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ABSTRACT

technique developed by Carl E. Baum for transitioning TEM

no reflection or distortion. between cylindrical and conicai

is investigated. This method uses a differential geometric

with Maxwell’s equations and the constitutive parameters 6

orthogonal curvilinear coordinate system. Isotropic but

inhomogeneous media are considered. it is shown that rotational coordinate

systems obtained from complex analytic transformations in the plane may be

utiiized in the design. and that a class of soiutions to the design probiem exists.

This class of solutions is based on a Riccati type of differential equation.
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1. INTRODUCTION

The differential geometric approach to transient lens design Is one of several

promising approaches to electromagnetic problems. In general one starts with

Maxwell’s equations together with boundary conditions and general theorems such

as conservation of energy and reciprocity and looks for various mathematical

concepts for representing the solut]on of an EM problem. For example. operator

dlagonalization and the use of the complex frequency plane have proved to be

extremely useful in the analysis and synthesis of EM devices (see [11), Other

promising approaches, which remain to be thoroughly investigated, but vfhlch could

have Important application to EMP simulators and energy transport in pulse power

equipment include topological properties of scatterers and group theoretic

properties as well as the differential geometric method considered In this paper.

This paper concerns lnhornogeneous TEM plane waves wh!ch propagate on

‘ ideal cylindrical transmission lines with two or more independent perfectly

conducting boundaries. These types of inhomogeneous media can be used to

define lenses for transitlonlng TEM waves, without reflection or distortions, between

conical and cylindrical transmission iines. While there are practical limitations

(e.g., the properties of materials used to obtain the desired permittivity and

permeability of the inhomogeneous medium) perfect characteristics are not realiy

necessary. This differential geometric approach to lens design was Initiated by

C.E. Baum in (21 and further aspects of this method appeared in [31. Specifically.

the differential geometric scaling method creates a class of equivalent

electromagnetic problems each having a complicated geometry and medium from

an electromagnetic problem having a simple (Cartesian) geometry and medium.

Inciuded in these papers were examples of lenses which provided a perfect
,’
‘,/

matching ~ection between conical and cylindrical coaxiai wave guides, In this
,(!~. ,, -

!“ pdper - a general design procedure for such lenses Is specified and It Is shown ●
.. . .
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— thal the class of solutions of a certain Riccatl equation yield a suitable lens

design. This class includes in particular the examples given in [21. Whether or

not this class is in any sense unique is an open question at this time.

2. THE SCALING M= HOD

We first consider a Cartesian coordinate system U,y.z) and an orthogonal

curvilinear coordinate system (UI ,U2,U3) with line element

(ds)2 = h;(dul)
2

t h;(du2)
2

+ @du3)
2

with the scale factors
‘I’i

= ‘1.2,3 , given by

~2 .
i

(#)* + ($* t ($y

i i i

If certain combinations of the
‘i ‘

assumed positive. are defined as

[

‘1

(q = o

Q

[

‘2h3

(Bij) = o

0

1
‘2h3’hl

00

‘2 0

0
‘3 i

%
o 0

‘lh3 0

0
‘lh2

o 0

1

‘7// = 1
0

‘lh3’h2
o

0 0
‘lh2’h3 I

(2.1)

(2.2)

(2.3)

then one can write out the usual expressions for vO , vx~ , and v“ ~
.

in tne

‘f
coordinate system in terms of physical components of the vector ~ .
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Another set of vectors and operators (formal WCtOrS and formal operators) may be

written out in terms of tensor components. For example. if E has components

‘1’ E2’E3

has components

while

and

referred to the
‘1

coordinates. then 2’ . the formal vector,

“1 “ “2 ‘ “3
and we write

z’
= ‘al?

“z

Vxg = Q3ii)
-1

. V’ xE’ .

The result one obtains is that Maxweil’s equations

V.5 = p

v“; = o

together with the constitutive relations

15= (E,i) “ E

and the equation of continuity

-4.
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(2.7)
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— can be rewritten in the form

“

~.x;, .2’++

V’ *5’ = p’

where

and

V’”i’ = o

B’ = ‘w “ “

/3’ = (/L’,i) “ ;’

(2.9)

(E’ii) = (7,/ “- %)
(/f ’ii) = (7,,) “ (A,,) (2.10)

.

‘a’ii) = ‘7// “ ‘aij)

where it is assumed that (Cil) , (Li,) ,
‘=//)

are real constant diagonal

matrices which are independent of frequency, though possibly functions of position.

