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Abstract

This report presents two complementary theoretical
developments leading to the conclusion that for a large
class of important systems, transfer coefficients represents
the unique and total relationship between external interaction
quantities and the voltage and current drives of subsystems.
If external interaction is given a role in any coupling effort,
e.g. , internal cable or pin prediction, threat extrapolation,
or alternate simulation, then transfer coefficients must play
a role. It is also argued that transfer coefficients must
play a role in assigning or verifying certain hardness speci-
fications. For internal prediction, transfer coefficients must

e

be explicitly determined. For certain threat extrapolation
that utilizes external interaction quantities as well as alter-
nate simulation, the existence of transfer coefficients have
always been explicitly or implicitly assumed to be provided by
nature. For these activities it is noted that the nature
provided transfer coefficients depend on the physical environ-
ment external to the system and this dependence bears on the
accuracy of the procedures. Data is presented quantifying the
extent of this dependence for a controlled laboratory situation.
Despite these laboratory results, it is recommended that studies
be initiated to minimize this dependence for real system appli-
cations. The potential benefits of transfer coefficients on
system testing are discussed.

It is argued that present computational technology cannot
be relied upon to calculate transfer coefficients for a complex
coupling configuration. As compensation, an experimental pro-
cedure for measuring transfer coefficients is presented. This
procedure has the desirable features that it is self-testing
and that the excitation sources have considerably fewer constraints
placed on them compared to the constraints on full scale simulators
Data is presented showing that these transfer coefficients can be
accurately measured.
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I. INTRODUCTION AND SUMMARY

—

—

This report introduces the concept of transfer

coefficients, describes their role in determining a system’s

response to an impinging electromagnetic field, and presents

a procedure for measuring them. An important aspect of this

work is to clarify how transf~r coefficients-have been implicitly

assumed in existing electromagnetic pulse coupling analyses.

Despite the fact that transfer coefficients have been implicitly

assumed in past efforts, this work suggests that they should.,
receive a different treatment in future work. It is noted that

this work, as well as the large amount of related work that

implicitly assumed the existence of transfer coefficients, are

linear theories.

The basic argument that transfer coefficients have been

implicitly assumed ifipast EMP coupling analyses is summarized

as follms. Transfer coefficients represent the unique and.. .

total relationship between the interaction current and charge

densities induced on the exterior of:,a system, and voltage and

currents driving subsystems that are contained within the system.~;-. -.
A more detailed description” of “theLsystems to which this concept

pertains are discussed in Section II. For this class of systems,

if an electromagnetic coupling situation is treated in a manner. .

where one is interested in subsystem excitation and a role is

assigned to external interaction,

coefficients .

This statement clearly bears

then one must deal with transfer

directly on the ability to

make internal coupling predictions, and it is closely related to

threat extrapolation and alternate simulation. The relationship

between transfer coefficients to threat extrapolation and alter-

nate simulation will subsequently be further discussed. Transfer
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coefficients must also play a role in assigning or verifying

shielding hardness specifications of a system if the shielding ●
specification, in any manner, references any external coupling

quantity.

Furthermore, as part of the transfer coefficient concept,

it follows that external coupling quantities have no inherent

meaning unless they are determined on seals placed over the

POE’s of the system. If external coupling quantities are

determined elsewhere on the surface of the system, for convenience

sake, then their significance to any coupling consideration

must be addressed by relating that quantity to the external

coupling quantity that would be excited on a POE seal. The

arbitrary nature of where to choose the points to determine the

external coupling quantities is resolved by the transfer co-

efficient concept.

. The concepts underlying transfer coefficients have.

previously been recognized to a large extent by workers in the

EMP field and in parallel communities (e.g., EMC). The relation- s J

ships between this work and other EMP efforts will be presented

in the text as concepts are developed. The relationship between

this work and the work of Schuman (Refs. 1, 2) in support of

parallel communities will be described in this introduction.

The major new contributions of this study are as follows:

* A procedure for measuring transfer coefficients

is presented and it is argued that there is no

analytic or computational alternative to this

measurement procedure for all but the simplest

of systems. This procedure allows transfer

coefficients to be determined for systems with

electromagnetic sources that are required to.
satisfy much less stringent conditions than

existing simulator requirements. The procedure

has a self-testing aspect that allows the accuracy

of the transfer coefficients to be determined.

6
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● It is theoretically shown that transfer coefficients

depend on the physical environment external to the

system of interest. Experimental data is presented

to quantify the extent of this dependence. This

aspect of the theory has not appeared in the

literature with which the author is familiar. This

fact is relevant to present W threat extrapolation

procedures as well as to alternate simulation.

● The transfer coefficient concept and procedure is

not restricted to small isolated points of entry.

Regarding the first contribution, the measurement procedure,

it is now argued that present computational technology cannot be

relied upon to calculate transfer coefficients for even a

moderately complex coupling configuration so that they must be

measured. Consider two different types of computations of

transfer coefficients. One type of computation would rely on

an analytic formulation. This analytic formulation is presented

in detail in the text since it serves as part of the basis for

defining transfer coefficients. This analytic formulation

utilizes the fact that certain Green’s dyadics exist in princi-

ple but can never be theoretically explicitly obtained for

calculation purposes for any three dimensional shape other than

the sphere. Despite the fact that explicit representations of

Green’s dyadics limit computations, this fact does not, in any

manner, limit the utility of the procedure for measuring

transfer coefficients.

The other type of transfer inefficient computation is the

direct brute force numerical solution of f%xwell’s equations,

e.g., finite difference computation. This direct numerical

solution applied to a system of some complexity will yield a

result having a certain confidence level ascribed to it. By

the same token, measurements performed on a system of some

complexity yield results of less than total confidence. It is

—



the author’s view that the confidence level resulting from

the measurement of transfer coefficients is much greater than

the confidence level resulting from the direct numerical com- ●
putation. All of the concepts of underlying the assignment

of a quantitative or qualitative measure to confidence are

based on a number of experiences related to the issue being

assessed the confidence level. The author has seen direct

numerical computation yield qualitatively poor results for

situations less complex than those encountered to perform a

transfer coefficient computation on even a moderately complex

structure. Along these lines, data for an extremely simple

coupling configuration is presented along with the detailed

presentation of a prominent coupling analysis. It is shown

that the analysis is not in good agreement with the data.

Along these lines, other related disciplines measure electro-

magnetic responses rather than compute, for situations of less

complexity than the complexity encountered for a transfer

coefficient calculation, e.g., antenna pattern prediction.

A more direct argument that the confidence level in direct
o

numerical computation suffers in comparison to measurement of

transfer coefficients is based on the mount of knowledge one

must have to measure as compared to compute. At this stage of

our coupling technology, we cannot justify the elimination of

any of the internal complexity of a real system for the numerical

prediction of transfer coefficients. It is not clear that we

can even physically survey a complex system in sufficient detail

to provide the required information for the numerical computation.

In contrast, the procedure for measuring transfer coefficients

as presented in this report, is totally insensitive to the

detailed knowledge of the system’s internal complexity. In this

procedure, one need only identify the location where one wishes

to measure a quantity ofi ihterest, e.g. , a voltage or current,

and nature accounts for the internal complexity. The self-testing

aspect of the procedure indicates the adequacy of the measurements.



