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Abstract

The frequency responses of the MGL-2D(A), MGL-6A(A) and
ACD-4A(R) free-space sensors have been measured and analyzed. The
measurements were made over the frequency range 118 to 4400 MHz
whose upper 1imit far exceeds the 3-dB roll-off frequencies for the-
sensors. All three sensors were evaluated in terms of the linearity
of the frequency response, the angular behavior vis-a-vis a dipole
pattern, and the rotational symmetry (MGL sensors only). Whereas
the Tinearity persists only slightly beyond the roll-off frequencies,
the dipole and symmetry properties extend to freguencies two or
three times greater.

In addition, some preliminary data for the MGL-58(R) and
MGL-7A(R) ground plane sensors are presented.
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1. INTRODUCTION

An electromagnetic field sensor is a special purpose receiving
antenna which converts a giveh electromagnetic field quantity into a
voltage or current according to a prescribed relation. The relation
should be as simple as possible, e.g., a constant of proportionality,
or a linear form involving frequency or time.

As is true with most instruments, however, there is a maximum
frequency (frequency domain) or minimum rise time (time domain) beyond
which the simple-relation no Tonger holds. In general, the smaller
the sensor, the larger the frequency range over which the performance
can be prescribed. Since the output of a time derivative sensor is
inversely proportional to its size and directly proportional to the
frequency, the output of a particular sensor may not be large enough
for accurate measurements at low frequencies. In this case one could
choose to use a larger sensor to obtain a bigger output at the expense
of reducing the upper frequency 1imit for the prescribed behavior. If
used at freguencies beyond this Timit (the roll-off frequency),
erroneous data will result; and though two sensors of different sizes
might seem to constitute a soluticn, their use would complicate the
data acquisition procedures. In addition, there may not be room on
the test object to mount more than one sensor.

For these and other reasons, it is desirable to obtain as much

information as possible about the behavior of the sensors



that are used. The purpose of the present study was to investigate

and analyze the responses of various EMP sensors over a frequency

range extending well beyond the so-called 3-dB roll-off frequencies.
The sensors which were studied were the MGL-2D(A), MGL-6A(A) and
ACD-4A(R) free-space sensors, and the MGL-58(R) and MGL-7A(R)
ground plane versions. In each instance the responses were measured
as a function of frequency and, in addition, for the free-space
sensors, the dipole patterns and rotational symmetry were determined.
The mathematical formulas which define the responses and which
were used in analyzing the data are presented in Chapter 2, and this
js followed (Chapter 3) by a description of the experimental facility
used to make the measurements. Chapter 4 is concerned with the

ground plane sensors and includes a detailed presentation of the

data and the results of the analyses. The majority of the effort
was devoted to the free-space sensors, which are treated in Chapter 5.
The significant results are summarized in Chapter 6 in a manner such

that the performance of the various sensors can be compared.
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2. GENERAL FORMULAS

Since the MGL and ACD electromagnetic field sensors were developed
to measure electromagnetic fields in the time domain, it is natural to
evaluate them in the time domain by measuring their impulse or step
responses. In general, however, such tests are not accurate enough to
quantify their detailed performance in the frequency domain. This is
particularly true at the higher frequencies where the response cannot
be deduced from the time domain behavior because of instrument and/or
recording limitations, and in the study reported here the frequency
response of the MGL and ACD sensors was measured directly in the

frequency domain.

2.1 Theoretical Considerations

The sensors that were tested were designed [1] to provide a simple
mathematical relation between a designated field quantity and the output
voltage over a wide range of frequencies. For the ACD sensors the

voltage response is [2]

£) = Re.R --S—E(t) (time domain)

or

(frequency domain)

<=
N
-+
g
]
Cae
no
=]
—h
™
o
=)
m
—~
-+
g

11



where VO is the sensor output (volts),
R is the sensor's characteristic locad impedance
(usually 100 ohms),
Aeq is the sensor's egquivalent area (inm2?),
e = (36n)7* 107° (Farad/m),
E is the electric field intensity (volt/m),
f is the freguency (Hz),

and a time dependence exp(j2rft) has been assumed. For the MGL

sSensors,

d . ,
0 perq . EE"(t) (time domain)

or (2)

=
—
ct
~—
1}

vV (f) = jZWfUOEeq - H(f) (frequency domain) ,
where = 4r X 1077 (Henry/m)} and

H is the magnetic field intensity (Ampere/m).

Each sensor is a calibrated device, and its equivalent area is
specified.

The above formulas can be obtained by retaining only the dipole
terms in the Tow frequency expansions of the responses, and are valid
for sufficiently low frequencies. As the frequency is increased, the
influence of higher order multipoles becomes significant, leading to
a response which is no longer linear in frequency and does not have
the aspect dependence characteristic of a dipole, e.g., the dot

product (cosine) behavior as a function of angle.
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The coordinate systems used in analyzing the measured data
for the responses of the ACD (electric dipole) and MGL (magnetic
dipole) free space sensors are shown in Fig. 1. 1In each case the z
axis is fixed by the sensor, and the relevant incident field vector
(E for the ACD sensor and H for the MGL sensor) is chosen to be in
the ¢' direction of a spherfcal polar coordinate system (r,8',¢). The

frequency domain responses (1) and (2) then become

v (f)

jenf Reerq E(f) sin ¢'  (ACD) (3)

V(3 j2nfuy AggH(f) sin o' (MGL) (4)

and both can be written as
V(g',63f) = A(f) F sin ¢’ (5)

where A(f) is a function of the frequency alone and F denotes the
appropriate incident field quantity (E for the ACD sensor and H for
the MGL). Outside the frequency range where (1) and (2) are

applicable,
V(s',03f) = {A(f) sine' + e(8',0;f)} F (6)

where = is an error term embodying, amongst other things, the effect

of the higher order multipoles.

13



(a)

Fig. 1:
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(b)

Magnetic Toop (MGL)

Coordinate system used for theoretica: analysis.

Electric dipole (ACD)




To determine A and ¢ from V, the standard procedure is to

expand V(6',63f) in zonal harmonics [3], so that
V(e’,¢;f) = A(f)Pi(cos 6') + {terms in 8',0,f}

where Q is the recorded signal normalized relative to the incident
field strength, i.e., V= V/F. We can now find A(f) by using the
orthogonality properties of the zonal harmonics. If V is assumed

independent of ¢, multiplication by P;(cos 8') and integration over

|

4v steradians (do = sin &' de' d¢) gives
m
ACF) = 3 fV(e‘,¢;f) sin2 8' do' . (7)
0

We note in passing that if the entire right-hand side of (6) is assumed
to be independent of ¢ rather than just the first term, an alternative
approach is to expand V in a Fourier sine series. This Teads to an
alternative weighting factor in (7) which gives more weight to the
angles at which the sensor is end-cn, but is less defensible as a
general procedure.

