L n=1(2)e n\a n L n (3b)

Note that the n = 1 term of Equations 3 represents a uniform

magnetic field in the z direction. That is, the n = 1 term i<

12



o,

L
lJ_ y 2 =
By = g 221 I, sina, cosé = B, cos8 (4a)
U L 2
B81 = -z 221 I, sin“a, siné = -B_, sin® (4b)
and
y L
= = i [
B,q = E I, sin“a, , a constant (5)

Next, the surface current density induced on a perfectly
conducting sphere centered at the origin and immersed in the field
given by Equation 3 will be determined. Using Smythe (Ref. 2,

p. 273) Equations 2, 6, and 8, one finds that a current density

i¢ on a spherical shell of radius a given by

io= - 3 “n pL(coss) (6)
¢ n a U

produces a magnetic field inside the shell given by

n(n + 1) Cn n-1

- _ r
B, = -4 T (_) P_(coss) (7a)
a a
(n+ 1) C n-1 1
B, = % ey (é) P~ (cos6) (7b)

If the shell is immersed in the field of Equations 3, the induced
current density must be such as to result in a total field insi&é

the shell of zero; hence,



L
U . 1
—_ 1 sina, P (cosa,) , n odd
I n(n + l)Cn 3 ol z£1 2 £ °n L
~N 2n + 1
a
0 , n even
M(&)n T 1. sina, Pl(cosa,) , n odd
c = n(n + 1)\a =t £ 2 "n L (8)
n
0 , n even
and
L
1 on + 1 (a)” : 1 1
i, = - = ¥ 2 J I, sina, P (cosa,)|P (cos8)
¢ a n=1(2)°° n(n + 1)\a =1 L L n L n
(9)

The first term (n = 1) of Equation 9 is the induced surface current
due to the uniform part of the field given by Equations 4.
2. VOLUME-INTEGRAL-MINIMUM DEFINITION

It is desired to find the loop positions and currents that
‘yield the most nearly uniform field over a spherical test volume.
For purposes of this study, the most nearly uniform field is defined
to be that with the least r.m.s. deviation from uniformity over
the test volume, normalized to the uniform component of the field.
The r.m.s. deviation is defined in terms of an integral over the

spherical test volume. That is, x% is minimized where

[ B - B lfciz av
2 7.V, 2
X, = (10)

T.V. is the test volume
B is given by Equations 3

E&lis given by Equation 5

14



The quantity xi is a function of the parameters Iz and a and the
‘!J’ radius & of the test volume.

The integrals of Equation 10 can be evaluated analytically.

Let
2> ~) 2
u = |B - B,,k|[% av (11)
T.V.
Since the first (n = 1) term of Equations 3 is exactly leﬁ, one
obtains
a,m
u = 2ﬂf J (ﬁ2 + Bz) r? sine do dr (12)
r 6
00
where ér and Be are given by Equations 3 with the n = 1 term

omitted. The orthogonality of the sets of functions Pn and Pi
imply that only the squared terms of Pn and Pi survive the 8

‘%’ integration in Equation 12; thus, u can be written

- 2
2 ra n-1 L
u = QE%_ J ) <£> Y I, sina, Pi(cosag)
a 0 n=3(2) | ]\® L=1
T 2 . 1/r n-1 L .
x [ [Pn(cose)] sin6 d6 + H(E) Z I, sina,
0 L=1
1 ? 1 2 2
x P (cosa,) J [P (cose)] =ing dé r” dr (13)
n L 0 n
From Abramowitz and Stegun (Ref. 35, one obtains
m 5 1 2 5
jo [Pn(cose)] sin6 do = J—l [Pn(x)] dx = o+ 1 (14a)

- 3. Abramowitz, Milton, and Stegun, Irene A., Handbook of Mathe-
- matical TFunctions, AMS 55, p. 338, National Bureau of Stand-
\) ards, 1970.

15



and

T 2 +1 2
J [Pi(cose)] sind d6 = J [Pi(x)] ax = 250+ 1) (14
0 -1

Substituting these values into Equation 13, performing the inte-

gration over r, and combining terms, one obtains

u=dm®s J it _|E ’ E I sina, Pr(cosa,) i (15)
H n=3(2)c n{(2n + 1) [\a = £ £ "n [} o
let v be defined by
2
v = J B, dv (16)
T.V
Since leis constant over the test volume, the integration is

trivial; substituting from Equation 5 one obtains

2

a L 2
P 1§ 1, sin” « (17)
a L=

=

and x3 (Eq. 10) can be written

2

\n L
3 a . 1
n(2n+l) [(é) izl I, sina, P_(cos ag)}

kg) zil Iy sin® 32]2

3. SURFACE-INTEGRAL-MINIMUM DEFINITION

2 = n=3(2)e (18)

v

In this case, the purpose of the system of Qire loops is to
induce a surface current that approximates the surface current
induced by a uniform field on a spherical, perfectly conductiing
scattering object. This ideal surface current is given by the

first term (n = 1) of Equation 9. The method is similar to that

16
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given in the preceding section. The r.m.s. deviation is defined
in terms of a surface integral over the sphere rather than by a
volume integral.

The quantity to be minimized is

X5 = f - (19)
i da
s ¢l

where i¢ is given by Equation 9, i¢l is the first term (n = 1) of

Equation 9, and S is the surface of a sphere of radius 2 centered

at the origin. The integration can be performed analytically. Let

Again, using the orthogonality of Pi, one obtains

2
-\n L
_ 2n + 1 (& . 1
u = 27 n=3%2)m ETE—I—Tj(a) gzl I, sina, P (cos8)
L 1 2
x J [Pn(cose)] sin6 deo
0
2
- L
_ 2n + 1 |fz\" . 1 1
u = 47 n=3%2)m TCREEY) (E) 221 I, sina, P_(cosa,) (20)
Let
v J iil da
S
2
- L
v=o06r|(2) T 1, sin? q (21)
a) o21 L 3

17



Then xg (Eq. 19) is given by
2
- L
2n+1 A 1
n(n+i) [(E) QE I, sina, Pn(cos%)]

12
k?) % I sin2 o ]
a 921 £ L

Note that the form of xg is identical to that of xg; only

i

2 n=3(2)»
X2 = (2)

(22)

the values of the coefficients of the expansion in the numerator
are different.
4. THE MINIMIZATION PROCEDURE

Several algorithms for finding the minima of X and Xg in
parameter space were programmed and run on the AFWL computer sys-
tem. None of the methcds quickly found minima if the number of
pairs was greater than two (three parameters); that is, for three
pairs (five parameters), the procedure was tedious. No serious
attempts were made to find optimum parameters for four or more
pairs.

The reason for the difficulty is found in the nature of the
functions X+ and Xg in parameter space. These functions have
paths through parameter space along which they have (1) extremely
small values, (2) a very large gradient perpendicular to the path
axis, and (3) an extremely small gradient parallel to these axes.
Most algorithms tend to converge to the axis of such a path with
reasonable speed, but can make little progress along the axis.

Though this behavior causes difficulty in finding the mini-
mum points, it can be both a help and a hindrance from the engi-
neering standpoint. It is a help in that there are many sets of

parameter values that yield small values of Xy OF Xg- Hence, for

18
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the two-pair case, realistic current ratios can be chosen close to,
but not equal to, the ideal; then loop positions can be found such
that either Xy OT Xg is almost as small as the minimum value. Such
a point is on, or close to, the path of small values. However,

the property of having a large gradient perpendicular to the path
axis can cause a fabrication tolerance problem. Small variations
in the parameters such that their vector displacement is not
parallel to a path axis can cause a large increase in Xy OF Xg-
This property requires careful consideration of the required tol-
erances when constructing such a simulator.