We now return to the second contribution of this report,

the external physical environment dependence of the transfer

coefficients and, in particular, the effect of this dependence

on threat extrapolation as well as on alternate simulation

(direct drive). A prominent method of threat extrapolation

(Ref. 3) utilizes external coupling quantities measured on an

aircraft during full scale simulator exposure as well as

external coupling quantities measured on a scale model of that

aircraft when it is illuminated in an anachoic chamber. It

is known that this procedure ha-s some problems which effect its

accuracy, e.g., the external couplingquantities are not

measured on seals placed over the POE’s of the aircraft and not

all of the POE’s can be located. An experiment conducted at

the University of Michigan and described in the text, was

designed to eliminate all known deficiencies with the extra-

polation procedure with the exception of the external environment

dependence of transfer coefficients, e.g., there was only one

POE, it was sealed for the external coupling measurements, and

only one scalar external coupling quantity played a role for all

aspects of the experiment. For this case, the variation in the

transfer coefficient with the external environment is a direct

measure of the error that the external environment dependence can

introduce to the extrapolation procedure. This experiment was

designed to emphasize the existence _of_the=.external environment

dependence and these results should not be taken to mean that

external coupling quantities should not play a role in threat

extrapolation. A way that they could be used in such a procedure

is as follows. Experimentally test whether existing or potential

ground based external environments used in aircraft testing have

an acceptably small effect on transfer coefficients. The pro-

cedure described in the text should be employed to determine the

transfer coefficients in these environments. This procedure

requires both external and internal measurements on a test system

—
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in the appropriate ground environment as well as in the free

space in-flight environment. The in-flight requirement forces

us to consider laboratory experiments which should then treat
o

a sufficient number of generic test objects in order to come

to conclusion about real aircraft. If such a study yields

positive results, i.e., transfer coefficients measured on the

ground are acceptably close to transfer coefficients corres-

ponding to those for the in-flight environment, then we could

have an extrapolation procedure which utilizes external coupling

quantities. This procedure might be one suggested by Baum or .

some extension of it. Such a procedure would allow the internal

system response to be determined for EMP threats having polar- A

ization and incident angles variations, by only determining the

external interaction quantities induced on the system for these

angle variations. This is the case because it would be explicitly

or implicitly based on transfer coefficients and transfer

coefficients do not depend on these incident angles. The author

is not aware of any other “transfer function” characterization

of a system that is independent of these incident angles.

●
The impact of the external environment dependence of trans .r

coefficients on alternate simulation is similar to the impact

on threat extrapolation. If a system can be direct driven in the

same environment, it will actually be utilized, e.g., a shielded

building, then this external dependence plays no role. For

such situations, the transfer coefficient concept allows the

alternate simulation goals to totally focus on the exterior of

the facility. In particular, the local direct drive sources

need only excite the same external interaction quantities at

sealed POE’s as would an EMP, in order to excite the interior

of the unsealed system in the same manner as would the EMP when

no seals are in place. When the system cannot conveniently be

direct driven in the same environment in which it will oPerate~ .

e.g. , an aircraft in-flight, then this environment must be shown

to have an acceptably small effect on transfer coefficients.

10



The data presented in this report was taken from two

sources. The first was from an experimental effort intentionally

coupled to this work and managed by Val Liepa at the University

of Michigan. The second was from the work of Schuman (Refs.

1, 2). Liepa’s data was used for two purposes. One was to

demonstrate the limitations of prominent coupling theory, to

calculate transfer coefficients for a relatively simple coupling

situation. The other Michigan data displays the dependence of

transfer coefficients on the exterior environment. It should be

noted that Val Liepa has some reservations about the quality of

this data, especially above 1 GHz (a frequency that would be of

interest for EMP when scaled to real system dimensions) . His

data was also used to determine the transfer coefficients in

a self-testing manner consistent with the procedure described

in this work, however, the data processing was not complete at

the time of this writing. Because of the significance of Liepa’s

data, the author has reconunended that the experiment be repeated.

Schuman’s data (Refs. 1, 2) is reproduced in this report

with a minor change in notation. His data demonstrates the

accuracy with which it is possible to measure transfer coefficients.

It should be noted that the case treated by Schuman was less

complex than the case by Liepa in that no phase measurements

were required.

Finally, it is appropriate to describe the relationship

between Schuman’s work and that of the author. The transfer

coefficient concept was first presented by the author in July

1978 at the Lightning Analysis for Aircraft Design Workshop

held at the Naval Ocean Systems Center. Shortly thereafter,

a joint effort sponsored by the Defense Nuclear Agency was

begun with Val Liepa to determine the accuracy with which transfer

coefficients could be measured. In January 1979, before any

—
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definitive results were obtained by Val Liepa, Schuman

published some work (Ref. 1) that interpreted an experiment
Q

in a manner equivalent to transfer coefficients. The author

then established an on-going communication with Schuman in

which the general experimental procedure described in this

work was sent to him in a draft report. The procedure in

this draft report was then described in a recent invited paper

by Schuman (Ref. 2).

12



II. OPEWTOR APPP.OACH TO TRM?SFER COEFFICIENTS

Transfer coefficients are relevant to those systems which

are predominantly metallic but have breaks in their skin which

allow El@ penetration. The basis of this approach is a set

of equations that recognizes the essential features of clas-

sical aperture coupling analysis and also has relevance to

complex systems. Since this approach is based on aperture

coupling equations, one might be concerned with its relevance

to other types of penetrators, i.e., deliberate antennas.

Such penetrators must have associated apertures or else no

energy could penetrate the sealed skin of the system cor-

responding to that penetrator. The equation that forms the

basis for this unified approach is as follows:

LJm(g) = gE ~ (~) (1). .
. .

— where the meaning and significance of each term requires con-
— siderable attention. This equation was derived in Reference 4

and is also presented in Appendix A. The theoretical impli-

cations of this equation have not previously been utilized as

fully as possible; however, wh”en specialized to ver~y simple

geometries, this equation has fo~ed the b~;”~s–-of“the classi-
,.

cal aperture coupling- result-s ‘(Refs. 5,6) .- The viewpoint

expressed here is that this equation as applied to complex

systems should not be viewed as requiring so-lut-ionbut instead

should be used to define self-testing experimental procedures.

First, we must explain that Eq. (1) describes the rela-

tionship

physical

est, and

metallic

between electrical quantities on two different

systems. One system is the actual system of inter-

the other system is the original system modified by

shorting surfaces covering all apertures (including

—

—
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those associated with antennas) . The notation ~ was chosen

to denote “magnetic current,” but it is simply fi(r_’)x ~t(r’)

where ~’ varies over all of the mathematical surfaces cor-

responding to the open apertures in the original system, fi{r’)

is the outward normal at ~’ , and ~t(r’) is the tangential

component of the electric field induced in the open aperture.

The quantity ~ ~ (r) is the “external interaction” current
.*-

density induced on the shorted system with ~ ranging only

over the shorting surfaces. It is important to note that

even though ~ and ~’ refer to different physical systems,

they mathematically refer to the same set of points. This

distinction allows a discussion of the mathematical nature

of Eq. (1) that is not confused by the dual system aspect of

the prQblem. It remains to discVss the meaning of L in

Eq . (1) in order to proceed. This operator {as can be seen

in Appendix A) depends on the Green’s dyadic corresponding

to the environment external to the shorted system, SE, as

well as the Green’s dyadic ~1 internal to the sh~rted system.

For a very limited number of geometries, we have explicit

representations of SE and ~1 (Refs. 7,8) ; however, the recog-

nition of this fact does not limit our ability to define the

experimental program and instead suggests the need for such

a program. The recognition that L depends on the external

environment, through =%, implies that simulator/test object

interaction must be viewed differently than in the past.

Further discussion of this point will be deferred until the

development has reached the point where this topic can be

viewed as a special case of the general discussion.

Having explained the meaning of Eq. (1), we must now

introduce several additional but mere well-known concepts.