From (7) the mean squared angular error is defined as

Jp|0(e',¢;f) - A(f)sin o' |2 dn
eif) = =

f [A(F) sin 8'|2 da

Q
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™
j’ V(6'.83F) - A(f)sin 0']2 sin o' dg'
0
(8)
and is a measure of the mean squared deviation of the angular response
data from the dipole behavior. The maximum error é%ax(f) is

likewise defined as

£ (f) = max Le'03f) - A(f)sin 6’|
max |A(f)sin a'|

3

"o elmax <8 E-Gr;ax (9)

and indicates the maximum deviation from the dipole pattern over a

specified angular range.

2.2 Practical Considerations

In antenna work the angle defining the angular response or
pattern is generally measured from the direction of the peak response,
and this is the conventicon used in the sensor catalog [2] where,
for example, data sheet 1118 cites the response of an ACD sensor
as

v = RA -9 or v o= ra L Dcose. (10)
eq t eqg dt
Here, 4 is the angle between the direction of the vector equivalent

arsa Ae and that of the appropriate field vector, so that

q
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6 = 8' - x/2 (11)

where 8' is the spherical polar angle defined in the previous
section. For consistency with the Titerature, we shall henceforth
express all results in terms of 8, where -n/2 < 8 < 7/2.

Consider also the nature of the signal v(8,s;f) present at

the output of a sensor. In practice,
vie,o3f) = V(e,:f) F K (12)

where V is the sensor response to a unit incident field, F is an
incident field of unknown strength, and K is the response of thne
chamber, cables, amplifiers, etc. In our measurements it is
postulated that F and K are time invariant, and thus, for example,

the ratio of measurements made for some value of 8 and for 8 = 0

(broadside) at two different-times yields

vn<e’¢);f) = YM (13)

V(0,0;7)

where Vn is independent of F and K. Vn<6,¢;f) is the response
relative to that of the same sensor at broadside incidence, and
(7) through (9) are readily expressed in terms of this normalized

quantity:

17



7/2

AL = 3 [ Vp(owsticos? o do (14)
S
E(f) = MR [ [V (e.05F) - A (F)cos 8|2 cos o do
-m/2 (15)
IV _(e,9;f) - A_(f)cos 8|
£%ax(f) = max — n , |8 < rax (16)

[An(f) cos 8]

In the derivation of (7) through (16) it was assumed that
the sensor response is independent of ¢ (see Fig. 1), and ¢ has been
shown as one of the variables of Vn only for generality. For the
ACD sensors the response is ¢ independent from symmetry, but this
is not true for an MGL sensor. The free-space version evaluated
in this study has four gaps which, at Tow frequencies, should be
"invisible." As shown later, however, at high frequencies the
response is affected by the orientation of the field with respect to
the gaps.

To assess the rotational response of the MGL sensors, an

average rotational response coefficient is defined as

27
By (f T f Vn(0,6:f)d (17)
0

(cf. (14)). By analogy with (15}, the mean squared rotational error

is

18



21
1 -2
2 = . - 2
EAR) = 5 B (AT [V, (0s036) - B, (F)[2 ds (18)
0
and the maximum rotational error is
- Y (0,63F) - B (F)]
f} max(f) = max — N (19)
8, (F)]

The formulas in (14) through (19) were programmed in BASIC

for the HP9845 calculator, and results are presented in Chapter 5.
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3. EXPERIMEMTAL FACILITY

The measurements were made in the University of Michigan's
surface (and near) field facility, a block diagram of which is
shown in Fig. 2. The system is a CW one in which the frequency is
swept (stepped) over a wide range, and a key part of the facility is
a tapered anechoic chamber approximately 50 feet in length. The
rectangular test region is 18 feet wide and 12 feet high. The
rear wall is covered with 72-inch-high performance pyramidal absorber,
with 18-1inch material used on the side walls, floor and ceiling.
The material in the tapered section (or throat) is 2-inch hairflex
absorber. The chamber can be thought of as a Tossy wall horn antenna
terminated by the rear wall. The signal is Taunched from a single
exponentially tapered broadband antenna Tocated at the apex of the
chamber. The antenna is fixed and since the radiated signal is
horizontally polarized, the pseudo plane wave in the center ('quiet
zone') portion of the test region is also horizontally polarized.

The instrumentation is centered around a Hewlett-Packard
84108 network analyzer, and is computer controlled. An HP9830A
calculator controls the frequency to be generated, switches in the
appropriate power amplifiers and Tow-pass filters, and reads and
stores the amplitude and phase of the signal picked up by the
sensor. During a run, the freauencies are typically stepped from
118 to 4400 MHz. Because of the 1imited memory size of the
calculator, this freguency range is recorded in four bands: 118 to

550 MHz (in 4.8 MHz steps), 550 to 1100 MHz (in 4.3 MHz steps),

20




1¢

®

Swieep Povier Low-Pass
Generator 71 Amplifier Filter ~30 dBm
r A
| o FI1 [ource-tocking — e 10 dB
| ¢ tT Input Ivequency Reference 6 dB .20 dBwm Directional
I\)L(tb T Coumter Signal (HMatched) L— Coupler
| Input = Line 20 dB — Posier —
| v r o Stretcher Splitter -
| | — =~ ALten.

S ©29.5 dB
| “| T Y 14 dim an
'ﬁ__ . . _______J lletuork 6 di

falyzer .8 dBmr {(Matched)
I S Mre-Amp r Power
| Splitter
| Test e 1
I Signal \L A8 dBm
I | o T o q ALC voltage Crystal
| . . 1Y ™ hetector
Sueep Auplitude Phase
| Valtage N
| CRT .} Test
Displa / Senso
i sl y LaW Vs A ' H \
| R /Y v
' s il |
N ( i
| fxt. Sweep r__‘"~>| —_’ d
Inpul | Lo ¢ -
| Antenna
| 3
| | —
| | Digirtal ' ,
l | Vol tmeter Anechoic Chamber (Side View) > fnalog Signal Flow
| | — -— —> Digital Data MNow
| ]
SN B
| 1P Interface Bus
|
L 1HP9R30A e e e e e e
e Hrasas
Calculator r.__..__-__________l
Catculator
Nata V. W Data
Acquisition LA 26 Univ. of Mich. Srnch cards | P;“’C‘ii?i"q
otting
Terminal Miadahl '%lHagnetic Tape I
470/v8
HP7203A
Digital Plotter

Fig.

2

Block diagram of the

facility.



1100 to 2000 MHz (in 9.6 iMHz steps), and 2000 to 4400 MHz (in 16 MHz
steps). The data from each band are stored by the HP9830A calculator
on a cassette for later transfer to an HP9845B calculator which
processes and plots the data. If substantial processing or
computation is invelved, or if a need exists to write the data on
standard computer tape, the data are transmitted to the central
University of Michigan AMDAHL/V8 (IBM compatible) computer.