Note that the primed equations (2.9) are of the same form as equations (2.7) and

(2.8), and so if we think of the as a Cartesian coordinate system, a known
‘i ,

solution of Maxwell’s equations referred to Cartesian coordinates can be taken and

if primed quantities are substituted for unprimed quantities. solutions to (2.9) can

be found. The result turns out to be that we have a solutlon to Maxwell’s

equations for which (E,,) .
‘~ij)

and
‘=//)

may be anisotropic andtor
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inbomogeneous. The basic idea is then to pick ‘6’//) ‘ ‘~’/ “ and ‘a’Ii) and

boundary surfaces of convenient forms In the
‘i

coordinate system so that a

solution can be obtained In terms of the formal quanlltles. If some particular

relationship between the
‘i

coordinates and the x ,y ,Z coordinates is chosen.

then the parameters
‘%) ‘ ‘%/

and the geometry of the boundaq surfaces are

determined and the solution can be applled to the case under study.

Since we are concerned with problems related to inhomogeneous isotropic

media In this paper. the constitutive parameter matrices are diagonal matrices of

the form

where E

look like

(e. ) = mij) . (&li) = g(6ij)
//

(2.11)

and P are scalar functions of position, The formal quantities then

‘e*ii)
= d7ii) , (q,) ❑ wi,) . (2.12)

We impose the restriction that a = O , so that the conductivity matrix Is the zero

matrix, Note that an inhomogeneous TEM wave with subscripts 1 and 2 oniy has

no interaction with
“33 ‘r 14’33 in which case each of the matdces (%/)

and (fi’,jl has constant and. equal diagonal

positions. Hence such TEM solutions may be

waves onto cyilndricai and/or conical transmission

3. THREE-DIMENSIONAL TEM WAVES

entries in the

used to define

ilnes.

first two diagonai

ienses to match

As indicated in the previous section we consider inhomogeneous TEM piane

waves which propagate on [deai cyllnddcal transmission lineS. Such structures are

assumed to have two or more separate perfect conductors In a homogeneous

medium. and these conductors form a cross section in a piane perpendicular to

the z axis Independent of z .

-6_
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— If this sltuatlon Is considered with reference to the formal fields discussed in

Section 2 and we assume the wave to be propagating in the positive
‘3

direction with formal constltutlve parameters given as

I
e’

‘w = 0
0

I
B’

w,,) = (1

o

E’

o

0

P’

o

where e‘ and U’ are constants,

on coordinates doesn’t matter. Hence,

then the dependence

since only c’ and

(3.1)

of C’3 and ti’~

w’ are relevant,

we may assume the medium to be formally isotropic and homogeneous. We also

note that by a direct application of known results for cylindrical transmission lines

to the formal setting we have, for / = 1.2

E’i = E’.
‘o

%’”2)f ‘i-u3’c’)

H’i = H’i (U, JJ2)f(r-u3/c’)
o

(3,2)

and

‘*3= 0” H’3=0

-1/2 -1/2 and
where c’ = (#’e’) and c = (#oeo) f (.t-u3/c’) can be chosen

to specify the waveform. These formal fields are related by

“1 = “OH’2
and

“2 = -2’0”’1

1/2
where

“o
= (1.L’h’) is the formal wave Impedance.

require that the conducting boundaries be represented In terms

and U2 coordinates and lead us to the conclusion that It IS

(3,3)

These results all

of only their
‘1

only necessary to

-7-
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restrict the first two diagonal components of the formal matrices given in equations

(3,1), The constltutive parameter matrices given In equations (2.11) stiii

correspond to isotropic inhomogeneous media and so the formal Constitutive

parameter matrices have the form (2.12). if equations (2.11) and (3.1) are

combined. we obtain

I

‘2h3/hl

‘7//) =
o

0

Since equations (3.4) irnpiy

o 0

‘3hl’h2
o

i

= +( E”i, ) = &,/ . (3.4)

o
‘lh2’h3

= ‘3% E’ &’—=. —=

‘1 ‘2 E ti

we obtain the result that

and aiso that

Ciearly Eh3

‘1 = ‘2

(3.5)

(3.6)

E and L are given by

e = E’/h3 and K = $’/h3 . <3.7)

and
@’3

are constants and the formal wave impedance IS equal

to the physicai wave impedance since

(3.8)

Finaiiy, since
“3

and Nf3 are arbitrary, we look for orthogonal curvilinear

coordinate systems for which the scale factors h, and
‘2

are equai, For

these systems the scaie factor h3 determines 6 and & in view of equations

-8-
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(3.7). It Is Important to

coordinate system which

(3,6), as we shall see in

note, however, that there is another restriction on our

results from the condition that
‘l=h2”

Equation.,

the next section, yields the result that the surfaces of

constant
‘3

must be spheres or planes.

. .

4. COORDINATE SYSTEMS AND DIFFERENTIAL GEOMETRY

A ‘“1 ‘U2’”3)
coordinate system with the property that

‘1 = ‘2
is

constructed as follows by considering any complex analytic transformation in the

plane, say

,.–

L

—

z = F(w) = f(u,v) + jg(u,v) = x + jy . j = G.