First, the fact that a J~(~’) is sufficient to determine a

variety of internal electrical quantities QB (i.e. , B can

correspond to a voltage, a current, or a field component) is

expressed as

14



and L~ depends on the— the shorted system

(2)

no

what the quantity is that is indexed by 6. Next we introduce

a step, the legitimacy of which is best studied from a field

equivalence point of view. Specifically, it is assumed that

the L appearing in Eq. (1) has a unique inverse,

that from

The field

Eq . (1) we can obtain

equivalence argument will

bining Eqs. (2) and (3) we obtain

be

Q;, = ‘&I.

o
where

-1‘; =.LBL

presented

L-l , so

(3)

later. Com-

(4)

(5)

and the superscript is explicitly introduced to show that

T: depends on the external environment as a result of the
-1

dependence of L, and consequently L , on ~E. It is possible

to present the desired unified approach on Eq. (4); however.

that equation will be modified to conform to the prevalent

notion that both the external interaction current density

~E.I.
and the external interaction charge density UE ~ are

. .
required for the ultimate determination of the internal

quantities Q;. For nonzero frequency, it follows from the

fact that Vs ● ~E ~ = iuoE ~ , the determination of ~E ~
. . ● . . .

15
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8

automatically determines u~ ~ , so the requirement that u
. . E*I.

be separately determined must be superfluous. When the exper-

imental procedure for obtaining the transfer coefficients is

presented, the relative merits of not introducing the charge

density as a separate entity will be discussed. Viewing the

charge density as a separate entity leads to

as the basic equation.

(6)

The theoretical aspects of Eq. (6) will now be highlighted

with respect to El@ interaction, simulator/test object inter-

action, and alternate simulation.

EMP Interaction

● A very limited number of the interaction analyses

based on topological factoring are capable of

being self-quantifying in view of the limited

number of explicit representations of SE and ~l.

Simulator/Test Object Interaction

● The assessment and compensation for simulator/test

object interaction based only on determining ~E ~. .
and a

E.I.
for the threat and simulation environ-

ments are theoretically unjustified because the

transfer operators T~~ and T~~ also depend on

these two environments. Assessment and cornpen-

‘ationbased:n ~E.I.sand ‘E.I. cOuld be ‘ustL-

‘ied ‘f ‘he *J6 and ‘d
could be demonstrated

to be approximately independent of a (i.e., the

external environments) .

0)--



Alternate Simulation

● The distribution of proximate sources used for

alternate simulation need only have the limited

objective of duplicating the external interaction

quantities caused by a threat source provided the

environment external to the system is the same for

the local sources as it is in the threat situation.

If these conditions are satisfied, all quantities

excited within the system when no shorting surfaces

are present will be the same for the threat and

the local sources.

● ~ assessment of the failure to duplicate the

external interaction quantities by the two dif-

ferent sources requires the determination of the
a

%
for the system and its external envi-

and ‘us
ronment.

—

—
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III. EXPERIMENTAL PROCEDU~ FOR OBTAINING TRANSFER COEFFICIENTS

EMP interaction information has been and is currently being

obtained by both system level tests and laboratory experiments.

The determination of an appropriate balance between these two

types of experiments is a subject of current interest. For the

purpose of obtaining generic transfer coefficient information,

laboratory experiments eliminate the system level test problem

of POE tracing. This problem is eliminated because in a lab-

oratory experiment, all physical structure complexity is intro-

duced in a controlled and known reamer. For either real systems

or

of

2s

an

laboratory models having more than one aperture, a problem

POE definition is encountered and its solution is addressed

part of the described experimental procedure.

We will now give Eq. (6) the proper interpretation to define

experimental program. An essential part of the transition of

Eq. (6) to the set of equations directly related to the experiment

is the conversion of the transfer operators TaJ8
and T“ to trans-0(3

fer coefficients. This is accomplished by noting that Eq. (6)

requires as inputs the external interaction quantities at the

shorting surfaces. This implies that the external coupling

quantities are only required to be known on portions of closed

surfaces. The abrupt discontinuities associated with apertures

are of no consequence in causing a rapid variation on the true

required input external interaction quantities. This in turn

implies that the external interactio~ quantities will not vary

in an abrupt r.annerl and we can expect that a limited nuxrher of

saiiple values at the shorting surfaces will provide an adequate

description” of the external interaction quantities. We now

introduce a local coordinate system at each shorting surface,

having ~ and ~ as the unit tangent vectors. These coordinate

systems are required in order to be able to deal with scalar

quantities. We are now in a position to relate Eq. (6) to a

18



discrete set of equations. First, the following definitions

are introduced:

J =
si,j

J
ti,j =

0. =
l,j

Np(i) =

Q~tn s

‘T =

a,n
TB(s,t,~)i,j =

the

the

the

the

& component of ~E ~ at the j= location on
LL . .

i= shorting surface.

~ component of ~E ~ at the j= location on
ith
— shorting surf~c~.

.th
‘alue QfaE.I. at *e J— location on the i=

shorting surface.

th
number of sample points on the i shorting

surface (depends on geometrical and electrical

size of the penetrator).

an internal scalar electrical quantity at the
@

internal location (6, as before, denotes type

of quantity, i.e. , voltage, current, field com-

ponent; and a

system, i.e. ,

the number of

denotes external environment of the

free space or simulator).

penetrators.

a transfer coefficient.

Utilizing these quantities, an approximation to Eq. (6) becomes

Q~,n = ~ ~~;~;!,jJsirj

i=l j=l

a,n
+T

5ti,jJti,j
+ Ta’n .u.

6u1,3 *,j )
(7)

—
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In describing the experimental procedure to obtain the var-

ious quantities in Eq. (7), it is essential to recognize that

this equation relates quantities on two different physical

systems.

be

be

The quantities that we are

excited by the simulator in

excited by a threat are the
e- m.

truly interested in causing to

the same manner that they would
~;,n

(i.e., we would like
~;, ,, ‘“l) where the external environment to the system index= QB

a is labeled S for the simulator environment and T for the

threat environment. Past simulator/test object interaction

studied implicitly

~E.I. and (SE~ to. .
in order to assess

interaction. This

assumed it was sufficient to cause the same

be excited by the simulator and the threat

and compensate for simulator/test object

information would be sufficient only if

#,n = TT,n (8).- ~(s,t,u)i,j B(s,t,u)i,j

and we will now discuss how to test Eq. (8) experimentally.

In order to investigate Eq. (8), we will use a test system

that has a limited number of penetrators, NT, and we will have

a limited number of interior sample points corresponding to

the range of n. Two different external environments to the

system will be used in the sequence of experiments. One

external environment corresponding to a particular common

threat will be free space, and the experiment will take place

either in an anechoic chamber or over a large metallic symmetry

plane. For the purposes of this discussion, the second external

environment correspondin~ to a simulator environment is a

scale model bounded wave simulator containing the test object

or a model of a radiating simulator in the proximity of the

test object which is resting on a lossy half space. The trans-

fer coefficients are determined from appropriate measured (dr

●



calculated) sets of Q~’n, J~i,j, Jti,j, and Ui,j where a is

labeled F for the free-field environment and S for either of

— the simulator environments. Later we will describe a simple

experiment that has been performed to assess the dependence

of the external environment on the transfer coefficients.