Four methods to locate the minima of x(xv or XS) were
written into computer codes. Each method will be discussed.
First, the method will be described including the derivation of
required formula; then, comments will be given as to its useful-
ness.

a. Methods of steepest descent--The gradient of x2

was calculated in parameter space. Since —sz is a vector point-
ing in the direction of smaller Xz, small steps were taken along
that direction until x2 increased; then the step size was decreased
and the process continued. A modified version took 25 steps,
stored the parameters, took 25 more steps and subtracted to find
the vector displécement over the last 25.steps. It then extrap-
olated a distﬁnce determined by the analyst and used the new point
to start the process over. The gradient expressions are given in
the Appendix for the Modified Newton-Raphson method and are not
repeated here. This was the least succeésful of any of the methods

tried and was discarded early in the study. Many thousands of steps

19



often led to a very poor result. After the minima were found us-
ing other methods, it was discovered that some of the results, .
primarily for a/a > 0.6, were fairly close.

b. Brute-~force minimum seeking--In this method, a first

guess of the parameters, say 55, and a distance of § is entered
as input to the code. The wvalue of X2 is evaluated for all the
possible vector locations given by ﬁﬁ with 0 or *§ added to its
components. For N parameters, X2 is evaluated at 3N such points
(including ﬁb + ), the location of the smallest value of xz be-
comes the ne“rf%,and 0.9 § becomes the new 6. The procedure is
then iterated. Tertiary numbers were generated to calculate the
vectors. A DO loop for M = 1, BN was entered, then the tertiary

digits of M-1 were found; i.e

‘s

M~ 1= (ng, ng, ..., Ngdg (23) ‘
where the n; = 0, 1, or 2. The vector of interest, then, has
components

pi = poi + (ni - 1)6, 1 = 1, “ ..y N (24)

This method appears to be very deliberate. It always finds

a point with a smaller value of xz. It does not converge to the
smallest value of xz, however, except when the first guess point

is very close; i.e., accurate to 3 to 7 places (depending on the
number of pairs and a/a) and § is appropriately small. This method
was used extensively to find a " downhill ' direction to extrapolate
along as input to the Modified Newton-Raphson method described next.
The minimum ¥x's for three pairs were found primarily by alternatinq.'

between this method and the Modified Newton-Raphson method.

20
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¢. Modificd Newton-Raphson--To find the minimum of x° in

parameter space, one seeks the solution of the equations
, L =1, ..., N (24)

where the p; are the parameters, i.e., the current ratios and
positions (polar angles) of the current loops. éolving the Lqua-
tions 24 using Newton-Raphson, one assumes a '"first guess'" for the
parameters, say p = T)'o; near _p'o, axz/api can be approximated by

the first two terms ofa Taylor expansion. Thatis,

axz >~ 3)(2 \ 82X2 =
P, - * L 5pep °p ;5 (25)
p +4p p P
For matrix notation, define the matrices
- 32X2
A= ——— , an N x N matrix (20uw)
op.op.
- J i 0
p
3X2
§5= ETo , an N columnvector (26b)
Py 5
p
Sp = 8py H , an I column vector . (26¢)
In a neighborhood of'ﬁo, Equation 24 becomes
¥V + A6p =0 (27)
= :—1—. 1]
p = -A "y (28)

21



. — . =+
Hence, an improved value of p is p , where

—t O —
p =p + 6p

—t — =1
B p° - ATy (29)

the Newton-Raphson formula. The required derivatives (elements
ofjg and'§) are éiven in the Appendix.

Since Eguation 24 holds at both maxima and minima of xz,
this algorithm may converge to either a maximum or a minimum.
Therefore, the code was modified to test whether xz increased or
decreased over each step. If X2 increased, the correction term
(E;ly) was multiplied by a factor of (-0.9) to force downhill
movement and avoid an unending oscillation if, indeed, the step
was across a minimum. The {(-0.9) factors were cumulative and the
number of multiplications were counted. In the final version of
the code, this was allowed to continue for 50 steps at which time
the factor (—0.9)n was reinitialized to +1 and the procedure was
repeated until the total number of steps were taken that had been
chosen by the analyst. The number of multiplications by (-0.9)
in each 50-step block provided an indication of the convergence

properties of the run.

It was found that neither this method nor the Brute-Force

method converged quickly unless very accurate initial guesses were
provided. Each method would make a great deal of progress (in
terms of reducing xz) when it began calculating, then it would
seem to "converge'" to a parameter value. This "convergence' was
an illusion; giving the "final answer" to the Brutc-Force code
usually resulted in a lower X2 and paramcters modified much more

22
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than one would expect, making it very difficult to estimate the
accuracy of any given result.

This problem led to further modification of the Newton-
Raphson code. The final version accepts two parameter values-ﬁ1

and"f)2

(such as the beginning and ending values of a Brute-Force
run). These two values are used to define a straight line in
parameter space. Another input parameter defines a number of in-
crements between'ﬁl‘and'iz along the line. Two index parameters
are then used tov—define a set of points along the linc chosen as
first guesses for Newton-Raphson iteration. The points chosen
can interpolate between, or extrapolate beyond, the points ﬁl and
'5 . Using the points along the line as first guesses, Newton-
Raphson was allowed to iterate typically 100 times Ifrom each
starting point. By carefully choosing the points, one could find
a region along the line where the Newton-Raphson results had a
minimum value of xz. The parameter vector at this point was then
typically used as input to the Brute-Force method. When neither
the Brute-Force method nor the Newton-Raphson method changed the
results in the seventh or eighth place, it was assumed that the

result was neuar a minimum.

d. Newton-Raphson shotgun method--A version of the Newton-

Raphson code was written that used as first guesses the same array
of points generated in the Brute-Force method (Egs. 23 and 24).

A limited number of Newton-Raphson iterations (typically 23), were
performed {rom ecach point. The final value of P yielding the
smallest y became the center point—for the next calculation, § was

reduced by the factor 0.5 and the whole process repeated. This

23



scheme seems to combine the best features of the Brute-Force and
Newton-Raphson schemes. However, it docs not converge to the de-
sired result any faster or more consistently than its predecessor
schemes. It was developed late in the effort and not used ecxten-

sively.
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IIT. RESULTS AND CONCLUSIONS

1. OPTIMUM PARAMETER VALUES

For a single pair of loops (one parameter), the Newton-
Raphson method converges in 3 to 5 iterations. The optimﬁm param-
eters are given in Table 1. The parameter R is the ratio of the
test-volume radius (a) to the radius of the sphere containing the
loops (a). (The radius of a loop is given by a+rsinca.) The posi-
tion of the loops for the Helmholtz configuration is given at the
bottom of Table 1. For the two-pair and three-pair cases the cur-
rent ratios are also optimized. These results are given in Tables
2 and 3. The '"generalized Helmholtz configurations' given at the
bottom of Tables 2 and 3 arc the classical solutions discussed in
the Introduction and in Reference 1.
'gi It should be pointed out that the values of x given in Tables
1, 2 and 3 are the values of x calculated with the full (double--
precision) values of current (I) and position (a) in the computor.'
The values of x are the minimum values to the three places given.
The accuracy of the parameters yielding the small values of x is
unknown; héhce, paramétcr values rounded to four places are given
here. (We are highly confident that four places are correct.) 7
Since yx is extremely sensitive to changes in the parameter valuéé,
the values rounded to four places vield much larger values of X
in some cases, namely, for two and three pairs and small values
of R. The actual values of yx implied by the rcunded values of
the parameters that differ from those shown in Tables 2 and 3 are

- given in Table 4.