The (x,y,z) coordinates are then obtained in the form

x = f (u ,V)cos (9)

Y = f (u ,v)siri (q)

z’ = g(u,v)

by performing a rotation about the y-axis. The line element which results Is

(ds ) 2 = h:(du)2 + f2(d@2
2

t h:(dv) ,

where

hu =

Note that any plane orthogonal

Y = [(U,V) would yield on rotation

(4.1)

(4.2)

(4, 3)

(4,4)

dlffere.ntlable transformation. say x = T(u ,v) ,

about the y-axis the line element

(ds)2 = h:(du)2 + 7)2(cf@2 t h:(dv)2 . (4, 5)

The condltlon that hu = hv then implies T and .$ are the real and

-9-
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imaginary parts of an analytic function. This fact results from the equations

(Q# + (~2 = (%)2 + (32 (4,6)

and

(4.7)(%(+) + (~(~ = o

which yield, afler a IIttle manipulation. the Cauchy-Rlemann equations

~=*a&
(4.8)

g=7~
au “

(4.9)

Conversely. if T and t are the real and imaginary parts of an analytic

function, then we find hu = h
v“

Next.

have the

which are

because of the requirements on the constltutive parameters we must

scale factors h 1 and h2 equal for the (UI .U2. U3) coordinates,

constructed from the (u ,P,v) coordinates. As a consequence additional

restrictions will be Imposed on our coordinate systems. However before

investigating this, let us introduce some differential geometric terminology,

If one considers surfaces of constant v , then our line element (given in

equation (4.3) becomes

(ds )
2

= E(du)2 t G(d@2 (4.10)

2 2
where E = h and G=f, and this equation defines the first fundamental

U .

form for these surfaces. This form may also be calculated directly from the

formula

-10.
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where ; = [f (u ,V)COS (@l; ‘t [f (u ,v)sin (&)]j + g (u ,v); is the position vector of

any point on the surface. The second fundamental form of a surface is denoted

by ~ and Is calculated from the formula ,
I

r= -d% - d;

where N is a unit normal to our surface,

one obtains

a2f & + & ~)(du2
JI=[(— —

auz au ~u2 au

which we write in a simpier form as

where the coefficients

surfaces of “ constant,

31=0. A weii known

the surfaces of constant

(4.12)

For the surfaces of constant v

+ (f ~ (d @2]/;u (4. 13)

~ = L(du)2 + ‘N(d@2 (4.1 4)

L and N have the obvious meaning. When the

v are planes, we cleariy have L = N = O . and

resuit in ciassicai differential geometry is the fact that

v. are spheres

of the first and second fundamental forms

if

or planes if and oniy if the coefficients

are in proportion. That is. if and oniy

LN—=— -
EG

(4.1 5)

The reader shouid see references [41 or [51 for a proof. One may then obtain by

direct calculations the resuit that the surfaces of constant v are spheres or

. . .
pianes if and oniy if hu/f (u .v)

L
is independent of v . That is, if — = M ,

~2 f2
u

then one obtains

f(af a2g_~&) .%h2
auaU2 au aU2

aUU -

-11-
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With the ald of the

result that

and hence obtain

preceding steps are

statement.

Cauchy-Rlemann equa!lons one may then easily obtain the

.

hu
and we must then have

7
independent of v . The

obviously reversible and thus we have an if and only if

The (u ,@.v ) coordinates are now utilized to define now coordinates

‘1 ‘U2 ““3)
as follows. We set

\

u IIJIJ’,v)

‘1 = a. (exp
f(u’.v)

du” )(COS (p))

T- b.

r h (U”.V)

‘2
= a. (exp ,“ti, ~)du’)(. sin (p))

‘o ‘
(4.17)

J
v

‘3
= F(v) = hu (:,V’)dV’

o

where ‘O and
b.

are positive constants at our disposai, There are several

reasons for Introducing this particular choice of coordinates. First of all. we will

have an orthogonal system of coordinates in which surfaces of Contant U3 are

also surfaces of constant v which must a!so be spheres or planes. There is

also some flexibllhy In choosing f?3 which then determines E and I.L .

Finaily, the choice of
“1

and
‘2

is one which wi!i make
‘1

=h2.in

equation (4.17) we will take ~ = O If hu is decreasing (for fixed v) in the

●

-12-
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range of interest for the coordinates

increasing (for fixed v) in the range

g(u,o) = o since this will be seen to

(u ,P,v) , while ~ = U. If h iS
u

of interest. It is aiso assumed that

guarantee continuity of conductors across

one of the boundaries of the iens. say at v = O . The line element Is then

calculated with the result that

kfs)2 = h;(dul )2-; h:(du2)2 2
+ h: (du3) ,

where
L-’.-

(4.18)

J
u hu(u’,v)

‘1
=h2= (f (u ,v))/(aoexp

f(u”,v) ‘“’) “
(4.19)