Thevsigna1 picked up by the sensor is a function of the
response not only of the sensor but aiso of the entire facility,
including chamber, antenna, amplifiers and cabling, and it would be
a virtually impossible task to separate out the contributions of each.
An alternative approach is to apply some form of calibration.or
normalization whereby the facility response is, in principle,
eliminated. When measuring the surface fields on, say, a scale model
aircraft, two distinct measurements are made using the same probe
or sensor: one on the aircraft, and the other on a metallic sphere
or other object whose surface field is known. In conjunction with the
known sphere solution, the ratio of the two measurements gives the
aircraft response relative to the incident field.

In the present study, two different calibration procedures were
used. To determine the angular response characteristics of a sensor, the
data were normalized to the measured values of the maximum response
(broadside incidence) for the same sensor. This eliminated the effects
of any cable mismatch. To obtain the frequency response, each set of

rneasurements was followed immediately by the analogous measurements
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for a small sensor such as the ACD-2(R) or MGL-9(R), whose response
is believed uniform and predictable out to frequencies beyond
those of interest for the original sensor. The procedure worked well
for the ground plane sensors (Chapter 4), but the results were less
satisfactory for the free-space sensors (Chapter 5). One reason
for this was the presence of currents induced on the sensor leads
by "stray" fields in the chamber that ultimately affect (especially
the ACD-type) sensor response, but a more severe problem was caused
by the mismatches in the twin-axial leads, particularly at the twin-
coax to twin-axial junctions.

The details of the measurement procedures for each type of

sensor are described in the section devoted to that sensor.



4. GROUND PLAMNE SEHSOR EVALUATIONM

Although the study was primarily directed at the MGL and ACD
lines of free space sensors, it was felt prudent to start with MGL ground
plane sensors to gain experience in the simpler situation that results.
Because of the ground plane, the possibility of any lead interaction is
greatly reduced, and, in addition, the probes do not have the aspect
sensitivity that the free-space ones do.
In the following sections we describe the ground plane that was
used, the measurements that were carried out on three different MGL
sensors, the calibration of the various components involved, the deduced
frequency responses of two of the sensors referenced to the response of .

the third, and the implications of the results obtained.

4.1 Ground Plane

Ideally the ground plane should be infinite in extent, and one
consequence of using a finite size is that the surface field departs from
its infinite plane value due mainly to the effect of the edge currents.
For normal incidence on a plane several wavelengths in dimension, the
departures are primarily due to the edges perpendicular to the incident
electric vector that set up a standing wave pattern across the plate.

The influence of the other edges is confined to a distance of a wavelength
{(or less) from them.
For use on another project it was necessary to design and

fabricate a ground plane which was small enough to fit comfortably .
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inside the anechoic chamber but which sti11 simulated an infinite plane
over at least a central portion of the surface. To reduce the surface
field perturbation created by the vertical edges, resistive sheets were
added as shown in Fig. 3. Each sheet was shaped Tike a quarter
cylinder of radius 25.5 in. and had a resistivity which increased
quadratically as a function of the surface distance from the metallic
plane. The effect of different rasistivity variations was determined
by numerical experiments carried out using codes based on resistive
strip formulations, and the resistivity that was finally selected started
with zero at the edge, increasing quadratically to about 1000 ohms/square
at the rear.

The sheets were fabricated by spraying thin layers of resistive
material on art paper. After each treatment the resistivity was
measured with an ohm meter, and the process repeated until the appropriate
resistivity profile was achieved. The final products had a resistivity
which started at about 10 ohms/square and increased to the required
value of 1000 ohms/square at the outer edges. Although the surface
fields on the metallic part of the resulting ground plane have not been
measured, it is inferred from the numerical experiments that over a
central portion of the plane at Teast, the fields are virtually

identical to those on an infinite plane.

4.2 Measurements and Calibrations

The MGL Tine are B-dot sensors with specified equivalent area Ae .

q
Three different size versions were available for this study:
MGL-58(R}, serial no. 14, having A, = 1073 w2, MGL-7A(R), serial no. 5,
having Agy = 107% m2; and MGL-8A(R), serial no. 1, having g = 1075 n?.

25
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Fig. 3: Resistively Toaded ground plane used in the measurements.
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" A11 were manufactured by EG&G Inc. and are described in their
catalog [2]. Figure 4 is a photograph of the three sensors.

Each sensor was mounted in turn at the center of the ground
plane in our surface field facility, and its output was measured as
the frequency was scanned (or digitally stepped) from 118 to 4400 MHz.
To connect a sensor to the system it was necessary to use adaptors
as indicated in the first three lines of Table 1. These adaptors are
henceforth regarded as part of the sensors, and no attempt has been
made to compensate for their presence.

Any quantitative measurement is, by its nature, a comparison
process in which the reference is either the response of the same
system to a known field, or of a calibrated system to the existing

" (unknown) field. For the sensor measurements the incident field was
unknown, but reproducible over a sufficient length of time to enable
each sensor to be mounted in turn at the same ]ocatjon on the ground
plane and have its response to the same field recorded. Any one sensor
can therefore serve as the reference for the other two.

In practice, however, there is a difficulty. To connect a sensor
to the measurement lead requires a length of coaxial cable, and because
of the larger outputs from the larger sensors, attenuators must also
be inserted. To eliminate their effect, it is necessary to calibrate
both the cable and the attenuator. To do so, two cahles and two
attenuators were used as indicated in Table 1, and measurements were
made on various combinations of these sensors, and the four components,

The measurements performed are listed in Table 2.
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Fig. 4:

Photograph of the ground plane sensors used in the evaluation.
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GR -~ SMA(F) adaptors

Table 1: Components Studied
Component Description
MGL-8A(R) B-dot sensor, Aeq = 10'5 m2, Ser. No. 1; with BRRM(F) -
OSSM(F), 0SSM(M) - OSM(F) adaptors
MGL-7A(R) B-dot sensor, Aeq = 10'4 m2, Ser. No. 5; no adaptors
MGL-5B(R) B-dot sensor, A, - 1073 n2, ser. No. 14;

" 20-dB attenuator

Attenuator, Midwest Microwave, Model 444.20

6-dB attenuator

Attenuator, Midwest Microwave, Model 444-6

0.020-inch coax

35.5 cm Tong coax with OSSM connectors at each end;

Uniform Tubes, UT20

0.030-1inch coax

61.6 cm Tong coax with OSSM connectors at each end;

Uniform Tubes, UT34
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Table 2: Measurement Combinations
Meas. No. Data File Sensor Atten. (dB) Cable dia. (inches) Calibration Result; Figure
I
1 P4557 MGL-5 20 ! 0.020 P4673 (MGL-5)/(MGL-7); Fig. 13
2 P4565 MGL-7 20 E 0.020 P4673
3 P4573 MGL-7 6 E 0.020 PA673 (MGL-7)/(MGL-8); Fig. 11
4 P4673 MGL-8 6 E 0.020
5 C4701 MGL-7 20 I 3 0.020 C4717 20-dB att; Fig. 5
6 4709 MGL-7 6 i 3 0.020 ca77 6-dB att; Fig. 6
7 canz MGL.-7 5 3 0.020
8 c4725 MGL-7 | 3 0.030, 0.020 C4717 0'030,’;};?“9‘:“’“
9 C4733 MGL.-7 E 3 0.030
10 ca741 MGL-7 | 3 0.020, 0.030 c4733 0'020{:23%‘:0“;
|
Note: The measurements 1 through 4 and 5 through 10 were done on different days and the two sets of data should

not be intermixed.