J
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TABLE 1. OPTIMUM PARAMETERS--ONE PAIR OF LOOPS

Volume Inteeral ~ Surfacce Integral
R a (Deg) Minimum y a (Doeg) Minimum y
0.1 63.44 4.20 x 1072 63 .44 8.90 x 107°
-4 ) -3
0.2 63.45 6.73 x 10 63.46 1.42 x 10
0.3 63.51 3.41 x 1073 63.56 7.21 x 1077
-2 -2
0.4 63.67 1.08 x 10 63.82 2.98 x 10
[ -2 . -2
0.5 64.01 2.65 x 10 64.39 5.60 x 10
0.6 64.63 5.55 x 102 65.42 1.17 x 1077
0.7 65.65 1.05 x 1071 67.17 2.23 % 1071
0.8 67.28 1.88 x 10°% 70.02 4.08 » 107%

Helmholtz Configuration: o = 63.4349°
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TABLE 2.

Volume Integral

OPTIMUM PARAMETERS--TWO PAIRS OF LOOPS

Surface Integral

R a (Deg) 1 Minimum ¥y a (Deg) I Minimum y

0.1  73.43 1 2.99 x 1072  73.43 1 8.46 x 1079
40.09  0.6821 40.09  0.6822

0.2  73.44 1 7.65 x 1077 73.44 1 2.16 x 10°°
40.10  0.6827 40.11 0.6829

0.3 73.47 1 1.96 x 1072  73.49 1 5.55 x 10°°
40.17 0.6851 40.20  0.6860

0.4  73.57 1 1.96 x 107%  73.61 1 5.55 x 10 4
40.36  0.6918 40.43  0.6945

0.5  73.78 1 . 1.17 x 1073 73.88 1 3.31 x 1073
40.76  0.7058 40.97 0.7126

0.6  74.16 1 5.07 x 10°°  74.37 1 1.43 x 102
41.54  0.7318 42.05 0.7459

0.7  74.78 1 1.76 x 10°¢  75.21 1 4.95 x 1072
42.98  0.7754 44.14 0.8003

0.8 75.77 1 5.30 x 10”2 76.65 1 1.48 x 1071
45.54  0.8422 48.22  0.8763

Generalized Helmholtz Configuration: a (Deg) I
73.4273 1
40.0881 0.682110
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TABLE 3.

Volume Integral

QOPTIMUM PARAMETERS--THREL

PAIRS OF LOODPS

Surface Integral

R a (Deg) I Minimum y a (Deg) 1 Minimum x
0.1 77.92 1 2.43 x 10°¥3  77.902 1 §.25 x 10713
53.72  0.8270 53.72  0.8270
29.34 0.5108 29.34  0.5108
0.2 77.92 1 9.95 x 10710 77 .92 1 3.38 x 10”9
53.72  0.8270 53.72 0.8270
29.34 0.5108 29.34  0.5108
0.3  77.95 1 1.29 x 10~7  77.95 i 4.39 x 1077
53.79 0.8289 53.80 0.8202
29.40 0.5135 99.41  0.5140
0.4 78.01 1 4.07 x 10°°  78.03 1 1.39 x 1070
53.04 0.8328 53.08  0.8339
29.53 0.5195 99.57 0.5211
0.5 78.14 1 5.94 1070 78.18 1 2.02 x 107"
54.95  0.8409 54.36  0.8432
29.84  0.5326 29.94  0.5369
0.6 78.38 1 5.31 x 10”3 78.46 1 1.80 x 1079
54.86 0.8546 55.00 0.8589
30.46 0.5583 30.73 0.5681
0.7  78.78 1 3.41 x 1075 78.95 1 1.15 x 1072
55.04 0.8753 56.45  0.8827
31.71  0.6059 32.30  0.6273
0.8  79.45 1 1.73 % 107%  79.84 1 5.81 x 10°2
57.85 0.9053 59.01 0.9174
34.22  0.6922 36.08 0.7337
Generalized Helmholtz Configuration: o (Deg) I
77 .9187 1
53,7222 0.827047
99.3385 0.510849
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TABLE 4.

VALUES OF x THAT DIFFER DUE TO PARAMETER ROUNDING

Two Pairs of Loops

Volume Integral

Surface Integral

x--Rounded

Minimum y Parameters
2.99 x 1072  6.84 x 107
7.65 x 10~  3.46 x 10°°
1.96 x 10°°  2.04 x 107°

x¥--Rounded

Minimum y Parameters
8.46 x 107 5.07 x 10”7
2.16 x 1078 2.44 x 107°
5.55 x 10°°  5.72 x 10°°

Three Pairs of Loops

Volume Integral

x——Rounded

Surface Integral

Minimum y Parameters
2.43 x 1072 4.05 x 1078
9.95 x 10710 1.75 x 1077
1.29 x 1077  4.62 x 107°
4.07 x 1078 1.35 x 1079
5.94 x 107° .22 x 107°
5.31 x 107%  5.32 x 1072

29

x--Rounded

Minimum y Parameters

8.25 x 10712 6.70 x 1078

3.38 x 1072 3.02 x 1077
4.39 x 1077 5.88 x 1078

1.39 x 107°  3.34 x 107°

2.02 x 107%  2.03 x 1074




2. BEHAVIOR OF THE ERROR FIELD

The variation of the field within the test volume is of
interest to simulator designers. To gain insight into the be-
havior of thié variation, several types of graphs were made.
The first quantity plotted was the relative error field

| B - B .k |
B = ' (30)

where le is the constant part of the field and B is the total

field. The quantity Bre yields an overall view of the variation

of the field independent of the vector direction of that variation.

In Figures 2 through 7, Bre is plotted versus 6 on Llhe surfacc of
the test wvolume for R = 0.1 through 0.8, for one, iwo, and three
pairs and for both volume- and surface-integral methods. In
Figures 8 through 14, the behavior of Bre as a function of r is
shown for 6 = 0, 450, and 900, where r is the radial distance
in units of the loop-sphere radius a. The values of r shown arc
inside the test volume; hence, r takes on values Ifrom zero to R
only. The plots indicate that Bre is a smooth function with no
large spikes. Its value is largest on the surface of the test
volume and decreases rapidly as the observer moves toward the
center of the test volume. At about 0.8 of the radius of the
test volume, half the volume is inside and half* outside; at this
point Bre approximates X, as one might expect.

‘ To display the vector behavior of the error {ields, contours

of constant values of the two error-fiecld components were plotted.

That is, contours of constant BD/BV1 (where Bp is the cylindrical,
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radial component of B orthogonal to Bz) were plotted and contours

of constant Bze = (BZ - le)/le were plotted, These are shown .
as overlays in Figures 15 through 26.

3. OPTIMUM LOOP POSITIONS FOR FIXED CURRENT RATIOS

It would be difficult to design a practical simulator with
the ratio of currents in the various loops equal to or approxi-
mating an irrational number. The most reasonable approach would
be to wire the loops (at least a symmetrical half of the loops)
in series and adjust the number of turns in each loop to attain
the appropriate ratios. For an accurate approximation to an ir-
rational number, a large number of turns would generally be re-
quired. This would result in a large inductance and a difficulty
in achieving sufficiently fast rise times. Therefore, a practical
design will have a small number of turns in each loop. 1In this
case, the ratio of currents can be represented by a fraction .
given by the turns ratio.