..=.
...”- b.

hu(.u,v)
h3=- .

hu (~,V)

The scale factor
‘3

will satisfy the condition that h3 < 1 in the range. of

Interest, and the equation (4.16) wiii guarantee continuity of the conductors ‘ across

the other lens boundary say at v = V. . Knowledge of
‘3

then permits

calculation of the constitutive parameters for the lens,.. -.,- . ..__ .-

Let us illustrate the use of equations (4.17) in the case where the (u ,w,v)

coordinates are the sphericai coordinates (6,@,r) defined by

x = r sin (e)cos 6P)

Y = r sln (c)sin (p) (4.20)

z = ‘1 ‘t r COS(E))

where r>O, 0<6 <277, O<@< rr and
‘1

is a constant which we

can specify. Since spherical coordinates are not obtainable directly from complex

analytic transformations of the form specified by equation (4,1), the condition that

h = hv is not satisfied and we will replace hu by hv
u

in the equation which

13 -



defines
‘3

in (4.17). We note that surfaces of constant v = r are spheres

and propatlon is In the r direction. Since the line element is

(Cfs)
2

= r2 (d e)
2

+ r2sln2(tl)(d@2 + (dr )
2

(4.21)

we have

he =r, h =rsln(f3)=p, hr= 1.
‘P

(4.22)

and equations (4.17) will then yield the results for the (ui) coordinates, which we

will refer to as rnodlfied spherical coordinates. Thus

“1 = . . . ..[(O+l.O.(.) .

and so ‘.

Cos (w) e
‘1 = ~. cot [e)+csc (e) = flotan ‘Z?cos ‘w)

where /l. = Co[cot (eo)tcsc (8.)1 .

The coordinate
“2

is calculated in a similar way. while the coordinate U3 Is

found by calculating
f

hrdr’ . Thus the results for the modified spherical

‘o
coordinates are

o

‘1
= J&M $cos (p)

‘2
= porm ($)sI~ (w)

‘3=r-ro

(4.23)

(4,24)

and consequently the scale factors are

h =
‘1 = ‘2

= r[l+cos (EI)l/g O

‘3 =
1 ●

for the rnodifled spherical coordinates. The constitutive parameters, given by

-14-



equations (3.7), then satisfy the conditions

(4.25)

—

since
‘3=’”

Thus one might choose E’ and u’ as
‘o

and Lo with

the result that e and P are also
‘o

and
‘o

and the medium Is free

space. The structure defined by perfect conductors satisfying
‘(’’1 ””2) = 0 ‘s

calied a conical transmission line. The transformation

(4.23) is the well known transformation for finding the

specified . by equations

TEM waves on such a

conical structure (see

is illustrative of the

Moreover. the conical

We next derive

[61). Thus, whiie this example is a relatively simple one, it

procedure used to construct the Q,) coordinate system.

transmission line is used later in our design procedure.

some formulas for the radius and centi3r of the spheres

corresponding to surfaces of constant v in the case where the second

fundamental form coefficients L and N are non-zero. Several approaches
. ..

may be used and perhaps the simplest one would be to note that in our case we

have the second “fundamental form ~ expressed as

Z= A(ds)2 .

One may then show (see [51 for example) that the radius R of a sphere of

constant v
1 -1/2

isR=—
lkl ‘

which may also be written as R = K , where

K is the Gaussian curvature given by K = ~ . Direct substitution from our

previous formulas for L , N , E . and G yieid the fOrmulas

K A% )2
~4 av u

u

and

R= If(u, v)hu(f Jov)/*l .

15 -

(4,26)

(4.27)



The quantities K and R depend only upon Y which is assumed to be

constant. The center of each sphere is located on the z

(depending on v alone) given by

This result may be checked easiiy fro m substitution

2
x t y2 + Q-zo)

2
=R2.

.

axis at a po{nt
‘o

into WIe

5. THREE-DIMENSIONAL TEM LENSES

We now consider the design of lenses for transporting TEM waves of

(4.28)

equation

the type

considered in Section 3. These TEM waves propagate

independent perfectiy conducting boundaries described by

‘(U7’U2) = o

on transmission Ijnes with

(5.1)

That is, the boundaries

used to transition TEM

We begin with a

(4.2), nameiy

do not involve the
‘3

coordinate. These ienses wiii be

waves between conical and/or cylindrical transmission iines.

given coordinate system simliar to that given by equation

x = af (u .V)cos (p)

Y = af (u ,V)sin (p)

z = Sg(u.v)

(5.2)

where f , g are the reai and lmagina~ parts of an anaiytic function of u

and v , and a Is a positive constant to be specified iater. The
‘“l ‘U2’U3)

coordinates are specified by equations (4.1 7). I.e., by

J
u hu(u’,v)

‘1
= a exp(

o f(u’, v)d
u ‘ ) (Cos (p))

b.

