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ABST&ACT

This paper presents a method for formulating problems involving
the passage of particles through material bodies of arbitrary convex
geometry in which the interaction between a particle and the body
depends on the length of the straight line path traveled. The radiation
environment is described by a distribution function and the body
is described by a projected cross-section and an angular chord
distribution, permitting the effects of geometry to be treated in-
dependently of the physical process involved,

The method is first formulated for bodies scattering incident
radiation, and then extended to include bocdies containing uniformly
distrlbuted anisotropic radiation emitters,

Two sample problems are solved: the response of a scintillator
to an X-ray flux, and the spectrum of recoll protons emerging from
a hydrogenous body irradiated by a monoergic neutron beam,

Angular chord distributions are calculated for a sphere,
an Iinfinite slab, an infinite cylinder, and the face of a semi-

Infinite cylinder.



INTRODUCTION

This paper presents 3 method for formulating problems involving
the passage of particles through material bodies of arbitfary convex
geometry in which the interaction between a particle and the body

; evong sther dhinasg, .
dependsAon the length of the straight line path traveled, In this
method the particles are described by an angular distribution function
and the body Is described by a projected cross-section and an angular
chord distribution, enabiing the effects of geometry to be treated
independently of the particular interaction involved., Because it clearly
sepafﬁtes the geometry from the physical process, the methed is a con-
venient one for estimating size and shape dependencies such as edge
effects,

It Is first formulated for bodies which scatter incoming particles,
and then extended to Include bodies which are themselves uniform
é;ut not necessarfly isotropic) sources of the particlies, This extension
can be shown to be equivalent to the method of Lewis® and Dirac? for cases
where the emission Is isotropic.

To demonstrate how it may be applied to both scattering and volume
source problems, the method is used to calculate the response of a scin-
tillator to a beam of X-rays and the spectrum of recoil protons emerging
from a neutron-irradiated hydrogenous body. The results are obtained

for various standard geometries, and their size and shape dependencies

are pointed out,



As an aid to the calculations an appendix is included in which
the angular chord distributions are derived for 2 sphere, an infinite

siab, an infinite cylinder and the fece of a semi=infinite cylinder,
THEORY

We wish to find the response of a convex body to radiation
under the assumption that the response depends only con the number
of particles that enter the body and the path-length each travels
in it.

. The number of particles of energy E that enter the body

from a given directicn 8 per unit time is

¥(E, Q) o(0) drdE,

-~ “~
where ¥ is the angular flux and 0&2), the projected cross-section
of the body in the direction Sz(see Fig. 1), is defined as
L .

c(g)-z‘f!ds’gf, (1)

{f we now define the angular chord distribution §(£,£pdj as
the fraction of::%? covered with tubes of length between £ and
L %+ d¢, and the interaction function g{£,E) as the response expected
when a radiation particle of energy E travels in a tube of length £,
we can write the body!s total response as

1= [ (e, Q0(0) 8(2,0) (4, E) ddEds ' (2)
.
Once the interaction and environment are specified, we can write

a formal solution to a2 scattering problem for any geometry whose

angular chord distribution and projected cross-section have been

ca]cufated. - R



This method can be extended to problems involving a uniform
distribution of anisotropic emitters, From the definitions of
§(££ﬁ and c(’@ , the quantity o-(niv?)éfz,(‘ £df is seen to be the volume
of tubes of length between i and £ + d¢ and direction;g. if the
number of particles per unit volume emitted with energy Eo in the D
direction is defined as F(thg)dEQdQ, then the number of particles
which travel in such tubes is

(g, ,g)c(ﬁ) 3{£,Q) 1d2dE da.

The fraction of these particles which are produced at a distance
between S and S + dS from their possible point of exit is dS/f, L
so their number is given by |

f(Eo,‘«.;))c(g)M!. Q) dSd2dE _da . |
Knowing the interaction function g, which involves only the Initlial
properties and the distance S, enables us to write the entire response as
- b= [RE Dala)ele,0ho(S,E Ya(s-S)dSdedE da , (3)
where the function @(#-S) is zerc whenever $>¢ and unity otherwise.

tn applying equations (2) and (3) to specific problems, the
nature of the information desired will dictate which variables need be

integrated over, as Is {llustrated in the examples below.
ENAMPLES

To illustrate how problems may be formulated with this method
we will calculate the response of a scintillator to a monochromatic
collimated beam of X-rays, and the spectrum of recoil protons emerging

from a hydrogenous body irradiated by monocergic neutrons.



1. X-Ray Scattering

Let the X-ray photons have energy Eo and be traveling in the
direction (Eo,cé). The flux can then be written as

¥(E,Q) = Ncs(E-E )5(6-8 )8 (e )/sing, | (&)
where N is the volume density of photons and ¢ is the speéd of light,

We assume that the response of the scintillator is simply pro-
pértionaf to the number of photons that scatter:

g(£,8) = 11 - exp(-u0)], (5)

whaere 1 is the absorption coefffcient of the material and l°
Is the light expected on the average when an X-ray photon scatters,
Depending on the details of a particular experiment lo might actually
- be & function of the distance® but we assume it to be proportional ~
to the photon enargy. The light cutput of the scintillator is ob-
tained by substituting Eq. (4) and Eq. (5) into Eq. (2). In this
case, it is simply

I =iNc Id‘zﬂ,_._;xi;'(‘-;zﬁb(eo‘, e )al,8,,2) . (6)

The output for particular shapes is gotten by inserting the
expressions for o and § given in the appendix and integrating.
For example, that of a sphere is given by |

= lowc-’--z7 [0%2~ 1/p® + (O/p + 1/p*)exp(-u0)] .