To explore the implications of fixing the current ratio to
such fractions for the two-pair case, optimum loop positions were
found for 12/11 =1/2, 2/3, 3/4, 4/5, 5/6, 6/7, 7/8, and 1. These
values bracket the optimum values given in Table 2. The results
are given in Tables 5 through 12. It was found that, because of
the peculiar behavior of y as a function of the parameters, loop
positions could be found for several of the current ratios that
result in ¥ not much larger than its optimum value. This behavior
gives the designer much more latitude than one might have orig-

inally expected.
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Figure 23. Contours of constant (Bz—le)/BZl (solid lines) and constant Bp/le

(dashed lines) for two pairs of loops using the surface-integrail

method; R

0.2, 0.3, and 0.4.
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= TABLE 5. OPTIMUM LOOP LOCATIONS FOR FIXED CURRENT RATIOS
(TWO PAIRS OF LOOPS), R = 0.1

Volume-Integral Method Surface-Integral Method
na o (Deg) X a (Deg) X
-6 -8
1 69.70 2.43 x 10 69.70 5.16 x 10
1/2 “30. 60 30.60
1 73.19 1.46 x 1078 73.19 3.67 x 1078
2/3 39.65 39.65
1 74 .42 5.38 x 107° 74.42 1.34 x 1077
3/4 41.70 41.70
1 75 .12 8.66 x 1078 75.12 2.17 x 1077
4/5 42.65 42.65
1 75.58 1.06 x 1077 75 .58 2.66 x 1077
5/6 43.20 43.20
1 75.90 1.19 x 10“7 75.90 2.99 x 10“7
6/7 43.57 , 43 .57
1 76.14 1.29 x 1077 76.14 3.99 x 10~7
7/8 43.83 43.83
1 77 .84 1.86 x 1077 77 .84 4.66 x 10”7
1 45.36 | 45 .36

!.y
J
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TABLE 6.

1/2

2/3

3/4

4/5

5/6

6/7

7/8

OPTIMUM LOOP ILOCATIONS FOR FIXED CURRENT RATIOS

(TWO PAIRS OF LOOPS),

Volume-~Integral Method

69.
.82

30

73.
.65

39

74.
.70

41

75.
42.

75
43

75

76G.
43.

77

a (Deg)

75

19

42

12
65

.08
.21

.80
43.

o7

14
&3

.84
45.

36

_X
4.28 x 10~
1.22 x 107
3.49 x 10~
5.56 x 10~
6.81 x 10~
7.65 x 10~
8.25 x 10
1.19 x 10

R

0.2

~Surface-Integral Method
a (Deg) N
69.77 37 x 1072
30.01
73.19 22 x 107°
39.65
R
74.42 76 % 10
41 .70
)
75.12 .39 x 1077
42.65
75.58 70 » 1079
43.21
75 .90 91 » 107°
43.57
76.14 L0G x 107°
43.83
77.83 ).98 « 107°
45.37



TABLE 7.

'H

1/2

2/3

3/4

4/5

5/6

6/7

7/8

OPTIMUM LOOP LOCATIONS FOR FIXED CURRENT RATIOS
(TWO PAIRS OF LOOPS), R

Volume-Integral Method

69.

31

73.
39.

74

41.

75

75.
.22

43

75.
.58

43

76.
.85

43

7.
45.

a (Deg)

91

.64

19
65

.42
70

.12
42.

66

57

90

14

82
39

2.

82

.32

.20

.43

.81

.74

.41

.36

10

10

10

10

10

10

10

10

-4

-3

-5

-5

=

-Jd

-5

-9

-4

- 59

Surface-Integral Method
o (Deg) Y
-4
69.97 48 x 10
31.98
73.19 42 x 107°
39.65
74 .42 .07 x 1074
41.70
75.12 61 x 10”4
42.66
75 .57 96 x 10~ %
43.22
75 .90 19 x 1074
43.59
76.14 .35 x 1072
43.85
77 .81 .38 x 1074
45 .41



TABLE 8. OPTIMUM LOOP LOCATIONS FOR FIXED CURRENT RATIOS
(TWO PAIRS OF LOOPS), R = 0.4

Volume-Integral Method Surface~Integral Method

I a (Deg) X a (Beg) Y

1 70.16 1.24 x 1073 70.27 2.94 x 1073
1/2 33.03 33.58

1 73.19 9.17 x 1074 73.19 6.10 x 102
2/3 39.67 39.69

1 74.42 2.70 x 1072 74 .42 7.07 x 1071
374 41.71 41.72

1 75.11 3.76 x 10”2 75.11 9.55 x 1072
4/5 42.68 42.69

1 75.56 4.47 x 1074 75 .56 1.13 x 1073
5/6 43.24 43.26

1 75.88 4.96 x 1072 75 .88 1.25 x 10793 ®
6/7 43.62 43.64

1 76.12 5.32 x 1074 76.11 1.33 x 1079
7/8 43.89 43.91

1 77.78 7.57 x 1074 7.6 1.89 x 107°

1 45 .47 45 .51

60
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TABLE 9. OPTIMUM LOOP LOCATIONS FOR FIXED CURRENT RATIOS
(TWO PAIRS OF LOOPS), R = 0.5

Volume-Integral Method Surface-Integral Method
I a (Deg) X a_ (Deg) X
1 70. 46 4.21 x 1073 70.64 1.01 x 10™2
1/2 34.57 35.30
1 73.20 1.28 x 1073 73.922 3.64 x 1073
2/3 39.76 39.85
1 74.41 1.28 x 10°3 74 .40 3.49 x 10°9
3/4 41.75 41.78
1 75.09 1.56 x 1073 75.08 4.07 x 107°
475 42.73 42.76
1 75.54 1.79 x 10°3 75.51 4.56 x 109
P 5/6 43.31 43.35
) 1 75.85 1.95 x 1075 75.82 4.93 x 1073
6/7 43.69 43.74
1 76.08 2.07 x 1073 76.05 5.22 x 1073
7/8 43.97 44.02
1 77 .69 2.86 x 1073 77 .62 7.11 x 1073
1 45.62 45.71
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TABLE 10.

‘H

1/2

2/3

3/4

4/5

5/6

6/7

7/8

OPTIMUM LOOP LOCATIONS FOR FIXED CURRENT RATIOS

(TWO PAIRS OF LOOPS), R

Volume-Integral Method

a (Deg)

70
36

73
40

74
41

75

42.

75
43

75

43.

76
44

77.
45.

.84
.24

.26
.10

.40
.91

.06
87

.48
.46

.78
85

.00
.14

51
87

X

21 x 1072
61 x 1073
10 x 107°
.49 x 1073
91 x 107°
.25 x 1073
.52 x 1073
.50 x 1072

62

= 0.6

Surface-Integral Method
a (Deg) X
-9

71.20 94 x 10
37 .33

73.36 .58 x 1072
40.49

74 .42 43 x 1072
42.12

75 .04 49 x 1072
43.03

75 .44 56 x 1072
43.60

75.73 83 x 1072
43.99

75.94 68 x 1072
a4.27

77 .36 12 x 1072
46.04



TABLE 11.

1/2
2/3
3/4

4/5

5/6
®
% I

6/7

7/8

J

OPTIMUM LOOP LOCATIONS FOR FIXED CURRENT RATIOS

(TWO PAIRS OF LOOPS), R

Volume-Integral Method

a (Deg)

71

38.

73.
41.