16-



r“ h.(u’, v)

—

‘2
= aoexp(

J
/uQ, ~1 du’)(sln (P))

b. ‘

f‘3 = Ohu ‘“o

where h (given as in equation (4.4))
u

,v’)dv’ = i=(v) ,

Is the scale factor which appears in

(ds )
2

= h:(du12 + f2(d@2
2

+ h:(dv) .

(5,3)

(5,4)

and
a.

and
b.

positive constants to be specified. The line element, (ds)2 ,

may then be written In terms of the (u I ,U2 ,U3) coordinates as

(ds)2 = h2[(du1)2
2

t (du2)2] t h: (du3) ,

where

h2

I

u h (U’,V)
= [f2exp (-2

a2
f“w, V)du’)l(—)

b. “ a.

(5,5)

(5.6)

and

Note that on the one hand if “o
IS a positive maximum for u in the range

ah
of Interest and If & > 0 so that for fixed V, hu(u,v) IS a monotonically

increasing function of u for o<u<uo.tWnh3~l andh3=lon

u =
‘o “

Since
‘3

is also related to the constitutive parameters from the

equations (3.7), i.e.. from

(5,8)

one obtains the same condition on ‘3
by setting e’ = IEo . A’ = Lo and

.-



restricting E>E
o

and B> PO.

On the other hand, If
ah

JLo=o and +<0 for U>o then for fixed

v. hu wIII be a

again
‘3<’

based on these

have:

monotonically decreasing funct!on of u for U>o and once

and
‘3

=lwhenu=O. The analysis which follows is

two observations. which we’ll separate into two cases, Thus, we

Case 1: The main assumptions

ah
(a) for fixed v, & >

(b) R2 < Z; . where

aenote the radius and

constant V .

in this case are:

o in a range O< U< U*,

R and
‘o

(see equations (4.27) and (4.28))

center of spheres corresponding to surfaces of

(c) ~(m ~=o = o ,
and

,.

(d) g(u,v) for fixed u is an odd function in v .

Case 11: The main assumptions in this case are:

ah
(a) for fixed v . & < 0 in a range O<u <u+

(b) R2 > z; where R and .0 are as above. and

(c) ~{u,v)]v=o = o , and

(d) g (u .V) for fixed u Is an odd function [n v .

The analysis for Case I will correspond to a convergent lens, while that for Case

11 will correspond to a divergent lens.

-18-
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Case I Analysis: (Convergent Lens).

\

—

Now that the ‘/ coordinates and scale factors
‘1

are known vla

equations (5.3), (5.6), and (5,7) let us consider the problem of joining a lens to a

cylindrical transmission line, On the plane z = O on which v = O and

‘3
= O (the condltlon g (u ,0) = O will guarantee this) we have

[

u “+(U’.O)

“1
= aoexp ( , ~,,o) du’)(cos (p))

b.

and so
“1

= aoexp (Inf (u ,O))cos (w) = aof (u ,O)COS (p) while x = af (u ,O)COS (q)

from equations (5,1). Thus, if
a.

= a we wlil have

‘l=X

and also ‘2=Y by a simiiar calculation, Now if the lens material specifying.

L and c is present in the region where
‘3

< 0 (corresponding to

V<o, z< O)andifforz> O the medium is free space, and if there are

two or more perfect conductors forming a transmission line described by

fti,y)lz~o = O . and f(ul.u2)lz<0 = O

then cleariy the conductors are continuous through the interface, One may then

conclude that the tangential components of i? and ; are continuous across

z = O and the TEM waves are matched at the interface, and hence a TEM wave

in the inhomogeneous lens (where coordinates are (u
1 ‘“2”U3)

and fieids are ~’

and ~’ ) wiil propagate into free space with no reflection. This TEM wave has

the form

z’ = G (t-U3/C’)Ve’ (Ul .U2)

ti’ = G(r-u3/c’)vh’(ul ,U2)

(5,9)

19 -



We next Introduce a

sphere described by

where
‘o

and R are

the sphere Is assumed to

second interface at V=v ~<o. The surface Is a

o

X2
+ y2 t (2-2. )

2
= R2

given by equations (4.26) and (4.27). The region inside

be free space and In this region a conical tran$rnlsslon

line with conductors

apex of the conical

matching those in the lens Is placed, In order to center the

line at the center of the sphere we chocse
‘1=20”

The

coordinates
‘1

and u
2

for the conical line are as given In equations (4.23).

nameiy,

‘1
= Bolan$)cos (p)

“2
= 130tml$sin (p)

while for the lens the
‘1

and
“2

coordinates are

J
u fl”(u’.vo)

‘1
= aO(exp

f (U’,vo)d
u ‘ ) (Cos (p))

b.