A procedure for obtaining the Ta’n
B(s,t,a)i,j

will now be

described. At this point we again emphasize that all ~E ~ and. .

aE.I.
are determined (measured or calculated) with all penetra-

tors sealed; however, the sealed system is in the appropriate a

environment. Rigid souxces are introduced to excite the sealed

system and they are not necessarily the sources associated with

the model simulator. For the purpose of illustration consider

that we first choose to characterize the fifth aperture alone

and begin by examining whether NP(5) = 1 is sufficient. For

this case we introduce three rigid sources for each a environ-

ment all at the same frequency. In practice the three sources

might be the same source at three different orientations or

o locations and the sets of three sources might be different for

each a environment. For each source in each a environment we

form the equations

dN 5)

*atn, (k)

a
J(k) + ~a!n

‘~~;,j
J(k) (k)

8
~

s5, j 6t5, j t5,j + ‘f305,j ‘5,j )
(9)

j=l

k 1,0* 0,3NP (5)=

The quantities on the left-hand side of Eq. (9) are determined

with all but the fifth seal in place, and the quantities on the

right-hand side of Eq. (9) are on the fifth seal with all seals

in place. The range of k, i.e., 3NP(5), is the number of sources

21
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that must be used in each a environment. For 14P(5) = 1,

Eq . (9) represents two sets (one for each a) of three equations

for the two sets of three unknown (one for each a) T~&~ ~ , ●
~a,n
t3t5,1

, and T~~~,l ● These transfer coefficients can ~e solved

for by inverting each “ a“ 3 x 3 matrix (3NP(5) x 3NP(5) in

general) and then by introducing a fourth (3NP(5) +1 in general)

testing source. Then these steps must be followed. Determine

the external interaction quantities for this testing source and

use the calculated transfer coefficients together with Eq. (9)

(for k= a,n, (3Np(5) +1)3NP(5) +1) to predict the Q8 that will be

excited when the fifth seal is removed. Remove the seal and

test the adequacy of the transfer coefficient determination.

If not adequate, repeat the procedure for ~ larger NP(5).

Transfer coefficients for a particular aperture in a

particular a environment can always be determined one aperture

at a tine according to the procedure just described. The ques-

tion arises whether transfer coefficients determined in such a

manner are the ones that should be used in Eq. (7). The need

to be concerned with a one aperture at a time characterization

is eliminated because of the concept that Np(i) is allowed to

be greater than one. F’or large apertures we would expect

Np(i) > 1 and for a cluster of not necessarily small apertures

in close proximity we would expend no more effort determining

the transfer coefficients for the cluster than for a single

large aperture. By measuring the external interaction quan-

tities on the sealed cluster and then simultaneously removing

the seals on all of the apertures comprising the cluster and

measuring the internal quantities, the same procedure would be

employed as would be necessary to determine the transfer coef-

ficients for a single aperture requiring the same Np(i) as the

total for the cluster. The concept of a cluster can now be

generalized to any combination of apertures that require its

transfer coefficients to be simultaneously determined. This
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combination may or may not have the physical appearance of a

cluster (i.e. , one aperture may be quite long, coupling a

number of remote apertures) .

Even though there is no difference between determining the

transfer coefficients for a combination of apertures (combined

aperture) than for a single large aperture having the same Np(i) ,

it is still worthwhile to determine the minimum number of apertures

that must be characterized in combination. This can be done by

compari~’t-ransfer coefficients determined first individually

and then in progressively larger subsets” o“f a suspected combina-

tion. The minimum set is determined after no significant change

in the transfer coefficients is found by including more aper-

tures in the subset. We now see.that -the minimum subset of

apertures and a single large aperture behave in exactly the

same manner with regard to their effects on transferring external

interaction quantities to internal electrical quantities. This

leads to the generalized concept of a POE as being the minimum

combination of apertures requiring that their transfer coeffi-

cients be determined in combination.

After a particular POE has been demonstrated to be adequately

characterized, through the addition of a testing source, one

might be tempted t~ focus only on”the largest Ta’n
~(s,t,o)i,j

‘s

that comprise the characterizat”iotil- ““Eve’ntiough we might

focus on those i,j locations, we should not dismiss the poss-

ibility that an i,j location havihg”’-relatively small transfer

coefficients could significantly contribute to the excitation

of internal quantities. This is possible because larger external

interaction quantities might be capable of being excited at the

i,j locations having smaller transfer coefficients.

The ability to test the transfer coefficients allows us to

experimentally resolve a sticky theoretical point. This point,

as described earlier, is related to the fact that o is deter-

mined from a linear operation on Jsand Jt. This leads to the
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questions of whether the Ta’n
%u~,j ‘s are necessary. First we point

out that part of the linear operation involved a derivative

which implies that for Np(i) = 1 we do not have sufficient.infor- ●
mation to even approximately determine u from Js and Jt. This

implies that for the particular (but very important) case of

Np (i) = 1 we should expect to require that T~~~,l be determined.

Whether Np(i) = 1 or Np(i) ~ 1 we can test whether predictions

made that do not include Ta’n
$Ol,j

are adequate by introducing

additional testing sources after transfer coefficients are

determined without the inclusion of these quantities. For

larger apertures, it is possible that N=(i) > 1 and the charge

density transfer coefficient may not be~required.

The special case (Np(i) = 1) includes all previous work

(Refs. 3 ,11) and it includes this work under less restrictive

conditions. The work of Latham (Ref. 9) and Lee and Baum (Ref. 10)

is restricted to the case where” the Q~’n corresponds to a voltage

or current associated only with a ‘1’EMmode excited within a simple

enclosure having apertures. The external environment factor
,

corresponds only to free space. These works depend on small
o

aperture assumptions as well as a knowledge of electric and

magnetic polarizabilities associated with the apertures. The

work of Tesche {Ref. 11) also depends on small aperture assumptions

and a knowledge of aperture polarizabilities in order to relate

external interaction quantities to internal quantities. His

work is more general than the previously cited work in that he

allows bo’th the external and internal geometries to be complex;

however, his work contains no explicit procedures or results.

At this point we should emphasize that our procedure for obtaining

transfer coefficients automatically includes the polarizabilities

for Np(i) = 1 and automatically eliminates the need to generalize

the concept of p-olarizabilities when Nn(i) > 1. The least

restrictive work related to transfer c~efficients is contained

in the work of Baum (Ref. 3). In that work, Baum allows the”

more general concept of aperture to include apertures associated
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with antennas and he also eliminates the requirement that

aperture polarizabilities be known. Baum does have some

assumptions that are eliminated by the described combined

aperture theory. This is possible because N (i) is allowed

to be greater than one. Baum’s work was dir~cted toward

developing extrapolation techniques for interpreting the

results of tests in El@ simulators in terms of EMP criteria.

For that application, it is essential that the dependence of

the transfer coefficiencies on the complete exterior system

environment be understood and accounted for. The viewpoint

taken here is that Eq. (8) IIIUS;-be tested according to our

described procedure and the results of the test will impact

future simulator/test object interaction studies. The

potential benefits of an extrapolation that utilizes external

coupling quantities as suggested by Baum has been discussed

in the introduction.

More recently another effort (Ref. 12) was in+t.iated to

assess the accuracy of the extrapolation techniques suggested

by Baum (Ref. 3). In that work no attempt was made to quantify

the effects of the external environment on the transfer

coefficients . It should be noted that none of the cited works

contain the self-testing experimental procedures presented

here.

—
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Iv* COMPARISON OF ANALYTIC APPROXIMATION TNU4SFER
COEFFICIENTS WITH EXPERIMENTAL DATA

The University of 14ichigan experimental program discussed

in the introduction dealt with the following coupling situation.

A cylinder of finite length having hemispherical end caps was

illuminated by a plane wave. The interior of this structure

is a cylindrical cavity having flat end plates. Within the

cavity is a single wire running through its center and metal-

lically connected to one of the interior end plates. The

other end of the wire extends through the other end plate

to become the center conductor of a 50-Q coaxial cable. A

circular aperture is cut in the structure allowing the inci-

dent plane wave to excite a voltage across the load impedance

presented by the coaxial line. A more detailed description

of the structure is presented in Figure 2 (page 27) .