74

42,

75.
43.

75.
43.

75.
44 .

75.

44

77.
46 .

.45
34

48
09

.48
55

07
39

45
93

71
30

91
.97

25
31

X

3

.11

.96

77

.77

.81

.84

.88

.21

63

= 0.7

Surface-Integral Method
a (Deg) Y
72.20 7.74 x 10”2
40.21
73.87 5.47 x 1072
42.28
74 .71 5.02 x 10”2
43 .44
75.20 4.95 x 10°2
44 .14
75.53 4.98 x 1072
44.60
75.76 5.03 x 102
44 .93
75.93 5.08 x 10”2
45.17
77 .11 5.65 x 107%
46.79



TABLE 12.

1/2

2/3

3/4

4/5

5/6

6/7

7/8

OPTIMUM LOOP LOCATIONS FOR FIXED CURRENT RATIOS

(TWO PAIRS OF LOOPS), R

Volume-Integral Method

a (Deg)

72

41.

74 .
43.

74.

44

75.
45.

75.
45.

75.
45.

76.
45.

77.
47 .

.49
44

12
34

92
.38

38
01

69
43

91
72

07
95

15
44

.56

.84

.44

.32

.30

.30

.31

.59

64

= 0.8

Surface-Integral Method
o (Deg) X
-1
74 .01 .92 x 10
45,09
75.20 .60 x 10‘1
46.36
75.79 52 x 107%
47 .08
76.13 .50 x 10‘l
47 .53
76.36 49 x 1071
47 .83
76.52 .48 x 10“1
48.05
76 .64 .48 x 10’l
48.21
77.46 51 x 107+
49 .37
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4, SENSITIVITY ANALYSIS

The extreme sensitivity of y to changes in the parameters
(near a minimum) has already been pointed out in Sections II-4
and III-1 of this report. In this section, the sensitivity is
quantified. The sensitivity is needed to determine the fabrica-
tion tolerances required to achieve a given field uniformity.
The field uniformity achievable using the type of simulator dis-
cussed in this report may well be determined by the minimum
achievable engineering tolerances.

To quantify the change in y from its minimum value X due
to small changes in the parameters, one can use the first few
terms of a Taylor expansion about the minimum point in parameter
space. Since the first derivatives are zero at the minimum, the

first two non-zero terms in the expansion of x/xm are

X/Xp =1 % iZj (2-6;4) C;5 dpy 6p, (31)
where
a2
C.. = 1 X and 8.. is the Kronecker delta,
ij 2xm Bpi 8pj ij

Using Equation 49 (found in the Appendix and evaluated in the
Newton~Raphson code), the values of Cij were calculated with the

formula

c.. =Lt _3X (32)

To simplify application of Equation 31, the coefficients involving
the angles (ai) have becen transformed from radians to degrees.

Hence, in Equation 31, a dpi should be in degrees if it—is an



angle.coordinate. Since 12 and I3 can be correctly considered as
dimensionless ratios to the current Il’ <Spi is dimensionless if .
it is a current coordinate. The coefficients Cij are given in

Tables 13 through 15 for all the optimized parameter values given

in Tables 1, 2, and 3. The inde# of the paramcters corrcesponds

to their order in Tables 2 and 3. That is, oy > Ay > aq and

I, > 1, > 13 (Il = 1, a constant; hence, partial derivatives with

1 2

respect to Il are zero and are not shown in the tables). To

clearly identify the Cij’ they are listed in the tables with sub-

scripts a, or Ii' For instance,

c 1 %8
0112 4XZ 3&1 312
m
The tables clearly demonstrate the extreme sensitivity of .)

x to parameter variations for small values of R. For instuance,
if R = 0.1 and there are two pairs, using the volumc-integral
method one finds C = 3.057 x 109. This cocefficient implics

3%

that y 1is approximately doubled if «, 1s changed from its optimum

1
value by 1.8 x 10—5 degrees while holding the other parameters
constant. Such tblerances cannot be attained; hence, it 1is not
sensible to attempt to attain such a small y (3 x 10_9) with this
type of device. The corresponding coefficient for R = 0.8 is
6.077 x 10—2. This coefficient implies that a variation of about

four degrees in a, will about double x (x = 0.053). A four-degree

1
tolerance is probably attainable. The design of a simulator
using these technigues must balance attainable tolerances against .

test volume size and expected field uniformity.
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TABLE 13. VALUES OF Cij FOR ONE PAIR OF LOOPS

R 1
Volume-Integral Method Surface-Integral Method
4.432 x 107 2.692 x 10%
2.766 x 10° 1.679 x 10°
5.431 x 107+ 3.290 x 1071
1.691 x 10°% 1.018 x 1071
6.688 x 1072 3.983 x 1072
3.023 x 1072 1.771 x 1072
1.460 x 1072 8.415 x 107°
3 3

7.119 x 10~ 4.100 x 10~
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TABLE 14. VALUES OF C;, FOR TWO PAIRS OF LOOPS
Volume~Integral Method
G C C C C T
R alal a4y g u2a2 allz azI 1212
0.1 3.057 x 10° 1.062 x 108 |3.912 x 106% | -4.934 % 100} -1.720 x 107 | 7.964 x 10*?
0.2 | 7.475 x 10° 2.508 x 107 | 1.712 x 10% | -1.203 x 107 | -4.274 x 10° | 1.942 x 108
0.35.799 x 10° 1.652 x 102 | 3.873 x 10% | -9.216 x 10% | -3.541 x 10° | 1.490 x 10°
0.4 | 1.870 x 10° 2.872 x 109 | 3.462 x 109 | -2.872 x 10° | -1.326 x 10° | 4.657 x 10?
0.5 1.334 x 107 | -1.349 x 1071 |5.776 x 10”1 | -1.905 x 10% | -1.187 = 10% | 3.100 x 10°
0.6]1.598 x 10Y | -7.874 x 1072 [ 1.381 x 10”1 | -1.996 x 10 | -1.816 x 10° | 3.208 x 102
0.7]2.760 x 107% | -2.682 x 10°% | 4.105 x 1072 | -2.768 x 10° | -3.782 x 10”1 | 4.689 x 10t
0.86.077 x 1072 | -8.621 x 1073 | 1.348 x 1072 | -4.434 x 10"+ | -9.006 x 1072 | 7.922 x 10°
Surface-Integral Method
C C C C C C
R alal alaz azaz alIz azl 1212
0.111.037 x 10° 3.597 x 107 |1.372 x 10° | -1.674 x 10%9 | -5.838 = 10° | 2.702 x 10%1
0.2 | 2.541 x 10° 8.255 x 10° | 7.542 x 10° | -4.080 x 10° | -1.458 x 10° | 6.589 x 107
0.3 ]1.986 x 10° 4.612 x 10% | 1.999 x 10% | -3.123 x 10% | -1.231 x 10% | 5.050 x 10°
- o
0.4 16.531 x 10% | -1.118 x 1072 | 1.882 x 10° | -9.702 x 10° | -4.772 x 10 |1.575 x 10%
0.5 1 4.829 x 100 | -2.073 x 10711 3.209 x 107+ | —6.301 x 10* | -a.401 x 10° |1.048 x 103
_ _ 2

0.6 | 6.203 x 107 L | =6.263 x 1072 | 7.733 x 1072 | -6.600 = 10° | -6.717 x 1071 | 1.105 x 10
0.7 11.170 x 107 | 21.871 x 1072 | 2.274 x 1072 | ~8.922 x 1071 | -1.326 x 1071 | 1.570 x 10%
0.8 12.830 x 1072 | =5.744 x 1073 | 7.241 x 10"’3J ~1.369 x 107} | -2.821 x 1072 | 2.719 x 10°
NOTE: C in Deg “; C in Degal; and C dimensionless.