@

From measurements numbers 5 and 7 using the MGL-7 sensor with
and without the 20-dB attenuator, the effect of the attenuator can be
found. The ratio of the measured outputs is the response of the
attenuator, and its amplitude and phase are plotted in Fig. 5. Although
the amplitude is slightly noisy, the noise is almost certainly due to
mismatches in the system rather than to the attenuator itself. Indeed
the attenuator is a physically small device with a specified operating
range of O to 18 GHz, and should have a constant response up to and beyond
the highest frequency used in the measurements. This would seem to
justify taking an average value for both the amplitude and phases. From
Fig. 3 the average amplitude is 0.1019 (= -19.48 dB), and the average
phase is -0.0326667 degrees/MHz. The Tatter is equivalent to an effective
free space Tength of 2.722 cm.

Similarly, from measurements numbers 6 and 7 the response of the
6-dB attenuator can be found. The amplitude and phase are shown in
Fig. 6, and average 0.5183 (= -5.71 dB) and 2.387 cm of electrical
length, respectively.

The same procedure was also used to calibrate the coaxial cabTes
(see Table 2 for the data sets involved), and the results for the
0.020~inch coax are shown in Fig. 7. The noise is again attributed to
the entire system rather than to this single component, and since the
skin effect is the main source of cable Toss in this frequency range,
the amplitude of the response should be exp(-a/Ff) where o« depends on the
length and characteristics of the cable, but is independent of the
frequency f. By eyeball fit, the (average) amplitude at 3000 MHz is

estimated to be 0.8, implying o« = 7.438 x 107 % per MHz. The resulting
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amplitude curve is shown in Fig. &§ and is seen to provide a good
fit to the measured data. The slope of the phase curve is likewise
-0.61463 degrees/MHz, corresponding to an effective free space length
of 51.216 cm, and the computed phase curve is given in Fig. 8.

The analogous results for the 0.030-in. coax are shown in Figs. 9
and 10. With the amplitude chosen to be 0.808 at 3000 MHz, the deduced
o is 7.106 x 107° per MHz, and the sTope of the phase curve is -1.0556

degrees/MHz, corresponding to an effective free-space length of 87.970 cm.

4.3 Sensor Responses

Measurements numbered 3 and 4 (see Table 2) were done with the
MGL-7 and MGL-8 sensors respectively, using the same cable and atteruator,
and the ratios of the measured data are shown in Fig. 11. At Tow
frequencies the ratio is 9.33, compared with the value 10 obtained from
the equivalent areas. The discrepancy is believed due to the small size
of the MGL-8 sensor whose construction is inevitably difficult. The phase
is zero at low frequencies, but deviates at higher frequencies, due not
only to the effect of the sensors individually, but also to the inclusion
of the adaptors whose presence has not been compensated for.

The MGL-8 is the smallest sensor of the three, and its response
should be Tinear out to (and beyond) the highest frequency used.
According to the quasi-static approximation, its output voltage should
therefore be - -

vV = quHAeq
where w is the radian frequency, p is the permeability of free space

(= 1.2566 x710'6), H is the amplitude of the magnetic field, and
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Fig. 10: Computed calibration for the 0.030-inch coax.
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A =170 m". On multiplying the data in Fig. 11, by jqueq, we
obtain the response of the MGL-7. The behavior is not unexpected, but
the droop in the amplitude curve at frequencies above 4000 MHz was not
present in some of the earlier data, and may be due to an equipment
malfunction.

The ratio of the measured responses of the MGL-5 and MGL-8
sensors is shown in Fig. 13. At low frequencies the ratio is 90.0,
compared with the value 100 predicted by the equivalent areas of the
two sensors. At a frequency of about 500 MHz, there is a sharp notch
in the curves, the origin of which is not clear at this time. It
occurs in all data that have been obtained with the MGL-5 sensor, and
is therefore associated with this sensor rather than the MGL-8.

In an attempt to Jocate its source, the measurements were .
repeated with the front of the sensor retaped to the ground plane. We
also taped the back of the sensor assembly where it protrudes through
the ground plane to eliminate any possibility of resonances in a cavity
formed by the plane and the plate on which the sensor is mounted. There
was no change in the data, and it would therefore appear that the
notch is a feature of this particular MGL-5 sensor.

To test this, it was susggested [4] that the sensor be examined
electrically using a time domain reflectometer, and visually as well.
It was found that the two 100-ohm lines from the gaps have an

electrical Tength of about 15 cm, but one is about 1 cm shorter than

the other. Because of the design of the sensor, the two lines and the
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Toop can form a high Q resonant circuit for excitation in the
anti-symmetrical mode, and if the 100-ohm lines are not of equal

Tength, the resulting signal could create the notch at 500 MHz.

In presenting the responses of the MGL-5 and MGL-7 sensors, the
MGL-8 has been used as a reference because of the expected Tinearity of
its output over a frequency range exceeding the highest freguency used
in the measufementé. Ongfhé 6£her hénd; 1t§ sma11rsize increases the
probability that its specified equivalent area is less accurate than
those of the larger sensors. To judge from the Tow frequency limits
in Figs. 11 and 13 it would appear that the actual value of Aeq for the
MGL-8 exceeds 1075 m2, and a more probable value is (say) 1/2{(0.033)°!
+ (0.966)7111075 m2, i.e., Aeq = 1.054 x 10°° m2. The resulting
recalibration of the MGL-5 and MGL~7 responses would uniformly increase

the amplitudes in Figs. 12 and 14 by 1.054.

4.4 Discussion
The amplitude and phase of the frequency response of the MGL-7
sensor are shown in Fig. 12. At Tow frequencies, the response increases

linearly with f according to the formula

Vy = jquéq (20)

with Aéq = 0.933 x 107" m?2. It rises above the value predicted by (20)
starting at f = 800 MHz, indicative of the growing influence of the
multiple contributions, and then recrosses the linear curve at about
1800 MHz, where the response has its (initial) peak value. Thereafter,

the amplitude falls increasingly beiow the Tinear curve, and is more

than 3 dB below for all f > 2300 MHz.
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Some additional information can be obtained by applying the
Sharpe-Roussi program [5] to give a partial fraction representation of
a real (as a function of s = jw) rational function approximation to the
response. For this purpose it is convenient to write the response as a
function of w in units of 10° radians/sec. Using ten poles, the fit
to the measured amplitude and phase s shown in Figs. 15 and 16, and
we note that even the small amplitude dip near 4000 MHz (w = 25) was
faithfully reproduced. The poles and residues are given in Table 3.
The resonant frequencies are therefore 12.19, 18.70, 25.58 and 26.23
G rad/sec, but because of its small residue, the one at 25.58 can be
ignored. The other three are indicated in Fig. 15. The fundamental
corresponds to that of a loop of radius 2.496 cm, and the next two
values are then consistent with the first anti-resonance and the second
resonance, respectively. It is not known whether the loop radius can
be identified as the dimension of a specific structural element of
the sensor.