The prominent transmission line coupling model for the

structure described in Figure 2 is presented in References 8 and 9

and is dep~cted in Figure 1. The parameters of this trans-
*

mission line are as follows:

d=

P
=

Distance from the center of the aperture to the

interior flat plate to which the interior wire is

shorted.

Distance from the center of the aperture to the

other interior flat plate.

t-’-l ‘EQ ~’~

Zc Zc ‘R

+Z

Figure 1. Transmission line model.
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Figure 2. Geometry of the first experimental structure.



‘R =

‘EQ =

‘EQ =

z= =

Effective load impedance presented to the interior

wire by the 50-Cl coaxial line.

Voltage source which depends on the external inter-

action current density induced on the metallic

seal placed over the aperture.

Current source which depends on the external inter-

action charge density induced on the metallic seal

placed over the aperture.

Characteristic impedance of the transmission line

which is the same as that of the interior coaxial

cavity corresponding to the actual structure.

It is a straightforward transmission-line problem to determine

the voltage across the load in terms of ,the quantities just

defined. The more complex electromagnetic aspects of the

coupling problem were treated in References 9 and 10 in

‘arriving at the transmission-line model and-in representing

the so~ces and characteristic impedance as follows:

‘EQ = KJZ

a lE”
lEQ

=K&————
m ‘Ozc n

K= ~ ~ ZO/2~ab-ik a

ae = D3/12

am = 2ae

z= = (2./270 Ln(ab/a)
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These quantities are defined as follows:

‘z = Longitudinal component of current density induced

by the exterior source on a metallic seal placed

over the aperture.

En = Normal component of

the exterior source

over the aperture.

electric field induced by

on a metallic seal placed

D= Diameter of the circular aperture.

a = Radius of the wire within the cavity.

ab = Interior radius of the cavity.

‘o = Free space wave number.

‘o = Intrinsic impedance of free space.

Using standard transinission line theory presented in Appendix B,

the voltage across the load is determined in terms of the

described parameters including VEQ and IEQ. The dependence

of these equivalent sources on JZ and En allows the t~ans-

mission line result to be written as the transfer coefficient

equation for the voltage VR across the load as follows:” ‘--

‘R = TZJZ + ‘r$J$ + TnEn (16)

----.. —_.-’

where

‘$=0

(
2ikod

‘z
=KFl+e

)

(

2ikod
Tn = (KF/2Zo) l-e

)

.— —:.._ . . . . .

..

(17)

(18)

(19)

—

—
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ikop
(l-PR) e

F=

(

2iko(pW
2 I+PR e

)

2= - ZR
pR =

2= + ZR

(20)
o

(21)

All quantities in these transfer coefficients have been defined

and can be given numerical values by referring to Figures 1 and 2 witk

the exception of ZR. In the stiplest approximation to ZR, it

is taken as 50 fi;however, the following remarks are applicable

for any correction to the 50-0 description that was considered.

The analytic transfer coefficient approximations ’given by

Eqs. (17), (18), and (19) were not in good agreement with the

data taken. This can be seen by viewing Figures 3 to 5. No

value for ZR could explain the peaking of the ,analytic transfer

coefficients at the higher frequencies to account for the

internal voltage pickup displayed in Figure 5“. I

In contrast to the failure of Eqs. (17), (18), and (19),

they were adequate to explain the design of an experiment where

transfer coefficients were measured with considerable success.

In particular, when kod = ~~ Eq. (19) implies Tn = Of and when

kod = x/2, TZ = O. For these choices, the experiment hypothesis

is that

IVR12 = ITZ12 {JZ12 kod = n

and

lyJ2= lTn12 lEn12 kod=~/2

(22)

(23)

●
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The experimental advantage of this hypothesis is that it can

be tested without measuring phase angles. The experimental

setup described and treated by Schuman (Ref. 1) is illustrated ●
in Figure 6. The experiments were performed at the Naval

Surface Weapons Center (Dahlgren, Virginia) and at the Uni-

versity of Colorado (Boulder, Colorado) .

Figure 7 demonstrates how well a single constant multi-

plier, the value of which is not important to this discussion,

relates ]JZ]2 induced on the short placed over the aperture

to IV[2 induced across the load impedance when the seal is

removed. For the situation in Figure 7, Iced = m; Figure 8

corresponds to the case kod = 7T/2 and shows how well a

single constant multiplier relates lEn12 to \V12. For these

two cases, i.e., kod values, any single incident angle could

be used to determine the constant multiplier of the appropriate

external interaction quantity. After that single measurement,

the internally excited quantity lV\2 could be determined for

all incident angles by only determining external interaction

quantities either through computer codes which are becoming

increasingly more reliable for this type of calculation or

thro”ugh external interaction experiments. This is an example

of the transfer coe~ficient procedure described in the pre-

vious section.

A final note is that the data presented in Figures 7 and 8

bear on extrapolation to threat used in the EMP community.

It shows that the external geometry of a system can have no

bearing on the choice of whether to emphasize current density

or charge density in the extrapolation. For the data taken

in these two figures, the exterior geometry was identical;

however, the dependence of the internal pickup depended solely

on the external current density in one case and on the external

charge density in the other.
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Figure .7. Comparison of transfer coefficient
calculation with experimental data.
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v. DEMONSTMTION OF TW%NSFER COEFFICIENT DEPENDENCE
ON THE EXTERIOR ENVIRONMENT

It is shown in this resort that transfer coefficients do

depend on the external environment. This fact is very signifi-

cant if one were to measure transfer coefficients on a system

in one environment, e.g. , on an aircraft on the ground or in a

bounded wave simulator, and the real interest was the surviva-

bility of the aircraft in the in-flight mode. For other situ-

ations, e.g., a shielded building, the transfer coefficients

would be measured in the actual environment of interest and the

fact that they depended on the external environment would be of

no consequence.

In this section an

strates the dependence

experiment is described which demon-

of transfer coefficient’s on the envi-

ronment. This experiment was designed to enhance the external

environment effect, and the results will be viewed in this

light. The experiment consisted of the cylindrical structure

depicted in Figure 9 placed in front of a metallic ground

screen as depicted in Figure 10. ‘xne aperture is cut in the

longitudinal center of the cylinder and it is symmetrically

excited as depicted in Figure 10. For this symmetric situation,

neither J nor En
4

can be excited on the seal placed over the

aperture. The transfer coefficient equation becomes

v = TJZ (24)

independent of the internal geometry, the separation of the

cylinder from the ground plane, D, or the orientation of the

aperture, $. Figures 11, 12, and 13 are plots of ITI corre-

sponding to the indicated three choices of the aperture orien-

tation. The curves on each of these figures correspond to the

three indicated separation values of D. On each figure, the

deviation of one curve from the other as a function of D
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demonstrates the extent to which the transfer coefficients

depend on the external environment. Figures 14, 15, and 16

are another representation of the same data to further illus-

trate the external environment dependence. For a fixed

separation, D, they exhibit the variation with the angle $.

The extent to which these curves deviate from each other

further illustrates the external environment dependence of

transfer coefficients. A final note is that many external

environments are not as severe as a proximate metallic ground

plane, e.g., lossy earth, and the transfer coefficient depend-

ence on such an environment should be less than indicated

by the data just presented.
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APPENDIX A. DERIVATION OF OPEIU4TOR EQUATIONS

This appendix will present detailed derivations of Eqs. (1)
— and (2) for the situation depicted in Figure Al. First we intro-

duce the following definitions:

Sm “

% =

‘L =

‘P =

s =
P

Vs =

SS =

‘o =

‘I =

‘J =

Vr =

Sr =

s =
9

The surface of the metallic enclosure (aircraft)

augmented by the mathematical surfaces S1 and S2.