aiaj Q. I 12
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TABLE 15. VALUES OF Cij FOR THREE PAIRS OF LOOPS

a. Voiume-Integral Method

s; i [4; l aqay e, Caa, Coy, Caya, Cajay Ca, 1, Co, 1, Cat, S, 1, I a1, Ca, 1, ‘1,1, ‘11, €11,
: l‘c.x! 1.651410%7 | 1.429.10"7 | 1.551410"% | 1.238410"7 | -4.382410%| 1.551x10" | -2.027410"8 | 8.553410"7 | -1.754x10"8] -2.413-10'8| 6.212-10'7 | 8.55ex10'7 | 2.228.10"? 3.427-10‘9; 722199
| ‘l,?_;l 1ssraot | assaro! | razaa0'@ ] 117800 | ca16610'0 | 147841070 | 129354102 | 8.135.10" 1 | -1.667-10'2| -2.302.102] 5.921-10" | 8.135.10" | 2.373.10"3 3.256110]3i a.296.19'3
| 2 3] esc2cr0” | 3.0560107 | a.1660105 | 3.585.107 [1.255107 | a.066-10° | -5.00710% | 2.438-10° | -4.979108 | -6.978410° | 1.78210° | 24384108 | 7.1270107 | 96730107 [ 1.259.101
1o ix $70410° | 1.285.10° | 1.433.10% [ 1.16110° | -3.971.107 | 1.433a0? | -1.877.10% | 7.513010° | <1.543-108 | -2.201400% | 5.655.10% | 7.613.10° | 2.258.107 | 2.950-107 | 4,330,107
| 3 0.5 }1.?35-103 1.302.10% | 1.722.102 | 1.20310% | -a.59110% | 1.722.102 L:E:216<104 8.458<10% | -1.691.10% | -2.626x10° | 6.528.10° |8.458-10% |2.587.10° | 3.154410° | 5.06519°
‘ 0.6].71510" | 3.262.10" | 515010 | a.005-10" [-1.23310" [ 51050100 | -5.980-107 | 2.030-107 | -e.013-107 | <71a100 | 1732007 | 2.0304102 | 6.700.10% | 70230107 | 1306108
' ! —— JREDG PE— -— ] - ————— — ——
jfgg e i3~233\1o° vasiae? | 3.asa01077 | 21554300 [ -6.31041071 | 3.366-1071 | -2.838.10" | 7.698-100 | -1.852.10" | -3.37100" | 8.180-10° | 7.698x100 | 3.049-102 | 2.382.10% | 6.267~107
L %i 0.3!3.051007" | 3.410.107% | 5.20610°7 | 1919107 [ -5.608+1072 [ 4.32041072 | -1.935-107 | 3.331x107" | -7.851<107" | -2.2804100 | 5.n22-107" | 3.331.107" [ 2.103.10" | 7.667.10° | 4.280.10"
: b, Surface-Integral Method
¥ 9.1{3.833.19" | 3.362410'%| 3.649.410"% | 2.912410"® | -1 .031510"" | 3.629.10'% | -a.768:10"7 | 2.013x10'7 | -a.127410'7 | -5.688<10"7 | 1.46110'7 | 2.013x10"7 | 5.853-10"8 | 8.061x10"8 | 1.111.10"?
2.2 13.720:10" | 31904100 | 3.478.10% [2.772410'% | 29.791410% | 3.¢70.1¢% | -a.560410"" [ 1.912.10"" | -3.918x10"" | -5.a15410"" | 1.394x10"" | 1.912410"" | 5.592-10"2 | 7.649410'2 | 1.052-10"3
e laesa0” 1o.5184008 | 1.055410° |5.063-105 | -2.988410% [ 10554106 | -1.389.108 Ls.mmo’ 1.166.10% | -1.6a6.10% | 4213007 [c.m18a07 | 1.c89097 | 2.262.10% | 3.202.00°
2.025410% | 3.23500% [ 2.765¢10° [-9.32310% | 3.43510% | -4.552.10% | 1.772-10° | -2.579%10° | -5.318x10° | 1.353«10° [1.772219° |5.424x10% | 6.824x10% |[1.022-107
3.10810% 1 4.323<0" [3.416107 |-1.079410% | 4.3a4w10" | -5.586.10% | 1.931-10° |-3.849.107 | -6.382«10% | 1.608x10% [1.931.10% [6.429<10% | 7.038<10° {1.215-10%
i f;fffﬂjon 1;f]2j]0° ik 300" 1-3.100<10% | 1.50a100 | -1.6004102 | 4.433410" | -8.824-10" | -1.732x102 | 4.481<10" [4.43310" |1.766-10° |1.454x10° | 3.28¢x103
i 2 heerad? Dyaasae! o ssaan™! (6 220! [-1.8730007" | 1.268¢7" | -8.1224100 [ 1516107 | -3.229.107 | -8.245x10° | 2.289.100 |1.516.10° |s.847.10" [3.94210" |1.562-107
L9‘s [1Azzs~xo" a.181a07% | 2.89741072 16.670410'2 -2.149<1072 | 1.98641672 | -5.865<107" | 5.115.1072 | -1.297107! | -5.538.107" | 1.786x107" [5.1151072 17.042.10° | 1.704-1077 | 1.0%¢ 10"




5. DRIVING IMPEDANCE CONSIDERATIONS

In the low-frequency approximation, the driving-point
impedance is an inductance. To calculate the driving-point
inductance, the self—inducténce 0of each loop and the mutual in-
ductances between the loops must be known. For the single-pair

geometry connected in series,

= 2aN? (Ly/a) + (M /2) (33)

o
!

where
N = number of turns in each loop

a = radius of the sphere containing the loops (meters)

self-inductance of each loop (calculated as if it

Ll/a
had only one turn) divided by a

Mlz/a = mutual inductance of the }oqps (calculated as if
they had only one turn) divided by a
The quantity Mlz/a was calculated for each of the onc-pair
optimized geometries using the formula given by Smythe [Ref. 2,
p. 313, Equation 8.06(3)]. These values are given in Table 16.
The self-inductance, however, is dependent on the wire diameter and
the permeability of the loop material. The self-inductance of a

loop is given by Smythe (Ref. 2, p. 318) as

Ly, = b[u(ln %2 - 2) + %%] (34)

where
b = a sinog = the radius of the loop (meters)

e the permittivity of the material the loop
is embedded in (H/m)

a' = the radius of the wire the loop is made of (meters)

p' = the permittivity of the material of the wire loop
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TABLE 16,

_R a (Deg)

Volume-Integral Method Parameters:

63

63
64
64

O 0O 0O o0 o0 o o o
0 N ;U A W N

65.
G7.

.44
63.
63.

45
51

.67
.01
.63

65
28

Surface-Integral

0.1 63
0.2 63.
0.3 63.
0.4 63.
0.5 64
0.6 55.
0.7 67.
0.8

70.