For w << 12, the partial fraction representation of V can be

expanded as a power series in w, giving

V = -0.0216 + jw 0.1174 + w2 0.001678 + jw3 0.0001399 + 0(w")

(21)
The non-zero constant is physically unrealistic, and is due to noise
in the measured data and/or the approximations inherent in the

numerical simulation. The dipole contribution (proportional to jw)

implies (see eq. 1) Aéq = 0.934 x 10 % m2, in excellent agreement with
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Table 3: Poles and Residues for MGL-7

Poles W Residues Ri

12.19 + j4.452 1.521 - j2.839

-12.19 + j4.452 -1.521 - j2.839
18.10 + j0.9277 0.1528 - j0.008782
-18.10 + j0.9277 -0.1528 - j0.008782
25.58 + j0.4500 -0.01499 + j0.07588
-25.58 + j0.4500 0.01499 + j0.07588

26.23 + j2.384 -2.703 ~ j1.759

«26.23 + j2.384 2.703 - j1.759

Jj83.96 Jj277.7

jo3.29 Jj311.5

48




the value deduced from Fig. 11. The other terms in (21) are then the
next higher order multipole contributions, and bearing in mind that
(21) requires w << 12, their coefficients are remarkably small. Although
these terms are responsible for the initial departure from the linear
behavior with frequency, it is evicdent tnat a study of the quadrupole
contributions to the sensor response would provide Tittle in the way
of an improved representation of the output.

For the MGL-5 sensor the amplitude and phase of the response
(see Fig. 14), replotted as a function of w in G rad/sec, are shown
in Figs. 17 and 18, along with the simulation provided by the Sharpe-
Roussi program using 18 poles. The frequencies appropriate to the pole
locations are indicated, and we observe that these do not always
correspond to the peaks and nulls in the response. MNevertheless, the
overall fit is excellent except at freguencies in the vicinity of
w = 3.7 where the notch occurs, and where the simulation averages
through the increased response at the lower frequencies and the
subsequent deep null. Because of this, the low frequency behavior
of the simulated voltage differs from the known behavior of the sensor.

Indeed, by expansion of the partial fractions we obtain

V = 0.0607 + juw 1.068 + 0(w?)

implying Aéq = 0.903 x 103 m2, which is still 7 percent less than the

value obtained from Fig. 13.

49



T ; I

MGL-5, REF MGL-8;PUS57
’I
/
‘\\‘
v \
\ /X |
./‘ p ‘
H.7L.
m 3
3 ' ~
S E WA
-
Q.
=
<
\
2.3L ‘
/ 4
7 4
‘ %
| /J \ \
0.0l i . Lo " o OCT 31/80 U
0.0 9.0 18.0
G RAD./ SEC
Fig. 17: Amplitude of the MGL-5 response compared with .the Sharpe-Roussi simulation. The dots show the

frequencies corresponding to the 18 poles used in the simulation.

4

M
.

27

|

0



o

180.0

1
PHASE

~60.0

|
MGL-5,REF MGL-8;PUS557

PRrY P |

OCT 31/80 U%

=-180.0L.
0.0

Fig. 18: Phase of the MGL-5 response compared with the Sharpe-Roussi simulation.

8.0

18.0
G RAD./ SEC

corresponding to the 18 poles used in the simulation.

27.0

The dots show the frequencies



s

AMPLITUBE

H.7

Fig. 19:

i

3.

3

-

OCT 31/80 UM

6.7

10.0

Amplitude of a portion of the MGL-5 compared with the Sharpe-Roussi simulation using 14 poles.



' (

180.0 S s [ .

MGL~-5,REF MGL-8:PUBE7Y

°0-0F \\\(\ —

€
PHRSE

-60.0L -
~180.0L 1 . oCcT ?1/80 UM )
0.0 3.3 6.7 10.0

Fig. 20: Phase of a portion of the MGL-5 compared with the Sharpe-Roussi simulation using 14 poles.



5. FREE SPACE SENSOR EVALUATION

Apart from its intrinsic value, the preceding study of ground
plane sensors was helpful in enabling us to develop the experimental
techniques necessary to tackle the more difficult problem of

evaluating the free space sensors.

5.1 The Sensors

The free space sensors studied were the MGL-2D(A), MGL-6A(A)
and ACD-4A(R}, but in addition the smaller size MGL-9(R) and ACD-2(R)
were used as references for the frequency variation study since their

regions of linearity extend well beyond the largest freguency used

in the neasurements.

Table 4 identifies the particular sensors, and we note that
two MGL-6's are 1isted. Because of the poor performance of the
first model (serial Mo. 2), it was felt that the sensor was defective,
and a second model (serial No. 1) was requested from the Air Force.
It turned out that this was no better, and we eventually decided to
employ the second one only. Figure 21 is a photograph of the five
sensors used in the study, with the ACD-4 and ACD-2 on top and the
MGL-2, MGL-6 and MGL-9 below. The dual coax leads on the MGL-9
have been bent through 90 degrees to make the sensor compatible with
the other two. Since the incident electric fie]ﬁ in the chamber is
horizontal, it was necessary for us to bend the original straight

leads to enable the sensor to receive the (vertical) magnetic field .
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Table 4. Identification of Free Space Sensors Used
Type Equiv Area (m){ Part No. Serial
Mode Connector Max Frequency Mfg. No. Notes
ACD-2(R) | D-Dot 0.0001 - -- --
Pair of SMAs 7.5 GHz EG&G
ACD-4(R) | D-Dot 0.01 7713650
Twinaxial 750 MHz EG&G 4 --
MGL-2D(A) | B-Dot 0.01 7114070-10
Twinaxial 300 MHz EG&G 24 --
MGL-6A(A) [ B-Dot 0.001 7413327-10 The unit appeared to have a bad
Twinaxial 1.8 GHz EG&G 2 mismatch in twinaxial connector.
Unit was not used in the analysis.
MGL-6A(A)| B-Dot 0.001 7413327-10 This unit was used in tests as a
Twinaxial 1.8 GHz EG&G 1 replacement for Ser. No. 2
MGL-9(R) | B-Dot 0.00002 - The double coaxial cable was bent
Pair of SMAs 10 GHz EG&G -- to 90 degrees at 4.75 inches from
the loop. See Fig. 22.




AP PE R NI OLIB T L aw
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MGL-2D(A) MGL-6D(A) MGL-9(R)

Fig. 21: Sensors used in the study.
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with the leads vertical. Figure 22 is a close-up of the region near
the bend. The coaxial cables were unsoldered and separated up to
about 4 inches from the Toop, bent with a radius of about 3/4 inches,
and then resoldered to avoid the possibility of any loop resonances

on the leads.