The volume of a lossy medium in the proximity of

the enclosure (earth, water) .

The suface bounding VL.

The volume of an object in the proximity of the

enclosure (i.e., an aircraft carrier) .

The surface bounding Vp.

The volume of a subsystem contained within the

erlclosure.

The surface bounding Vs.

The volume exterior to Sm kunded by Sm; Sp, SL,

Sr, and the hemisphere at infinity.

The volume interior to Sm bounded by Sm and Ss.

The volume of a rigid source of an electromagnetic

wave, J, and it is contained in VO.

The volume of the portable radiator.

The surface of the portable radiator.

The portion of Sr over which the surface tangen-

tial electric field is rigidly specified.

The essential equation that this approach is based on is the

dyadic identity

—

—
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—‘J
v

A(r’)” [ 1[ 1
1

V’xV’xQ(r’; ~) - V’xV’xA (r’) “D(r’;r) dv’.- .- =--

(1 ~~r’)”[~~~’)xlv’x~(~’;~)ll + [(v’x~(~’))x~(z’)l~(z’;z)}ds’.
1

{Al)

where A(r’) and Q(r’; r) are, at this point,—— —— a general vector

and a general dyadic that must satisfy certain behavior

requirements (e.g., differentiability) but not necessarily

any equations. In Eq. (Al), S is the surface bounding V, and

fi(~’) is

surface,

in turn,

the outward normal to V. Next the volume, bounding

A(r’), and g(~’ ;~) are specialized. V is chosen,--
as V

o
and VI, and A(r’) is chosen as ~(~’) and——

We also choose Q(r’;r) as appropriate Green’s dyadics--—

f ~l(z’;~)] that satisfy the vector wave equation

(A2)

and subsequently the a subscript of ~ and ~’ will automatically

be implied by the subscript on ~a when it is not explicitly

indicated. Boundary conditions to be satisfied are

(A3)

(A4)

(A5)

(A6)

.- ——,- —. .—— ,-



The equation satisfied by ~L(~’,~)

( )V’xv’x-u%oc gL(~’,~) =

is

o

The equations satisifed by the

0
V’xJ(r’).-

It also follows from Maxwell’s equations

V’x~(r’)

Substituting Eqs. (A2), (A8), and (A9)

v= VO or V= and using the property of

obtain

into (Al) for

the 6 function, we

XJ[
.

gl(Q = na,E ,H ,G-I -I =1 1dS ‘q=m,s Sq -

(All)

where ~ 1 is the unit outward normal to the sphere at infinityr
saJ’
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f s

where

Using

is the

(A3)

(A12)

appropriate dielectric permittivity and

-.

I= V’xJ(r L)*~O(~’;~)--
‘J

(A4) as well as the fact

dv ‘

that

)xE(z’) = O ~’dsn-sl-s2) Uspu(sr-sg)--

we find that

1 A

s “=0’%’$0 ‘s’ = 0
P

A

“%%’~o IJ =
s
9

)xE(r’)]--

(A13)

(A14)

ds’

(A17)
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and because E-0 ‘ go* and go satisfy the radiation condition

The remaining quantities to evaluate in Eqs. (AlO) and (All)

are the surface integrals over S
L

and S~. Substituting the

equations appropriate for the lossy half space, that is

(A18)

(V’XV’XJ llom.Jg) = o ~’aL

and

(A19)

(A20)

aS Well ZiS Eqs. (A7) into (Al) , we obtain

(A21)

The second integral in Eq. (A20) is zero due to the losses

in vL (or the radiation condition if VL is lossless). Using

the fact that the tangential components of E and ~ are con-—
tinuous across SL as well the boundary conditions in Eqs. (AS)

and (P.6), we see that the integral over SL in Eq. (A1O) is

equal to the integral over SL in Eq. (A21) which in turn we
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have just shown to equal zero. The integral over Ss will also

equal zero, and the manner in which this can be seen depends

on the physical properties of the subsystem occupying Vs.

If it were totally metallic, the boundary conditions on IZ1

and gl would make the surface integral vanish in the same

manner they did for the integral over S If it were a
P“

homogeneous dielectric, then the boundary conditions would

cause the surface integral over Ss to vanish in the same manner

the surface integral over SL was caused to vanish. If it were

some hybrid of dielectric and metal, a combination of the

arguments would be used to cause the surface integral to

vanish.

We can now write Eqs. (A1O) and (All) as

%(%) = grJ
- ‘O%s)

and

131(+ = K1&(r’)

where

(A22)

(A23)

(A24)

with ~(~) and ~(go) defined by Eqs. (A13) and (A16) and the

operators Ka are defined by

+
f )J (r’)cg=(~’,q) dS’S2-5

a = 0,1
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i
I

and we

of the

that

have made use of the fact that the tangential components

electric field are continuous through the apertures so
—.\

.

Now we focus our attention on ~(~) appearing in Eq. (A22).

It would be a very difficult task to evaluate Eqs. (A13), (A16),

and (A24) in ‘order to determine the full significance of F(rO) .——
Instead, we will simply utilize certain key features of those

equations as well as Eqs. (A22) and (A25) to determine what

F(rO) must be if all the required equations were evaluated.——
First, we note according to Eq. (A13) that I_(~O) is excited

by the rigid (interaction independent) source J(r’) and that——

according to Eq. (A16), ~(~o) is excited by the rigidly spec-

ified fi(~’)XE(r’) for ~’cS Next, we note that according—— 9“
to these equations, both ~(~) and ~(~0) are insensitive-to

the size of the apertures S1 and S2 and in fact they are ,—.,,.-,,

insensitive to whether or not these apertures are even present.
,!

~-.

Using these observations in conjunction with Eq. (A25) as the

aperture size becomes zero and using the result in Eq. (A22),

we see that ~(~0) equals I&(z) for the special case where

all apertures are s-ealed (short circuited) . Mathematically,

we express this evaluation of ~(~) as

i

I

I
I

I

(

1

)

. . — . . . . . . . . . .. ., . ...!.- . . . . . . . . . . . .. . . . . . . .

(A27)

where the superscript is introduced to indicate “short circuit.”

We note that ~(~) is the short circuit magnetic field at

some point ~ with apertures sealed, but all other aspects

of the external environment including the proximity and

structure of the radiator~ Sr~ are unchanged.

-.

.—-
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Substituting Eq. (A27) into Eqc (A22) we obtain

Next, we define fl(~) = fil(r) = -fiO(r) for ~cS1US2, use the

fact that

and employ Eqs. (A22) and (A28) to obtain

lim fi(r)X (KO+K1) ~(r’) = LJE ~ (r)
..—

ti+~

~1+:

where we have used the definition

and we have the desired result, in that Eq.

detailed representation of Eq. (l).

(A28)

(A29)

(A31)

(A30) is the more

Before we can present our theoretical conclusions, we

must present our more detailed representation of Eq. (2).

In fact, we already have a representation of Eq. (2) for

the case where the desired internal electrical quantity is

the magnetic field. F’or that use we might choose the symbol

6as HsothatQH=~and L~=LH=K1. Another example

where the structure of L6 changes depending on the choice of

Q6 is readily demonstrated by considering the case where the

desired internal electrical quantity is the electric field

~ and we denote 6 as E so that C)E= ~. For this case Eq. (2)

becomes
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(A32)

where

(A33)

Finally, we will discuss the more important case where the

desired internal electrical quantity is a current. For this

discussion consider that part of the internal subsystem

occupying volume VS.in I?igure Al contains a wire and we choose

a local cylindrical coordinate system having its axis along

the wire and having the local azimuthal vector denoted

~w(~’) at the point on the wire where we wish to determine

the current. The argument of this unit vector, 1’, denotes

the circumferential position on the wire. With these defini-

tions, the current on the wire is

We see from Eqs. (A29) and (A34) that

Q= =’ Lc~(~’)

where we have denoted I = Qc and

(A34)

(A35)

(A36)

We have now presented Eqs. (1) and (2) in sufficient

detail to draw our desired conclusions. The specific points

we wish to make are:
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1.