.44

46
56
82

.39

42
17
02

SELF AND MUTUAL INDUCTANCE -- ONE-PAIR CASE

Myp/a

(H/m)

L/a - f(a',u')
(= 3 Mo sinao) (H/m)
3.372 x 107°
3.372 x 1075
3.374 x 107°
3.379 x 107°
3.389 x 10°°
3.406 x 107°
3.435 x 1078
3.477 x 10°°
Method Parameters:
3.372 x 107°
3.373 x 1078
3.376 x 10~°
3.383 x 107°
3.399 x 107°
3.428 x 1078
3.474 x 107°
3.543 x 107°

[S1 IS 1 BTN - ST

N Or O b b b b b

.419
.424
.443
.495
.606
.815
.181
.814

.420
.427
.458
.544
.732
.095
.768
.054



This formula can be written

= i 8a sina p'
Lll/a = sina uo[(x - 2) + 2n<—;7—;§—>] T (35)

for any value of X (X is a dummy). The value of X is arbitrarily

chosen as X = 5; then Equation 35 can be written

Lll/a = 3uo sina + f(g', u') (36)

where f is given by

' 1y = ot 8a sina u'
f(a', p') = 51na[uo £n<——7——§—> + i ] (37)
a' e
Suppose u' = py_ and f(a', p') is set to zero. Then, it is easy

o
to show that

a sina e4'75 ~

S = g — = 14.448 .

Or, the radius of the wire is

|

gt = & Sina
14.448
o ' . *
If a=1mand a =647, a' = 6.2 cm = 2.4 in. (a reasonable value).

Hence, 3u0 $ina yields a "reasonable'" estimate of Lll/a; for the
correct value, one need merely add f{(a', p') evaluated with the
proposed parameters a, a', «, and pu'. The value of f may be posi-
tive or negative depending on the parameters. The values of 3u0
sina are tabulated in Table 16 for the various optimized one-pair
geometries.

For the two-pair geometry, assuming series connection, the

inductance can be written .

¥*Such a fat wire is considered reasonahle for low self inductance
and dimensionnl stability under impulse loading during use.
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- 2 2
L = 2a hl(Ll/a) * Ny(Ly/a) + NyN, (M 5/2)
.+ 2N,N, (M, /a) + V2(H /a) +'N2(M /a) (38)
S22 13Y 11470 AN K

In Equation 38, the subscripts refer to the current-loop labels
shown in Figure 27. Also, the symmctry of the Mij has been used
to simplify the expression, and the geometrical symmetry condi-
tions L1 = L4, L2 = L3, N1 = N4, N2 = NS’ and M13 = sz1 have bceen
assumed. If the loops of each symmetrical half are connected in
series, but the two halves are connected in parallel, then the
inductance is one-fourth that given by Equation 38. The valucs
of 3“0 sina are tabulated for each optimized {wo-pair gcometry in
Tables 17 and 18. In the same tables the valucs of (Miz/u),

(M13/a)’ (M14/a), and (M23/a) are given. Again, the formula given

by Smythe (Ref. 2, p. 313) was used.

Figurce 27. Current-loop labels for two-pair geometry.
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TABLE 17. SELF AND MUTUAL INDUCTANCE--TWO PAIRS,
VOLUME~INTEGRAL-METHOD PARAMETERS

|2

L/a - f(a',u')

o (Deq) (=3 W sinw) (H/m) M o/a (H/m) Mya/2 (H/m) M 4/2 (H/m) M,q/a (H/m)
40.09 2.428 % 1070 5.870 x 107/ 2.265 x 107 6.215 x 107> 8,986 x 107
73.43 3.613 x 10

-6 -7 -7 -8 -7
40.10 2.429 % 1070 5.873 x 10 2.268 x 10 6.225 x 10 8.991 x 10
73.44 3.613 x 10
-6 7 -7 -8 -7
40.17 2.432 x 1078 5.890 x 10 2.278 x 10 6.268 x 10 9.015 x 10
73.47 3.614 x 10
40.36 2.441 x 1078 5.935 x 1077 2.307 x 107 6.387 x 107 9.079 x 1077
73.57 3.616 x 10
-6 -7 -7 -8 : -7
40.76 2.461 x 107 6.035 x 10 2.371 x 10 6.654 x 10 9.215 x 10
73.78 3.620 x 10
-6 -7 -7 -8 -7
41.54 2.500 x 1072 6.238 x 10 2.498 x 10 7.199 x 10 9.468 x 10
74.16 3.627 x 10
-6 -7 -7 -8 -7
42.98 2.570 x 1077 6.629 x 10 2.738 x 10 8.287 x 10 9.903 x 10
74.78 3.638 x 10
; -6 -7 7 -7 -6
45,54 2.691 x 1070 7.380 x 10 3.196 x 10 1.054 x 10 1.064 x 10
75.77 3.654 x 10



‘.ﬂ\

@ @@%"l’ -
TABLE 18. SELF AND MUTUAL INDUCTANCE--TWO PAIRS,
SURFACE~-INTEGRAL-METHOD PARAMETERS
L/a - fla',u')
R o (Deq) (= 37w, sina) (H/m) M) o/a (H/m) M;3/a (H/m) My4/2 (H/m) Mya/a (H/m)
0.1  40.09 2.428 x 1078 5.870 x 1077 2.265 x 1077 6.215 x 108 8.986 x 107/
73.43 3.613 x 10
0.2 40.11 2.429 x 1078 5.875 x 1077 2.268 x 107/ 6.228 x 107 8.993 x 107/
73.44 3.614 x 10
0.3 40.20 2.433 x 1070 5.806 x 107/ 2.282 x 1077 6.284 x 100 9.023 x 107
73.49 3.614 x 10
0.4 40.43 2.445 x 107 5.954 x 107 2.320 x 107 6.439 x 107 9.106 x 107
73.61 3.617 x 10
0.5  40.97 2.472 x 107¢ 6.000 x 107 2.405 x 1077 6.797 x 1070 9.282 x 107/
73.88 3.622 x 10
-6 -7 7 -8 7
0.6  42.05 2.525 x 1078 6.375 x 10 2.580 x 10 7.567 x 10 9.614 x 10
74.37 3.630 x 10
0.7  44.14 2.625 x 107° 6,970 x 1677 2.937 x 1077 9.257 x 1070 1.021 x 107
75.21 3.645 x 10
-6 -7 -7 -7 -6
0.8  48.22 2.811 x 1078 8.253 x 10 3.719 x 10 1.340 x 10 1.135 x 10
76.65 3.668 x 10



6. CURRENT REQUIRED TO ACHIEVE PEAK FIELD

Equation 5 yields the uniform part of the field; i.e., o
u L 2
B,y = 4 E I. sin“ a (5)

For one pair of loops (L = 1), let a = 63.43° (Helmholtz value)

and the desired B,y = 5 x 1073 teslas, then
1 B.1 3
= = "“‘Z'T = 4.97 x 10° A/m (39)
¥ sin o

Hence, the required current is about 5,000 A for a current-loop
geometry 1 m in radius. The required current incrcascs linearly
with the radius of the simulator.