5.2 Experimental Technigques

The chamber and its instrumentation were described in
Chapter 3 and, in principle at least, measuring the frequency response
of the free space sensors is straightforward. Each sensor is
positioned and supported inside the chamber and its output recorded
over the frequency range from 118 to 4400 MHz. The sensor is then
replaced by the smaller sized calibration sensor (MGL-9 or ACD-2)
and the measurement repeated. From a knowledge of the latter's
response, the ratio of the two outputs gives the normalized response
of the original sensor.

This procedure worked well for the ground plane sensors. The
same signal lead could be connected directly to the base of each
sensor and, in addition, all the cabling was beneath the ground plane
where it was invisible to the incident field. The situation is very
different with the free space sensors. For example, each of the
MGL-2, MGL-6 and ACD-4 sensors has a pair of coaxial cables extending
out about 18 inches from the sensor and terminating in a connector.
The connector is a so-called twinaxial where the transition is made
from the pair of coaxial cables to a twinaxial cable. At the far end

of the twinax, a transition is again necessary to go to the 50-ohm
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E? Pair SMA (Jack) connectors
T

Pair 0.085 in. diam.
semiricic coax

I —— ——]
% ,‘;

m

Fig. 22: Modified MGL-3(R). The coaxial cables were bent 4.75
inches from the loop to adapt for H-vertical polarization.

In the original design the coax was straight.
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coaxial geometry required by the network analyzer. Although
balanced to unbalanced transformers are available to fit the
connector (EG&G, DLT-96 series), they are usable up to 130 MHz only,
and therefore inappropriate to the frequency range of concern to us.

An alternative is to change from the twinaxial transmission line
geometry to a twin coaxial one, and to record each of the two outputs
individually, combining them digitally using the calculator. A device
called a twinaxial connector (EG&G, TCT) is available, but
unfortunately it is quite bulky. To avoid interference with the field
inside the chamber, it is necessary to place it outside, which then
requires a long length of twinaxial cable from the sensor. Because
of the discontinuities produced by the two connectors, standing waves
are set up on the twinaxial cable which show up as oscillations
in the measured data. Though we tried to reduce the oscillations using
a 6 dB twin-Tine attenuator which we designed and built for insertion
in the twinax, the resulting data were still unacceptable.

We remark in passing that the removal of the twinaxial connector
at the sensor would give direct access to each of the coaxial Teads
from the sensor, and eliminate most of our problems. However, this
would modify the sensor, and since our results would not then be

appropriate to the sensors as built, this simple solution was

unacceptable.
By this time we had concluded that the most practical approach
was to separate the twinax into two coaxes as close to the sensor as

possibie, thereby minimizing oscillations due to cable mismatches.
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A miniature twinaxial to coaxial adaptor was constructed using .
twinaxial and General Radio coaxial connector parts, and this is
shown in Fig. 23 along with the TCT-1A connector. The adaptor is

no Targer than the twinaxial connector and has two 0.141 inch diam.
semi-rigid coaxial cables with SMA connectors coming out. Because
of its small size, the adaptor can be attached directly to the
sensor and the signal can then be taken out of the chamber with a
pair of semi-rigid cables; and since these cables and the connectors
have Tow VSWR, they produce no appreciable mismatches to affect the
data. The mismatches that remain are at the sensor, twinaxial
connector and the adaptor. These are all close together, and the
oscillations that they produce in the frequency data are relatively

slow. Such oscillations are of no concern if a sensor response is

calibrated against the response of the same sensor at a different
aspect, provided the associated cabling is in no way disturbed.

The above problems do not occur with the small calibration
sensor. The MGL-9 and ACD-2 do not have twinaxial lines. A pair
of semi-rigid coaxial cables lead directly from the sensor to a
connector of SMA type, and since there are no discontinuities, there
should be no oscillations in the frequency response data. An
unfortunate consequence is that the oscillations in the data for the
targer sensors are not removed when the data are calibrated against
data for these smaller sensors.

Compared to the ground plane sensor study, the measurement of

the free space sensor responses was difficult and frustrating. In

spite of our best endeavors, all of the procedures tried lTed to noisy .
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Miniature

Fig. 23:

Twinaxial to dual-coaxial adapters.
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data. Whenever a cable was changed or even moved in the chamber, the

oscillations were affected to such a degree that they were no Tonger
eliminated by the calibration. To obtain data which are, as much
as possible, independent of cable mismatches, and require minimal
disturbance of the sensor in the chamber, it was therefore decided
to separate the measurements into two parts:

(i) angular response measurements,

(i1) frequency response measurements.
In (i) the procedure is to record the data for a variety of 6 and/or
¢, and to normalize these data against the maximum response for that
sensor, e.g., the data for broadside incidence for the ACD sensor.
In (ii) the response is measured only under the maximum signal
condition and normalized with respect to the corresponding response
of the appropriate calibration sensor to determine the frequency

response of the test sensor.

5.3 Angular Response Measurements

The difficulties described above ate up considerable time,

and many measurements were made before usable data were obtained.

5.3.1 ACD-4A(R) Sensor

This was the easiest to measure and was the one studied first.

The sensor rested on a styrofoam pedestal on which a piece of polar
paper was placed to show the sensor orientation, and the two semi-

rigid ccaxial leads went up vertically through the roof of the

chamber. Figure 24 shows how the angle 6 was defined relative to the
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Fig. 24:

x>

Measurement geometry for the ACD sensors.

produces the angular (dipole) response. )
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direction of the incident electric field, and measurements were
made for & = -90(15)90 degrees. The data were normalized relative
to those for 8 = 0 and are presented in Appendix A. Thus, for

& = 0, the normalized amplitude is unity and the phase zero.

5.3.2 MGL-2D(A) and MGL-6D(A)

The geometry is shown in Fig. 25. In contrast to the ACD
sensor, the MGL are not azimuthally independent, and it was therefore
necessary to measure the aximuthal (¢) dependence as well as the
6 dependence appropriate to the angular or dipole response.

To measure the ¢ variation, the sensor was placed on a
styrofoam pedestal to which a piece of polar paper was attached. The
output Teads were taken vertically up through the roof. With gap
Mo. 1 used as the zero reference for the aximuthal angle ¢, data were
recorded for ¢ = -90(15)90 degrees with 6 = 0, and normalized with
respect to the measured data for ¢ = 0. The normalized data are
presented in Appendix C.

To measure the angular response, the sensor was rotated forward
through an angle & (see Fig. 25), and a special jig was constructed
to accurately control the tilt angle 8. Figure 26 is a photograph
of the jig with a sensor in place. To permit the bending, a matched

pair of coaxial cables was inserted above the sensor handle (see

Fig. 26), and a braided shield was added to avoid leakage and resonances.