2.

3.

4.

5.

The external interaction current density, ~ ~ ,
. .

can be excited by either a rigid source, a non-

rigid source, or a combination of the two types.

The transfer operator, T;, depends on the external

environment to the system.

T; depends on the internal environment.

T; depends on the internal electrical quantity,

Q~, being determined.

T; depends on the rigidity of the source.

Equations that specifically illustrate each of these points

are identified with the numbered points as follows:

1.

2.

3.

4.

5.

Eqs. (A13) , (A16) , (A24) , (A27), and (A31);

Eqs . (A4), (A5), and (A6).

Eq . (A3) as well as the argument that eliminated

the integral over Ss;

Eqs. (A33) and (A36);

Eq . (A4).

—

—
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APPENDIX B. TIU+NSMISSION LINE

Referring to Figure 1, we replace the

THEORY

sources and trans-

mission line to the left of z = O by a Thevenin equivalent cir-

cuit as depicted below (Fig. Bl) .

‘TH I (z) ~
‘~

+

‘Tt-!

~

v (z) ‘R

+Z

Figure B1. Transmission line model with Thevenin
equivalent representing shorted end.

The source for this transmission line problem is given the

subscript notation “TH” (VTH,ZTH) to indicate that we have

applied Thevenin’s theorem for the region to the left of

the aperture. Details of the Thevenin equivalent will be

presented later. The equations satisfied by V(z) and I(z)

are:

2
=&- + k&(z) = O
dz

2
~+k;I(z) = O
dz

The general solutions to these equations have the form

ik zo -ik z
v = Ae + Be o
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and it remains to solve

ikOz -ikOz
Ce + De

for the four constants

From the required relationship

= ikOZcI

and the linear independence of

it follows that

the functions

c = A/Zc

D= - B/Zc

From conditions imposed at the source, we have

‘TH = I(0) ZTH.+ V(0)

ik zo -iko z
e and e t

or

‘TH = (C+D) ZTH + A + B

(B4)

A,B,C, and D.

ikop -ikop
o = (CZR-A) e + (DZR-B) e

(B5)

(B6)

(B7)

From conditions imposed at the load, we have

v(p) = I(p) ZR

or

(B8)
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It can be verified by substitution that a regrouping of the
ik z -ik z

terms according to whether they multiply e o
or e o in

the following expressions:

ikoz ikO (2p-z)
z= e -PRe

v(z) =
‘C+ZTH 21kOp

i - QTHPR e

1 eikoz + pR elkO‘2P-Z)
I(z) =

‘c + ‘TH 2ikOp
1 - PTHPR e

‘TH

‘TH

(B9)

(B1O)

gives A,B,C, and D which satisfy Eqs. (B5) through (B8). The

remaining definitions of the terms appearing in Eqs. (B9) and

(B1O) are:

z= - ZTH

‘TH = ZC+ZTH

z= - ZR

‘R = Zc+ ZR

(Bll)

● )

(B12)

A successive use of Eqs. (E9) and (B1O) is required to obtain

the expressions pertaining to the model depicted in Figure 1.

That is, what we need are explicit expressions for VTH and

‘TH ‘n ‘erms ‘f ‘EQ’ lEQ’
and transmission line parameters.

Consider Figure B2.

‘L

‘inL Thevenin
fquiv.

‘EQ

e-,

Thevenin
equiv.

Figure 132. Model for the Thevenin equivalent construction.
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The Thevenin equivalent parameters are easily obtained from

the right-hand portion of Figure B2. The short-circuit cur-

rent that would flow through a zero-impedance wire connecting

the two terminals in that figure is

I =
Sc lEQ + ‘EQ/zin~ (B13)

The open-circuit voltage that would appear across those ter-

minals is

‘0.c. = ‘EQ + lEqzinL = ‘TH

The Thevenin impedance is

V..c

‘TH = ~ = ‘inL.

(B14)

(B15)

From Eqs. (B14) and (B15) we see that we would have the desired

description if we had Zifi in terms of the parameters of inter-

est. To obtain this representation, consider the left-hand

side of Figure B2 reoriented (Fig. B3)

I---+4

10 I

Figure B3. Portion of the transmission
line reoriented.

63

.-——–—- .=. . ---



and consider the situation (Fig. B4)

Figure B4.

where we have introduced

to the transmission line

Model using VART.

an artificial voltage source VART

as well as a coordination system

description V(z) and I(z) analogous to the one introduced in

Figure B1. The reason is that

j.

and

the

= v(o)z. —mL 1(0)
(B16)

>,

this rat:io is independent of VmT. Specifically, using ●
analysis developed for the situation depicted in Figure Bl,

we can immediately find

{B17)v(o) = ‘Am

2ikod
l+p;e

I(0) = # 2ikod ‘ART
cl-o~e

Zc - ZL
p; =

ZC+ZL
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so that

z =
inL z=

and for our case Z
L

= o, so

2ik.d

z =
inL

z= 1 - e2ikudE ZTH
.

l+e”

and

‘TH = ‘EQ + lE<TH

(B20)

(B21)

Substituting Eqs. (B20) and (B21) into Eqs. (B9) and (B1O) gives

us our desired result. Performing this substitution and eval-

uating the expression for V(z) at z = p, we have

v(p) = T:c)
‘z

+ T~c)E
z n n

where

@ (
2ikod

Jz
=KFl+e.

)

and

~(c)

(

2ikod

En
= (KF/2ZO) 1- e

)

(B22)

(B23)

(B24)
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with K defined in Eq. (12) and

●
ikop

(l-PR) e
F’=

(
21-~Re

2=koL
)

and PR is given in Eq. (B12).

(B25)
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=PE37DIX C. FIELD EQU~MENCE PRINCIPLE THAT
EXXIBITS EXTERIOR ENVIRONIV??NTDEPENDENCE

●
This appendti presents a.fi.eld equivalence principle

could be used as an alte~ative to the operator approach

that

for

serving as the basis for the transfer coefficient measurement

procedure descsibed in the text. The major difference of the

work presented in this appendix and field equivalence prin-

ciples that

on external

penetrating

environment

appear in the literature is the emphasis placed

environment dependence. It is shoun that fields

a metallic enclosuze retain a dependence on the

exterior to the enclosure that is not completely

accounted for by the effect of the exterior environment on

the

the

short circuit current density.

The field equivalent’ derivation is performed relative to

situation depicted in Figure c1 .

8

‘J
Jv (c).

Figure

‘E

#‘F

cl. Relevant geometry
derivation.

/’

A

‘E

~o ‘

‘1
‘I

for field equivalence
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The metallic enclosure is bounded by the surfaces S1 and SE,

and the enclosure is not required to have zero thickness.

The definition of a volume kterio.r and exterior to the

enclosure requires that we choose a mathematical surface SA

that becomes the definition of the surface of the aperture.

The volume interior to the enclosure, VI, is the one bounded

by the surface S1 togethes with SA. The volume exterior to

the enclos~el, VE? is the one bounded by the surfaces SE

together with SA as well as a surface at infinity. The

exterior volume contains the volume VJ corresponding to the

source volume current density ~V(~) which is the original

source for all fields. In addition, VE contains the volumes

which comprise the “exterior environment” to the enclosure.