J
u hu(u’.va)

‘2
= a (exp

o f(u’,vo)J
U’)(sln (p)) .

b.

We seek conditions which will guarantee continuity of the u] across the sphere

surface corresponding to v = VO . on this surface the cylindrical coordinate P

is given by

p = R sin (91

for the conical Ilne, whiie for the lens we have

P = f(u,vo) .

Since R , which depends only on v (a constanti, is given by

_20_
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R= f (u ,Vo)hu (u #vO)/*l

from equation (4.26), we must have

1
sin (e) = — I

*
huti,vO) au -

Thus

J
uhu(u’,v )

po?an (~)
o

= aoexp
f(u’.vo) ‘u’

b.

and so

~an2(e) ‘O 2

[[

u hu(u’.vo)

T
= (~) exp 2

0 1f(u’.vo)~u’ “
b.

If the trigonometric Identity

~an2 p, = 1-COS (e)
?Z I +COS (e)

(5.12)

(5,13)

(5.14)

AL7X
‘anGo-”<e<=’ (5.15)

is used with .sIn (e) given by equation (5.13) and hu 91ven as In equation

(4.4), one obtains

and hence we must then have for v = VO .

While
a.

and

equation (5.17) is

Is a consequence

2 ‘“h af<

[1[

‘O . U-G

q ~
‘U+ au

‘o
are constants

H
u hu(u’.vo)

exp “-2
1f(u’,vo)~~’ “

b.

(5.17)

It Is not clear that the right hand side of

independent of u . The fact that It does not depend on u

of the ccmdltlon, given {n equation (4.16), that the surfaces of
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constant v be spheres or planes. It Is an easy exercise to check that the

partial derivative of the right hand side of equation (5.17) with respect to u

vanishes Identically on surfaces of constant v . Thus
‘1

and
“2

wiil be

continuous across the surface corresponding to v = VO . We would aiso iike to

have
“3

continuous across this surface. For the conicai ilne we have

‘3
=R-ro

whiie for the lens

J
‘o

‘3 =
hu(uo,v’)dv’

o

and hence we choose
‘o

by setting

Since

factor

at this

through

To

the v

(5.18)

(5.19)

(
‘o

‘o
=R - hu (u. ,v’jdv’ (5.20)

o

u, and u. are continuous across the surface v = Vn , the scaie
I c

h is aiso continuous there. However.
‘3

will have a

surface. In any case our TEM wave wiii propagate

this surface.

surnmar!ze the situation for Case i, we have the

=
‘o

sphere given by equations (4.23) and the

are
‘o

and Y. . In the iens bounded by v = O , v

the (Ui) coordinates are given by equatibns (5.3)

u

step discontinuity

without reflection

(uj) coordinates inside

constitutive parameters

=
‘o

.andu=u
o’

whiie the constitutive

parameters are determined from equatjons (5.7) and (5.8) with E’ = ~
o

and

P’ =&o. Thus we will have

(5.21)

and
‘3<1

within the lens. which wili be classified as a convergent lens. In

@
the next section we will give a specific example of such a lens by choslng a
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suitable orthogonal coordinate system of the form given by equations (4,2).

Case II Analysis: (Divergent Lens).

The analysis in this case is similar to that in Case 1, Again we wish to join

cylindrical and conical transmission lines to our lens. We take one boundary

surface for the lens to be the plane z = O on which v = O , and hence

‘3=0”
Note that this is guaranteed by equations (5.2) and (5.3) coupled with

the assumption that g(u,v) is an odd function in v . As in Case I we find

that u, = x and u. =ywhenam=a. However, in this case we assume
I L u

that the lens material is present only for
“3>0

2>0) and that for 2<0 the medium is

parameters
60

and
‘o ‘ and ‘U1 ‘U2 “U3)

are

(corresponding to v> Oand

free space with constitutive

cartesian coordinates (%,y,z)

when 2 <0, where we have a cylindrical transmission line. In the lens the

conductors are curved to satisfy the expressions for
“1

and u
2

in equation

(5.3) and the condltlon given in equation (5.1) which describes the conductor

boundaries. Thus the u. . h ,
I

through the plane z = O and

continuous through this plane.

and h
3

has a step discontinuity

The other bounding surface

this surface is again assumed to

n

and transmission line conductors are continuous

tangential components of E and R will be

However, for 2<0 wehaveh. =h=l

atz=o.

of the iens is introduced at

be a sphere whose equation is

.J

v =
‘o

> 0 and

2 2
xL+y + (2-2. ) = R2

where
‘o

and R are given by equations (4.27) and (4.28), and Z. < R .