For each sensor, measurements were made for ¢ = 0(15)90 degrees with
¢ = 45 degrees, corresponding to incidence midway between gaps 1 and 2,

and ¢ = 90 degrees, corresponding to incidence on gap 2. The data were
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x>

Fig. 25: Measurement geometry for MGL-series sensors. (The g-variation
produces angular (dipole) response and ¢-variation produces
azimuthal (constant) response.)
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Fig. 26: Styrofoam jig used for support and rotation of MGL-2
and MGL-6 sensors. The incident field is from the

right-hand side.
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normalized with respect to the measured data for the sensor in

question when 8 =0, and are presented in Appendix B.

5.4 Angular Response Data Analysis

The measured data were processed according to the formulas
in Chapter 2. For the angular (dipole) response, the gquantities
computed are
(i) the dipole response coefficients An(f), from (14);
(i1) the mean squared angular error £2(f), from (15);
(111) the maximum ervor é7max(f), from (16).
For the MGL sensors, the following additional_quantities were
computed to determine the azimuthal variation of the response:
(iv) the average rotational response coefficient Bn(f), from (17);
(v) the mean squared rotational error é?(f), from (18);

(vi) the maximum rotational error é; f), from (19).

max(
Two programs were written, one for each type of calculation, and the
processing and graphics were done on the HP9845 calculator.

Figure 27 shows the angular (dipole) dependence of the response
of the MGL-2D(A) sensor as a function of 6 with ¢ = 45 degrees and
f = 150 MHz. These data were recorded at this one frequency during
the "pre-measurement" stage of the study, and are presented here to
help in understanding the meaning of A (f), £2(f) and & _ (f). Thus,
A,(f) is the coefficient of the best fit cosine curve,,?2(f) measures
how closely the curve fits the data, and gfmax(f) is a measure of the

maximum deviation of the data from fhe curve. The fit in Fig. 27 is

very good but as the frequency increases, so do the deviations. This
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Fig. 27:
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Rotation angle &

Measured angular response of MGL-2D(A) at 150 MHz.




is evident from the subsequent figures where the various quantities
are presented as functions of frequency:

Figures 28 through 32: dipole response for ACD-4A(R);

Figures 33 through 37: dipole response for MGL-2D(A) with
gap No. T at ¢ = 90°%

Figures 38 through 42: dipole response for MGL-2D(A) with
gap Mo. 1 at ¢ = 45°%

Figures 43 through 45: rotational response for MGL-2D(A);

Figures 46 through 50: dipole response forrMGLFGA(A) with
gap No. 1 at ¢ = 90;; 7

Figures 51 through 55: dipole response for MGL-6A(A) with
gap No. 1 at ¢ = 45°%

Figures 56 through 58: rotational response for MGL-6A(A).
The implications of the 3-dB frequencies shown in these plots are

discussed in Chapter 6.
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5.5 Frequency Response Data Analysis

The normalization of the data in Section 5.4 eliminated the
effects of many of the cable mismatches, but also removed the true
variation with frequency. We now seek this information for the MGL-2,
MGL-4 and ACD-4 sensors.

With the sensor oriented for maximum signal the response was
recorded for each of the above three sensors as well as for the two
calibration sensors. To minimize any errors resulting from changes in
the equipment and/or chamber, the measurements were carried out in as
short an interval of time as possible. We include here four curves
representative of the more than 60 measurements that were performed.

In some instances the data were clearly of unacceptable accuracy and
were discarded, and where appropriate we have averaged (or combined)
two sets of data to produce the curves presented.

Figure 59 shows the response of the ACD-2 sensor normalized with
respect to the MGL-9 response. Both are miniature sensors with 3-dB
rol1-off frequencies of 7.5 and 10 GHz, respectively, and the ratio of
their responses should therefore be constant over the measured range of

frequencies. It is not. At low frequencies the ratio oscillates

around the constant value of approximately 1.25 (compared with the theoretical

value 1.33), but for frequencies exceeding about 1600 MHz the oscillation
is about a linearly increasing function of frequency. e have no
explanation for this increase, and since the effect of cable Tosses
was eliminated by referencing the responses to the output terminals at

the sensors, the increase cannot be attributed to this.
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For the other (ACD-4, MGL-2 and MGL-4) sensors, the vq]tages
were referenced to the twinaxial cbnnectors and theiphage data
adjusted by adding a constant multiple of the frequency (equivalent
to a delay) to produce the required constant phase at low frequencies.

Figure 60 shows the ratio of the ACD-4 response to that of the
ACD-2. If the latter is presumed linear out to 2000 MHZ, the curves
serve to define the frequency response of the ACD-4. At low
frequencies the measured ratio averagesr120 compared with the theoretical
value 100, but decreases starting at about 800 MHz. The 3-dB roll-off
frequency is 1096 MHz, which is consistent with the manufacturer's
specification of >750 MHz. The response of the MGL-2 sensor
normalized to that of the MGL-9 is shown in Fig. 61. The Tow frequency
ratio is estimated to be 400 and the 3-dB roll-off frequency is 482
MHz. The corresponding values Tisted by the manufacturer are 500 and
>300 MHz.

Finally, Fig. 62 shows the ratio of the MGL-6 and MGL-9 responses,
and illustrates the type of difficulty éncountered thfougﬁout this study.
The fact is that a twinaxial system (cabjes, connectors, baTuéé,
etc.) is not adequate above 100 MHz. The oscillations that are seen
are attributable [6] to the MGL-6 geometry, including the handle, and
the other model (serial No. 2) of this sénséf showed the same )
behavior. The Tow frequency ratio is estimated to be 40 compared with
the theoretical value 50, and the measured 3-dB roll-off frequency is

1940 (c.f. >1800 MHz).
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2
7 q1/2 2rf 72 7 /2 2 f
AS = | =& - A ¢ and Ah = |2 - A ¢
0.707 Z0 eq| ¢ 0.707 ZC eq! ¢

6. SUMMARY

Table 5 summarizes the main conclusions of the study. The first
two columns identify the sensors, and the third lists the minimum 3-dB
ro]l-bff frequéncies'ésrsbeci%féd by the manufacturer. fhe remaining
columns contain the information obtained from our measurements. The
fourth column shows the measured 3-dB roll-off frequencies, and in each
instance the value exceeds that given by EG&G [2]. The next three
columns (Columns 5,6 and 7) relate to the angular behavior of the sensors

and Tist the frequencies at which the patterns deviate from the ideal

(cos 8) dipole pattern fitted to angular data in the Teast squares sense.

The eighth column gives the frequencies at which the azimuthal (rotational)

symmetry breaks down and is applicable only for the MGL free space
sensors. The Tast column gives the deduced figures of merit as defined

by Baum et al,

for electric and magnetic sensors respectively. The 0.707 subscript
indicates that the value is based on the cut-off frequency fc of the
sensor (Column 4). In the formulae ZC is the sensor Toad impedance
(100 ohms) for both the free space and ground plane sensors, Z0 is the
free space characteristic impedance, Aeq is the equivalent area as given
in the EG&G catalog but doubled for the ground plane sensors, and c
is the velocity of Tight.

