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This paper presents

the passage of particles

ABSTRACT

a method for formulating problems involving

through material bodies of arbitrary convex

geometry in which the interaction between a particle and the body

depends on the length of the st’raight line path traveled. The radiation

environment is described by a distribution function and the body

is described by a projected cross-section and an angular chord

distribution, permitting the effects of geometry to be

dependently of the physical process involved.

The method ;s first formulated for bodies scatter

radiation, and then extended to include bodies contain

distributed aniso?ropic radiation emitters.

treated in-

ng incident

ng uniformly

Two sample problems are solved: the response of a scintillator

to an X-ray flux, and the spectrum of recoil protons emerging from

a hydrogenous body irradiated by a monoergic neutron beam.

Angular chord distributions are calculated for a sphere,

an infinite sIab, an infinite cylinder, and the face of a semi-

Infin{te cylinder.
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INTRODUCTION

This paper presents a method for formuIat;ng problems involving

the passage of particles through material bodies of arbit;ary convex

geometry in which the, interaction ketween a particle and the body

J ~MO’”7 ‘
+’.,~r _/t”,;}l~:J

depends~on the length of the straight Iine” path traveled. in this

method the particles are described by an anguiar distribution function

and the body Is described by a projected cross-section and an anguIar

chord distribution, enabling the effects of geometry to be treated

independently of the particular

separates the geometry from the

venlent one for estimating size

effects.

It Is first formulated for

interaction involved. Because it cIearly

physical process, the method is a con-

and shape dependencies such as edge

bodi’es which scatter incoming particles,

and then extended to include bodies which are titemsetves uniform

(but not necessarily isotrop[c] sources of thepart[cles. This extension

can be shown to be equivalent to the method of Lewisx and Diraca for cases

where the emission Is isotropic.

To demonstrate how it may be appiied to both scattering and volume

source problems, the method is used to calculate the response of a scin-

tillator to a beam of X-rays and the spectrum of recoil protons emerging

from a neutron-irradiated hydrogenous body. The results are obtained

for various standard geometries, and their size and shape dependencies

are pointed out.
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As an aid to the calculations an appendix is included in ktiich

the angular chord distributions are derived for a sphere, an infinite

slab, an infinite cylinder and the face of a semi-infinite cylinder.

THEORY

We w;sh to find the response of a

under the assumption that the response

convex body to radiation

depends only on the number

of particles that enter the body and the path-length each travels

in it. .
.

The number of particles of energy E that enter the body

from a given direction ~per unit time is

Y(E,Qu(@dtiE,

where y Is the angular flux anda Q), the projected cross-section
L

of the body in the directionfJ (see Fig. 1), is defined as

(1)

[fwe nowdeflne the angular chord distribution q(.t,~fldf as

the fraction of O(J? covered with tubes of length between 1 and

4+ dl, and the interaction function g(l,E) as the response expected
.

when a radiation particle of energy E travels in a tube of length 4,

we -n wr

once the

te the body$s total response as

nteraction and environment are,specified, we can write

(2)

a formal solution to a scattering problem for any geometry whose

angular chord distribution and projected cross-section have been

calculated.
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This method can be extended to probIems involving a uniform

distribution of ”ariisotropic emitters. From the definitions of

l(~,e~ and rJ(~@, the quantity u($)q(l,~ldf is seen to be the volume

of.tubes of length between Z and t + d? and directions if the

number of particles per unit volume emitted with energy E. in theQ

direction is defined as f(Eo,J)dEocf~, then the number of particles

which travel in such tubes is

The fraction of these particles which are produced at a distance

between S and S + dS from “their possible point of exit is’dS/f. ‘...;

so their number is given by

Knowing the interaction function g, which Fnvolves only the initial

properties and the distance S,enabIes us to write the entire response as

where the function @(l-S) is zero whenever %? and

In applylng equations (2) and (3) to specific

unity otherwise.

probierrts, the

nature of the information desired wilI dictate which variables need be

integrated over, as is illustrated in the exampIes below,

EXAHPt.ES

To illustrate t-iow problems may be formulated with this method

9

we will calculate the response of a scintiItator to a monochromatic
,..

collimated beam of X-rays, and the spectrum of recoil protons emerging

from a hydrogenous body irradiated by monoergic neutrons.
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Let the X-ray

direction (~o, eo).

1. X-Ray Scattering

photons have energy E. and be traveling in the

The flux can then be written as

Y(E,$) = NC5(E-Eo)15(@-00)6(T-ro)/s in9, (4)

where N is the volume density of photons and c is the speed of light.

We assume that the response of the scintillator is simply pro-

portional to the number of photons that scatter:

g(4,E) = IJI - exp(-@ )], (5)
.

Were p is the absorption coefficient of the material and I
o

is the light expected on the average when an X-ray photon scatters.

Oep~~ding on the details of a particular experiment Iomight actually

be a functidn of the distance, 3 but we assume it to be proportional “..-. ... .. ..-. ---

to the photon energy.

tained,by substituting

case, it is s-imply

The Iisht output of the scintillator is ob-

Eq. (4) and Eq. (5) into Eq. (2). in this

. -. .-
1 = le~c fdl:i?zxp(-ul)ib(eo; eo)~(l,eo, @o) . (6)

‘The output for particular shapes is gotten by inserting the

e~ressions for cr and 3 given in the appendix and integrating.

For example, that ofa sphere is given by

1 = Ioffc$[D?/2- I/pa+ (D/w+ l/~2)exp(-@)] .