The region outside of this sphere is free space and It contains a conical

transmission iine whose conductors are matched to those in the lens. One may

then calculate the Uj coordinates for the lens and compare them with the

-23-
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modified

guarantee

the TEM

spherical coordinates for the conical Ilne to obtain conditions which

the continuity of
‘1 “U2 and h

across the surface v = VO so that

wave will pass through this surface without reflection. The constltullve

parameters for the lens are given by

G—=

6(3

where the lens is bounded by v

within the lens. which is classified

6. SOME ~MPLES OF LENSES

The procedure described In

which appear in reference 121.

lens. If we start with a complex i

S 1
hu (0.v)

.=. =—

% ‘3
hu(u,v)

= 0 .V=v
0’

and

as a divergent lens.

(5.22)

u =
‘o

.andh3<l

SectIon 5 will be Illustrated by the examples

Our first example is that of an inhomogeneous

analytic transformation in the plane

z = a W?(% = a{
sin (u)

2 +i
COS(U) + cosh (V)

where a Is a positive constant and take

slnh (V)
Cos (u) * Costl (v)]

x = t(u,v) =

Y = g(u,v) =

a sln (u)
COS (U) + cosh (V)

a Sinh (v)
COS (U) + cosh (V)

and rotate the plane about the y axis, we obtain bispherlcal

x
[

a sin (u)=
Cos (u) t Cosh (v) 1Cos (p)

Y
=

[
a sin (L)

COS (U) + cosh (v) 1sin W)

z
a slnh (v)=

COS (U) + cosh (V)

with O<u<n, -=< v<-. Surfaces of constant

(6.1)

(6.21

coordinates

v are spheres. while a

(6.3)

surfaces of constant u are either ‘apple-shaped’ with dimples on the x axk
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(for u < ~) or spindles (for u “’; ~) . The surfaces of constant u will

intersect planes of constant 9 in circles. The scale, factors are,, ,..:.,. _,’ .. . .

hu=hv= ’a”” = L_&’; ‘
,.

COS (U) + cosh (V)
(6.4)

,,..- {,”’ , ,-.

h
a sin (u)

9 = COS (U) ‘ + ‘cosh (V)
= f(u.v) .

From equations (4,1 7) we calculate ‘the modified’ u~ coordinates “and obtain

(using
b.

= 7r/2 and r=u
o )””””’”’--

:: ..’ ,- ...:._; :,)- -:. ,.- ,...-~:. ..r’~.:

‘1 = aotan $COS (p)
.1

.

‘2
= aotan (~sin (@ (6.5)
r,Q:C,--?:i\.O ~ :.t . . >, -----.

“o
‘3 ‘=

*arct.w7,[~anh{&an (~)1 ,
0

, ,., .,.,,-,-.,. .-

;.%:, .4 -, . . . .
.- J . ,. .,i“. . :-. ,

while the scale factors which are calculated from equa~ons” (4.19) are g&en by

,.

“’k‘“”: “1 + _ooswi )
‘1. = h2 ‘a=.. —

~. ICOS (U) t cosh (V)ka

Cos‘Uo ‘-+ Cosh‘v)
‘3 = COS(L/) ‘+ cosh (V)

(6.6)

b’ where O<u<un in the Inhomogeneous medium, We also note that since
u

hJu, v)/f (u #v) = l/s/n (lJ) # h“/f (uov) Is

expected, the surfaces of constant v are

location of the centers of the spheres are
,. ,,. .

(4.28), and we obtain

R=
I

f (ti’.v)hu & ;V”)/~
I

Independent of v and so, as

-spheres or planes. The radii and

calculated from equations (4.27) and

,.-. . ..-

-1
= a Islnh(v)l (6.71

and
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‘o =

Thus if we follow the analysis

(t**)/* = a Coth (v) . (6,8)

outllned In Case I of section 5 we find that on the

plane z = O on which v = O

‘2=Y
ifa=ao. Hence the

through this Interface. The medlurn

and
‘3=0

we will have

transmission line conductors

Is free space when Z>o

‘l=X
and

are continuous

and the lens

material is present in the region defined by
‘3

< 0 (which corresponds to

V<o, z< o). A second Interface is then introduced at v = V. < 0 and the

surface Is a sphere whose equations Is then

X2
* Y2 + (z-a Corh (VO)12 = a2/31/7h2 (V. ) . (6,9)

A cross section of this lens Is Illustrated In figure 1. At the second Interface

contlnuhy of the
“1

and
‘2

coordinates is guaranteed if aotan (~) = Boran ($

on
:Vo “

where
‘O

and
~o

are chosen to satisfy the condition

H
2

‘O
Cosh (Y. ) - 1

= *anh2(vo)
~ = Cmh(vo) + I 77

andsoonv=v
o’

‘o
tanh (~)tan $ = tan ($ .

The constant
‘o

Is determined by

a I 2a ‘o ‘o
‘O = sinh (vO) - sln (IJo)~

rctan (tanh (~)tan (~)1 .

.