In essence Table 5 shows the frequencies up to which each sensor

could be used. As already noted, the measured 3-dB roli-off frequency

exceeds the manufacturer's (minimum) specification in each case, but
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Table 5.

Summary of Results

1 2 3 4 5 6 7 8 9
Sensor Part No.| Spec. 3-dB | Meas. 3-dB Meas. 3-dB Maximum Anqular Response Error | Meas. 3-dB| Figure of
Mode1 Ser. No.| Freq. Resp.| Freq. Resp.[ £0° beam +30° beam +60° beam Rot. Error Merit
ACD-4A(R) | 7713650 1096 MHz 2402 MHz 2402 MHz 1798 MHz 2.713
free space 4 750 MHz | Fig. 60 Fig. 32 Fig. 31 Fig. 30
MGL-2D(A) | 7114070 482 MHz 1215 MHz (45)*| 1215 MHz (45) | 932 MHz (45) 1210 MHz 1.979
free space -10 300 MHz | Fig. 61 1397 MHz (90) | 1397 MHz (90) | 980 MHz (90) Fig. 45

24 Figs. 42,37 Figs. 41,36 Fig. 40,35
MGL-6A(A) | 7413327 1940 MHz 3455 MHz (45) | 3412 MHz (45) | 2850 MHz (45) | 3356 MHz 3.205
free space -10 1800 MHz| Fig. 62 3307 MHz (95) | 2307 MHz (90) | 2580 MHz (90) | Fig. 58

2 Figs. 55,50 Figs. 54,49 Figs. 53,48
MGL-5A(R) | 7113295 1100 MHz 2.062
gd plane -10 700 MHz
MGL-7A(R) | 7613070 2367 MHz 0.954
gd plane -10 2000 MHz

*
Position of gaps relative to the incident field.




it is also substantially less than the frequencies derived from the
measured anguiar responses. This suggests that a sensor couid, in fact,
be used with confidence at frequencies up to two or three times the
manufacturer's specification, provided the responses were corrected for
the frequency roll-off. In practice, the maximum frequency will depend
on the particular sensor used, and to see this, consider the data for
the MGL-2D(A). The measured 3-dB roll-off frequency is 482 MHz, but

the angular response frequencies are considerably larger. Suppose one
wishes to receive a signal over =60 degrees range of angle. The maximum
frequency is then 932 MHz, and since this is less than the value in the
last column, the rotational symmetry would still exist. Nevertheless,
to use the sensor at frequencies up to 932 MHz it would be necessary to
correct for the frequency roll-off either with a specially designed
(analog) compensating network or by correcting the measured values when
processing the data.

The study was a classic exampie of one which is theoretically and
conceptually straightforward, but difficult to accomplish in practice.
The most severe difficulties were encountered with the free-space
sensors that use twinaxial cable systems. Such systems are not effective
above about 100 MHz, and generated oscillation that degraded the accuracy
of our measured data. The high (> 100 MHz) frequency performance of
the free-space sensors merits further study, and we remérk that the
performance could be improved if the sensors were designed with twin

coaxial rather than twinaxial output lines.
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APPENDIX A; ACD-4A(R) DIPOLE RESPONSE DATA (RAW)

Measured data are presented for the ACD-4 sensor as functions
of the frequency for the rotation angles ¢ = -90(15)90 degrees

(see Fig. 1). The data are normalized to the measured values for

6 = 0, producing unity plots for 8 = 0 (see Plot A8). Data for

6 = +85 degrees are also included, but were not used in the analyses

described in Section 5.4.

Table Al: List of ACD-4 Dipole Data Plots

8 (degrees) Plot No. File No.
-90 Al AS 6501
-35 A2 AS 6301
-75 A3 AS 6309
-60 A AS 6317
-45 A5 AS 6325
-30 A6 AS 6333
-15 A7 AS 6341

0 AS AS 6349
15 A9 AS 6357
30 ATO AS 6365
45 All AS 6373
60 A12 AS 6441
75 413 AS 6449
85 A4 AS 6457
90 A5 AS 6473
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APPENDIX B: MGL-2D(A) AND MGL-6A(A) DIPOLE RESPONSE DATA (RAW)

Measured data are presented for the MGL-2 and MGL-6 sensors as

~functions of frequency for the rotation angles 8 = 0(15)90 degrees
- in the dipole response plane. For each sensor, data are shown for

gap No. 1 at ¢ = 45 and 90 degrees (see Fig. 25), and all data are

normalized to the measured values for & = 0.

Table B1: List of MGL-2 Dipole Data Plots

Gap Mo. 1 at ¢ = 45° Gap HNo. 1 at ¢ = 990°
8 (dearees) Plot ilo. File No. Plot Mo. File llo.
0 B1 MG 9165 B3 G 0357

15 B2 MG 9173 B9 G 2265

30 B3 MG 9201 B10 MG 9373

45 B4 MG 9209 B11 MG 9401

60 B5 ' MG 9217 B12 MG 9409

75 B6 MG 9225 B13 MG 9417

90 B7 MG 9233 B14 MG 9425

Table B2: List of MGL-6 Dipole Data Plots

Gap fo. 1 at ¢ = 45° Gap No. 1 at ¢ = 90°
6 (degrees) Plot No. File No. Plot No. File No.
0 B15 MG 9033 B22 MG 9109
15 B16 MG 9041 B23 MG 9117
30 B17 MG 9049 B24 MG 9125
45 B18 MG 9057 B25 MG 9133
60 B19 MG 9065 B26 MG 91417
75 B20 MG 9073 B27 MG 9149
) 90 B21 MG 9101 B23 MG 9157
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APPENDIX C: MGL-2D(A) AND MGL-6A(A) ROTATIONAL RESPONSE DATA (RAW)

The data presented here were obtained for 7 different angles of

rotation of the sensors about their axes, viz ¢ = 0{15)90 degrees.

The angle ¢ is measured from gap No. 2, implying that for ¢ = 0 the
exciting signal is incident on this gap. The data are norma]i;gd to
the measured values for ¢ = 45 degrees, cor}esponding to incidence
midway between the two gaps. Becéuse é% the symmetry of the sensor
designs, data were recorded over a single quadrant only. Ideally,

the responses sholuld be independent of ¢, implying unity plots, but

the results show that this is not the case at high frequencies.

Table C1: List of MGL-2 and MGL-6 Rotational Data Plots

MGL-2 MGL-6

(degrees) Plot No. File No. PTot No. File No.
0 Cl MG 9509 C8 MG 39601

15 c2 MG 9517 co MG 9609

30 C3 MG 9525 C10 MG 9617

45 c4 MG 9541 C11 MG 9625

60 €5 MG 9557 c12 MG 8633

75 €6 MG 9565 C13 MG 9641

g0 c7 MG 9573 C14 MG 9649
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