For a series-connected simulator with multi-turn current

loops, one can write .}
ul L
- w 2
By = 221 N, sin® o (10)

where Iw is the current through each turn or wire of thc series
circuit. Hence, the current reguirement can be written

a B
I = zl (41)

A E 2
U N, sin™ «
21 L g

Note that, again, the required current increases lincarly with n;
also, the required current is inversely proportional to the num-
ber of turns. However, the inductance increascs with the number
of turns squared, motivating the designer to minimize the number ‘l'

of turns.
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7. FIGURE OF MERIT AND ETFFICILENCY
Chen and Baum (Ref. 4) define two figures of merit for mag-
netic-field simulators. The first is a dimensionless measure of

the magnitude of the magnetic field in the working volume divided

by the required driving current. In scalar form, it is given by

52 = aR/ﬁC (42)
where

D S a
2o = ., L 5
: y (1,/1) sin” o
2=1
Hence
L 2
£, = aRil_./T =R zzl (I,/1) sin” a, (43)

Assuming- an idecal simulator where (IZ/I) have the oplimum values
given in Secction III-1, gi were calculated as a function of R.
The results are shown graphically in Figure 28 for 1, 2, and 3
pairs of loops for both the volume- and surface-intcgral methods.
Ticks on the curves indicate x values expressced as a percent.
Note thut the figure of merit ER is proportional to the
number of turns in a given configuration. That is, if the numher
of turns is increased {from 1 to N, then 52 = aRHZl/I is increcased
by the factor N. Hence it is not surprising that 52 for 3 pairs

is greater than 52 for 2 pairs, which in turn is greater than 52

4, Chen, Leih-Wei, and Carl E. Baum, Performance Parameters Asso-
ciated with the FINES-Tvpe Small FMP Simulators, Scnsor and
Simulation Note 238, Air Force Weapons Laboratory, Kirtland
A, NM, 16 January 1978,
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Figure of merit &p vs. R for i—, 2—-, and 3-pair

configurations for both volume-integral and
surface-integral methods without the turns factor
(sce text)., Ticks indicate values of y exvressced
as a percent of the central field.

i

78



al

for 1 pair (for any R), simply because of the number of current
loops in the three cases. To compensate for this effect, a turns
factor was included. Equation 43 was modified to include the

turns factor NL to become

£, = RN il (1,/1) sin® o, (44)
where
N, =6
N, = 3
Ny = 2

Thus, all three ideal simulators are assumed to have 6 turn-pairs
since L - NL = 6. The results of evaluating Equation 44 are shown
in Figure 29. Now, for a given R, the order of the values of 52
are reversed. This is explained by noting that the effectiveness
of the additional loops in the 3-pair and 2-pair configurations in
producing a magnetic—field magnitude is less than that of the
larger loops carrying a proportionately larger current. This
apparent detrimental effect of the additional loops is more than
offset by the increased field homogeneity. Note that, for a given
x value, &2 (Eq. 44) is largest for the 3-pair configuration and
smallest for the l-pair configuration. The fact that this occurs
at-different R values is of little consequence since the effect of
the size of the working volume has been included in the definition
of 52.
The second figure of merit defined by Chen and Baum is the

energy efficiency; it is the-ratic of magnetic-field energy in the

- .79



Figure 29,

1 L} 1 4 1

(b) Surface-Integral lethod

Figure of merit £y vs. R for 1-, 2-, and 3-pair
configurations for both volume-integral and .
surface-integral methods including the turns

factor (see text). Ticks indicate values of ¥

expressed as a percent of the central ficld.
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‘ud

test volume divided by the total stored magnetic-field energy.

It can be written (Ref. 4, p. 195)

2

1
_ 2 ollz1Vy _ oYy
1 Lu2 2 L2 (40)
2 zl7¢c c
where
v =3 .,38 - working volume
w 3

Substituting lc from below Equation 42 and letting R = E/a, one
obtains

L

3 2 |2
B ATR Qzl (I,/1) sin® «,

&h = 3(L/a) (46)

Equation 46 was evaluated for 1 pair of loops yith (L/a) given

by Equation 33 (N = 1) and Il/I = 1; the inductances of Table 16
were used. For the 2-pair configuration (L/a) was obtained from
Equation 38 with N2 = 1 and N

that yields thc optimized current in loops 1 and 4, Figure 27,

1= 12/1 (a hypothetical turns ratio

with the simulator series connected); the inductances of Tables
17 and 18 were used. Oﬁtimum (Table 2) current ratios were used.
(The parameter Eh was not calculated for the 3-pair configuration
since the large number of required mutual inductances have not
been calculated.) The results are sho&p in Figure 30. For the
same value of error (x), the 2-pair configuration is far superior
to the l-pair configuration as measured by the efficiency parame-

ter Eh'
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Figure 30. Efficiency parameter &, vs. R for 1- and 2-pair
configurations for both volume-integral and
surfacc-integral methods. Ticks indicate valucs
of x expresscd as a percent of the central field.
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APPENDIX

DERIVATIVES FOR NEWTON-RAPHSON METHOD

For either Equation 18 or 22

Let

where

2
X" =5 (47)
2
dx 1 du v
2\ (48)
3Py v2( 9p, Bpl)
%% _ 1 <% __EEE__ - u 32y 4+ dv_ 3u _ du 3v
apjapl ;5 Bpjapi Bpjapi Bpj 3p; 3pj 3p;
2 au v v
- 3V 5p, T Y apl) Ipl (49)
v3< P api) P
2
w= I oo | T v (50}
n=3(2) 2=1 r
(n) _ no_. 1
U2 RRR sina, Pn(cosaz)
3 t
nion ¥ 1y Volume-Integral Method
Dn =
2 2n + 1
3 n(n ¥ 1) Surface-Integral Method
R = &/a
oy (n) ¥ (n)
N SR L S S N (51)
J n=3(2)= 2=1



L
Be g om o Fouw @

505 p=3(2)e D 221
where
(n)
U
(n) = _‘3___. = n Y 1
UIj an R 31naj Pn(cosaj)
aum)
U(q) = _—J = 1 g" —g—léina. Pl(cosa.ﬂ
aj aa J da . J ' n J
J J
Bzu ) (n) ,;(n) '
— = 2D U’ U (53)
aIkalj n=3(2)e n Ij Ik
32y (n) (n) (n) L (n)
———— = ) 2D |Ux:/ U + 68 ., U2 T U (54)
aakalj n=3(2)= Ij ak kj "ol gz1 *
where ;
q
au(n)
U(“? = 13 - r" —g—[sina. Pl(cosa.)
alj 3a . da . J n J
J J
2% 5 2p |ulm) gl o5 () If u(mM (55)
Bakaaj n=3(2)e nl|l aj ak kj “aaj 221 L
where
(n)
alUr, 2
U(n? = 2 = I.Rn d sina. Pl(cosa.)
aoj sa J 2 J 'n J
J daj
and
1, if k=3
ij =
0, if X # J , "'

the Kronccker delta.
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where

where
ot

where

L 2
v=|1 v, (56)
=1
V2 = IQR sin ay
Y %
Y= 2V, Vv (57)
Ij 13 121 [
v %
— = 2V . \Y (58)
an aj o249 £
V. .
V.. = —J = 'R*sin2 a .
1] ol. J
J
V.
v . = —J = I.R 2sina. cosa. = I.R sin2a,
aj Baj J J J J J
2
9~V
~2 Y = 2v_. V (59)
aIkalj Ij Ik
82v %
% =2V, V. + 8 .V . \Y (60)
Bukalj Ij ok kj alj 2=1 )
ava
7 = = i
\aIJ Baj R 51n2aj
82v %
— = 2|V .V + & .V . W (61)
aukaaj ol ak kj aaj 9=1 %



where

V . =9 = 21.R cos2a.
3 j

Using formulas from Reference 3, p. 334, the following

quantities can be obtained:

é%l}ina Pi(cosa)} = (n + 1)[cosa Pi(cosa)
- Pl (cosa)] (62)
n-1 <

[%ina Pl(cosa)] = ht 1 gﬂn + l)cosza - l]Pl(cosa)
n sina n

a®
da2

- 2n cosao Pi_l(cosa) + nPi_z(cosa)} (G3)

These arce required for cvaluation of Equations 52, 54 ard 55.
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