The effect of the sphere!s size can readily be seen by taking
the asymptotic values of this expression:

SR BN g ud® for b << /g ;

e T n2
1 5 lckv ;9% for D >> /s . _



Thus for small diameters the response is proportional to the volume,
while for large diameters it is proportionai to the surface and

Independent of u.
1. Recoll Proton Spectrum

We will assume: (1) that the pertinent dimensions of the scatterer
are small compared to the mean free path of the neutrons, (2) the neutron
beam s collimated and monoergic, and (3} the nonrelativistic hard sphere
approximation is valid for H-P scattering.*

If N neutrons/cm®/sec are inclident on a material with N,
protons/unit volume then the distribution of protons can be N;Itten as

f(Eo'S). = NH %o G(Eo-Encoszy)cos v )]
where Oap Is the n-p cross-section and y is the angle between fhe proton
and neutron velocity. v can be expressed in terms of the anglé of neutror
Incidgnce (87,¢") by the following relatioé:

cos ym= cos 6’cos 8 + sin 87 sin 6 cos{o’~a).

The response function g(S,Eo) in this Ease is Just the probability
that a proton whose initial energy was E° will escape after tfayglfng
a distance S. If R(E) is the range of a proton of energy E, then we
may write

g(S,E)) = 8(R(E_J-S).
Yhenever g = |, S can be regarded as the distance actually traveled
by a proton emerging from the body with energy E:

S = R(E) - R(E);

dR de

ds--FE_ .



If we now define the quantity Eﬁ}n as zero whenever R(Eo)
is less than £, and otherwise that energy for which

R(Emfn) = R(Eo)-zv

then we c¢an write

- 4 I" - = {w) -
o(¢-5)o(RTE_1-5) 'O(E E.in) - (9)
Adding the ebvious constraint that E < Eo and substituting equations
8 and 9 into equation 3, we find that the spectrum of recoil protons

is E

n(E,0)dEdQ = NH

R P T
N o, cos v G dEdn {or de_5{E - cos?y) (€ ~ENE,

zdz §(z,g)c(Q@(E-Em;n)} (70)

The integral over ¢, defined as A(EO,E,C», can be evaluated using

the distributions given in the appendix to yleld the following:

F {or-rr(e)-R(8) P}

for a sphere,

oy cosg @ {Zolcose-[R(Eo)-R(E)]}
for slab,

L sing {D”-[R(Eo)-R(E) TPsin® e}%-'
for an infinite cylinder, and

07{Z - sin~YfR(E )-R(E) Isine/T}

for the face of a semi-infinite cylinder, The Eo integration consists

only of replacing Eo with Encossy, so that a general expression for the

recoil proton spectrum is

dR ., - .
= Fo _— < v p £ 2 \
n{E,0) HHN = €05 ¥ oF ,(Encos wEJ A( IR v, E, 0.

np



To demonstrate the dependence of the spectrum on the shape of
the body, n(E,Ep has been calculated for each of the above solids

3/

using R = KE 2 for the range-energy relation. Fig. 3 shows the
results when y = 0, En = {0 Mev, and the characteristic dimension

of each solid is set equal to the range of a 10 Mev proton, HNote
that under these>conditions the semi=-infinite cylinder and the

slab yield practically identlcal results, fmplying that the formerts
edge effects can be neglected,
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APPENDEX
Calculations.of Anqular Functions

for Various Geomatries

Sphere

For a sphere of dizmeter D (see Fig, 2a) the projected area
is simply given as gggg a »D3/L, All chords of length £ are found
to intersect the disc, o, at 3 distance x from the center. Therefore
the frgction of ¢ covered by chords of length in the neightorhood of
2 is:

é(x@d.z = 8xdx/D?,
where x = -%(D2 - 12)%.

Siab

The functions for a slab (see Fig. 2b) can be written
=Y a

U(Q col cosg |, and

é(l.g)dﬂ = dlré(i~.‘°/cos@) + 8(s + £ /cos8)].

Infinite Cylinder

For a cylinder (see Fig. 2c) the projected area is given by
c{Q) = LDsin2,
[aad
The fracticn &(2,0)ds is simply
§(z,g)di, = 2dx/D,
i
where X = %(Da - £25in%8)2

Semi=-infinite Cylinder Circular Face

We now wish to calculate the angular chord distribution for a

semi-infinite cylinder (see Fig. 2d). We assume that radiation



can enter only over the forward face. The distribution obtained for
this case is useful for estimating edge cféécts or for treating a
cylinder with-well shielded sides,
Just as in the case of the plane, the projected area is
cggp = g _cosd = mDZcoss/b,
The fraction of tubes of length
£ = Tc/sind (A1)
covering the horizontal chord ¢ in Fig. (2d) is given by
§(L,c,3)d£ = d7.
We now eliminate the c¢ dependence from 3{f,c,() by noting
that the maximum length of a chord £ on the horizontal chord c is
zmax = c/sing,
Let x be the distance from the axis to the horizontal chord c:
c? = D% - hx®,
The element of area can be written
dA = cdx,
The fraction of the face area covered by a tube of length £ can be
written
dre(e,00dr] = candx/n0?/8).

Substituting from Eq. (Al) igd integrating over x, we cbtain
max
§(,e,g)d,e = bsing/r0?) [ dx,

“ex
max

where x s given by

dinz 2.:,.3a\F
%o =30 fPsin®e)?,
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Fig. 2 Definition of angles and lengths used in appendix |.
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