These volumes are denoted VP
cokrespanding to a perfect con-

ductor of general shape and VF to finitely conducting volume

of general shape. For generality, VI contains lossy material

occupying the volume VL. We now write Maxwell’s equat+ons

for the entire volume VE - Vp as well as for VI:

(cl) o

(C2)

and the double subscripts are introduced to make both boundary

conditions as well as subsequent definitions explicit.
The

subscript a represats either E or I according to whether

or rd7
=% - -1

and S represents either 0, F, or L according to

subvolun!es .in which ~ is located. It is also noted that ‘JV(~)
—

is nonzero only ‘f E<VJ9 In

and (C2), the fields satisfy

addition to satisfying Eqs. (Cl) .

the following boundary conditions :

(C3)
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(C4)

fir (~)

~ (~)

~ (~)

In addition, -
%0

infinity. These

x%F (r) = hF(r) X liio(r)

(C5)

(C6)

(C7)

(C9)

(~g)

and ~. Satisfy the radiation condition at

bo~dary conditions are sufficient to guar-

antee a unique solution to Eqs. (Cl) and” (C2). In order to

proceed, it is necessary to define the external interaction

fields. These are fields ~~1” and ~~1” that satisfy Eqs. (Cl)

and (C2) as well as the boundaxy conditions

= o =EUSA

(Clo)

(Cll)

(C1’2)

(C13)
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as well as the radiation condition at infinity. These boundary

conditions guarantee a unique solution. Next we define the

fields

s E.I.
%3 = % - ~E8

s E.I.
%8 “ %8 - %8

(C14)

(C15)

The fields on the right-hand side of Eqs. (C14) and (C15) are

unique, so it follows that the left-hand sides are unique.

Next we introduce the fields ~8 and ~+8 which Satisfy

Eqs . (Cl) and (C2) wi~ ~V(Z) = O even when Z~VJ” These

fields satisfy the boundary conditions given in Eqs. (C3)

through (c9), the radiation condition~ and the fo~loQJin9

equation defines their source of excitation

rESA

Shortly it will be shown that

(C16)

(C17)
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Eqs . (C16), (C19) and (C20) are the key equations in describing

the field equivalence principle. Eq. (C16) exhibits that the

external interaction current density is the only source for the

●
~ae, ~a6 fields. Eqs . (C19) and (C20) state

excited within the enclosure are the same as

the actual. volume source ~V(~) . In addition,

that those fields

those excited by

it is important

ta note that ~ ~ (~) excites the fields ~lB and ~18 in a
. .

manner that simultaneously requires ‘=B and ~E8 to satisfy

boundary conditions in the environment external to the cavity.

This fact will be required to prove Eqs. (C19) and (C20).
‘.>

This fact is also a statement that the external environment

dependence of the cavity fields is not totally accounted for

by its effect on

To prove Eqs

~E.I.”

. (c17) through (C20), we introduce

-

= %

-

= %

.

-.

s
%3

—. —:.. .-

(C21)

(C22)

(C23)

(C24)

and form the relationship utilizinq a vector identity and L~ax-

wellfs equations without a volume source
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Next, we use the divergence theorem and integrate this equation

over the volumes VE T V
P - ‘F’ ‘F’ ‘Z - %’ and ‘L ‘0 ‘btain

J \(ll
2

iw u. &
D 2,+ +:, ‘pw- ‘o %0

‘E-vp-vF

,..

..

J
+“” ”-a”

[

ED” D*
F +0 x %0 1

SW

J [ 1

ED D* ‘S
+ -R”E -E, x ‘+0

SA

1

#

● ❉✍✎
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A

Eqs . (C26) through (C29) are now summed,..

-[

ED
●

-IL 1
x EI;; &

(c*s)

(C29)

and the boundary con-

ditions given in Eqs. (c3) thxough (c9) as well as the radiation

condition are used to eliminate all the surface integrals with

the exception of the integrals over S=. The resulting equation,

using the fact
—.—.-.---- .,.-

%t- ti=.= -fi~, ii”-written 5s “ - -

2
dV

73



.

Next, it will be argued that

.

( )] (x -&@. ● i5Ex

is zero. The terms appearing in

previously presented definitions

D
‘iEx %0

D
‘E’ %0

D
‘iE‘%0

right-hand side of of Eq. (C30)

this are expanded using the

D -
‘iEx % = ‘E x %3

- AE x glo
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(C31)

(C32)

(C33)

(C34)
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It is necessary to argue that

These

‘Ex%o=5E x%0

and

%X% O=;EX%O

two equations follow from the

(C35)

(C36)

and H are-aO
mathematicaldetermined under the conditions that SA is just a

surface having no physical significance. In contrast, ~a ~ and
u
H are excited by a physical source at the location Sh. In
-Uo ..
order to draw our desired conclusions, it is necessary to

specify boundary conditions in addition to the previously pre-

sented ones for these fields. These boundary conditions are

-

‘iEx%O=

it is rioted that Eq.

=CSA

(C37)

(C38)

Sub&itutbg Eqsi

hand side of Eq.—

‘(516)‘“-and (C31) through (C38) into the right-

(C3O) .Leads tO the conclusion that this right-

hand side is zero. This in turn implies that the left-hand

side of Eq. (C30) is zero. Equating the real and imaginary

parts of the left-hand side of Eq. (C30) leads

elusion

o

0

to the con-

(C39)

(C40)
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Eqs . (C39) and (C40) imply our desired conclusion given by

Eqs. (C19) and (C20). A final note is that the proof made use

of the standard procedure of considering Uo# O even though the

case of interest is uo
=0. The usual argument of stating that

all media have some amount of conductivity could suffice to

justify this procedure or one could argue that the solution

is continuous as U. approaches zero.

An analysis which makes the dependence of ~lB, ~lB on the

external environment more explicit will now be presented. The
.

fields ~x~, ~x~ are introduced which satisfy the equations

(C41)

{C42)

.

and they satisfy

Using a standard

(C42), we obtain

Integrating

r#v= -vi

the same boundary conditions as do ~B, H=B. ●
vector identity and Eqs. (Cl), (C2), (C41) ‘and

(C43)

Eq. (C43) over ‘E - ‘~? ‘~f ‘I - ‘L’ and ‘Land
using the bounda~ conditions, we obtain

J- %●

‘A

1
-nI”

‘A

*xi -
1

‘i ds = ()

-EO x ‘EO
-gEo xgEo

.
Xix~ -~lo x s

% O –IO –1:
dS = ii- ~lo(@

(C44)

(C45)

,

.
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From the described boundary conditions it follows that

-=.

●
. I+ )%0 ‘-d = -h” “

.
(C46)L

Combining Eqs. (C44), (C45), and (C46) we have

J{-‘A
fi~ “

[

Xi -
% O x %0

1

~Xi
_EO x ‘%()

1}
ds

Using the continuity of X~x~ on
%

(C47)
-fL

“ %0(%)

as well as Eq. (C16), wes
a

have

(C48)

Multiply tith sides of Eq. (C48) by ~+ and summing over the
—

three orthogonal directions xl, ~2, a;d X3 we obtain

(C49)

where

3

(cSo)
1=1

Eq . (C49) demonstrates that the external environment dependence

(r ) is contain- in ~(~,~) as well as through JE ~ (:).‘of %0 -D “i . .
This is the case because ~~~ (~,~) must be determined simul-.P:
taneously with E~~ (~,~) which satisfies boundary conditions

in the external environment. The magnetic field at ED is given bsi

—
-—..
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A large variety of internal electrical quantities are linear
.

(r ), and Eqs.operators on ~~o (~) ana ~10 + (c49) and (C51)

imply Eq. (4). The assumption of an inverse operator regard-

inq chat equation has also been proved.
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