The effect of the spherels size can readily be seen by taking

the asymptotic values of this expression:

I ~ loti.~I@ for D << ?/k ;

I=\Kc~92 farD>>l/u.
04
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Thus f~r sma II diameters the response is propctrtional to the volume,

while for large diameters it is proportional to the surface and

lncfepencient ofp.

11. Recoil Proton Spectrum

We wIII assume: (1) that the pertlnertt dlmertstms of the scatterer

are small ccmpared to the mean free path of the neutrons, (2) the neutron

beam 1s collimated and monoergic, and (3) the nonrelativistic hard sphere

approximation is valid for H-P scattering.~

If N neutrons/cm2/secare incident on a material with tJH

protonsfuntt

f(Eo,~

wherea 1s
np

volume then the distribution of protons =n be written as

=NHo
H

~p 6(Eo-Encos2y)cos y, (7)

the n-p cross-section i~nd y Is the angle between the proton ●
and neutron veloclty. y can be expressed in term; of the angie of neutroc

incidence (6’,g’) by the following relation:

crxi y= cos $’cos e + sin 6; sln 9 cos(~’-a].

The response function g(S,Eo) in th;s case ts Just the probability

that a proton whose initial energy was E. wfll escape after traveiing

a distance S. If R(E) is the range of a proton of energy E, then we

may write

g(S,Eo] = 6(R(E04), ,

\
Whenever g = i, S can be regarded as the distance actually traveled

by a proton emerging from the body with energy E:

S= R(EO) - R(E);

dS = -$dE.
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If we now define the quantity Em-in iYs zero whenever R(EO)

is less than J, and otherwise that energy for

R(Emin) s R(EO)-J,

then we can write

8(2-S)Q(RIEO]-S) = 6(E-E ).mill

Adding the obvious constraint that E~Eo and

which

(9)

substituting equations

8 and 9 into equation.3, we find that the spec”trum of remil protons

Is E
n_.._ _._.___——___

n(E,fldEdfi= NHN OnD C;S y%
m {-

dEdQ fdEa5(Eo-Encos2y)2(Eo-E)dEo
‘
o —.-...—— .—-———

(10)

The

the

for

for

for

integral over J, defined as A(EO,E,Q), can be evaluated using

distributions given in the appendix to y~eld the following:

{
~ D2-rR(Eo)-R(E]]a 1

a sphere,

u
o

COS9 e fio/cos*[R(Eo)-R (E) ]}

slab,

{
L sin9 Da-[R(Eo)-R(E) ]2sin20 +

}

an infinite cylinder, and

{
@ $- sin- ‘&(Eo)-R(E)]sinW]}

the face of a seiii-infinite cylinder. The E. Integration consistsfor

only of replacing E. with Encosay, so that a general expression for the

recoil proton spectrum is

,J 7
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the

To demwstrate the dependence of the spectrum on the shape of

body, n(E,:) bias been calculated for each of the above solids

using R = KE3f2 for the range-energy reIation. Fig. 3 shows the

results when y= O, En = 10 F4ev, and the characteristic dimension

of each solid is set equal to the range of a 10 Hev proton. Note

that under these conditions the sem!-infinite cylfnder and the

slab yield practically identicai results, implying that the formercs

edge effects can be neglected.
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APPENDIX

Calculations.of Angular Functions

for Various Geometries

S2!Es

For a sphere of diameter O (see Fig. 2a) the projected area

is sircply given as u(FJ = I-D2/4. All chords of length 1 are found

to intersect the disc, u, at a distance x fro~ the center. Therefore

the fraction of c covered by chords of length in the nei~hiorhood of
.

I is:

4(l,#d? = 8xdx/D2,

*where X=;(D2 - ~s) .

Slab

The functions for a slab (see Fig. 2b) can be written

u(2 = Uo\ COSS 1, and

s(f,~)d? = dlT6(f-.?o/cos@) + 6(1 + lo/COSt?)].

lnffnite Cylinder

For a cylinder (see Fig. 2c) the projected area is given by

c (g) = LDsinG.

The fraction ~(,!,fjdl is simply

4(E,fJ)dl = 2dx/D,

where x=~(~a - t2sinaQ)1 .

Sen?-!nfinite Cylinder Circular Face

We now wish

sez;-infinite cy’

to caIculate the angular chord distribution for a

inder (see Fig. 2d). We assume that radiation

9
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can enter onIy over the forward face. The distribution obtained for—
●

this case is useful for estimating edge effects or for treating a

cylinder witkweIl shietded sides.

Just as in the case of the plane, the projected area is

a(:) = rJocos9 = l?D2cosW4.

The fraction of tubes of length

covering the horizontal chord c in Fig. (2d) is given by

%@,c>j)df = d~.

We now eliminate the c dependence from @(4,c,f!) by noting

that the maximum length of a chord k cm the horizontal chord c is

Let

The

The

1 = c/sin$.
ma%

x be the distance

~ = Da - 4X2,

from the axis to the horizontal chord c:

element of area can be written

cLA* cdx.

fraction of the face area covered by a tubeof length .C can be

w-i tten

drq(l,fjdy]= cdTdx/#/4)’.”---

Substituting from Eq. (Al) $:d integrating over x, we obtain
Max

~(l,~dl = 4sin9/#2) f Clx,
-x

R3ax
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ABSORBING CONVEX BODY

n -

Fig. 2 Definition of angles ~nd lengths used in appendix 1.
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C. INFINITE CYLINDER

D. SEhll-l NFINITE CYLINDER FACE