Moreover. the constitutive parameters for the lens material are given by

E A. Cos (u) + C(YSII(v) 1—=

‘o %
COS(Uo) + cosh (V) = <

(6.10)

(6.11)

(6,12)

(6.13)

0,

Finally, we note that all of the assumptions made for Case I are satlsfled in this
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example, That is, we have:

ah
(a) for fixed & = -

asinh (v)

(Cosh (v) t Cos (u ))2

. .

> 0 for fixed V<o

The

(b) R< < (zO)d where R . ZO are given by equations (6.7) and (6.8)

(c) gti.v) = -
a S/Ii (U) slnh (V)

I2 V=o
=,0 and

(COS (U) + cosh (V))

(d) fJ(Ll,V) =
a slnh (v)

COS(U) t cosh (V)
for fixed u Is

lens given in this example is that of a convergent
.x ;.

an odd function In v .

lens,

4

free space
free space ‘N -

F!

. ..>’

>
Z.

,,
V=v

o v

,,

Figure 1

Our second example is that of an

as in our first example, with a complex

time we consider

=0

Inho”mogeneous divergent

anaiytlc transformation in

.

,.

z

lens. We start.

the plane. This

where a is a positive constant. and take

(6.14)

-27-



x = f(u.v) =
e slnh (IJ )

. . . . . . .
cosn w 1 * Cos (VJ

(6.15)

Y = g(u,v) = a sin (v)
cod’)(u) + Cos (v) -

A rotation of the plane about the y axis yieids a toroidai coordinate system

x
[

a slnh Cu )=
cosh (U) + COS(V) 1Cos (9)

Y [
a sinh (u)=

Cosh {u) + Cos (v) 1
sin

z
a sin (v)=

Cosh W ) + C03 (v)

(p) (6.16)

where o<lf<+-, -)7< v<7r . Stirfaces of

surfaces of constant 9 are half pianes through

constant u are

(ds ) 2

the scale factors

and

toroids. Since the line element is

constant v are spheres,

the z axis, and surfaces of

a ●= (
Cosil (u) t Cos (v)

)2[(du )2 t slnh2(u)(ci@2 t (dv)21 (6.17)

are given by

hu

hP=

The modified coordinates
‘i

and T=o , and we obtain

a
Cosh w ) t Cos (v)

(6.18)

a sin (u)
= f(u,v) .

Cosh @ ) i Cos (v)
(6.19)

are calculated from equations (4.1 7), with
bo=m

“1 = aotanh(~cos (P)

‘2 =
aotanh~)sin (9)

‘3
= a tan (~) .

(6,20)

o
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The scale factors for the
‘1

coordinates are then

h = =t72=~ cosh (u) + 1
‘1 Cosh (“) + Cos (v)

a.
(6.21)

while

1 + Cos(v)
‘3 = Cosh (u) t Cos (v)

(6.22)

and clearly
‘3= ’Onu=0

and for fixed v, -~< v<r, h
3

is a

monotonically decreasing function of u . The surfaces of constant v are

spheres (the ratio hu/f Is of course Independent of v ) whose radii and

centers are calculated from equations (4.27) and (4.28) as

R= f(u.v)hu Cu,v)/~l = a Isin(v) ‘1

and

‘o =
(f~gg)/g = -a cot (v) .

(6.23)

.

(6.24)

If we proceed as in the analysis outlined in Case Ii of section 5, and join the

conical and cylindrical transmission lines to the lens, then one boundary surface

for the lens is taken as the plane z = O onwhichv=O. u= O.
3

The

lens material is assumed to be present oniy for U3 > 0 (which corresponds to

V>o, z>o as in figure 2). For 2<0 the medium is free space and

for z< Othe u, coordinates are rectangular carteslan coordinates. In the lens

the conductors are curved so as to satisfy equations (5.1) and (6.20) with

a =a For the toroidai coordinates defined by equations (6.16) we confine our
o“

attention to those u satisfying O,< U< U*<*. Thus u = “* will be

a boundary for the lens material. and the u, , h , and transmission iine

conductors are continuous through the plane z = O .
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A second lens surface Is Introduced at v = VO , where O<vo<lr.

This surface Is the surface of a sphere whose equation Is

X2
+ y2 + (.z+a cot (Vo))

2
= s2/sin2 (Vo) (6.25)

Thus this sphere Is centered on the z axis at
‘o =

-B cot (vO) and R has a

I
-1

radius equal to a sln (VO ) . Figure 2 shows a lens cross

plane. The region outside of ?his sphere is taken to be

contains a conical transmission line with conductors matched to

The apex of the conical line is centered at
‘o

by choosing

section In the X2

free space which

those In the lens.

‘1 =
-a cot (Y. )

in equation (4.20). The u, coordinates at v = V. are matched by comparing

the equations describing the modified spherical coordinates

the modified toroidal coordinates (see equations (4.23) and

requirement Is that we must have

CzOhmh $) = Bolan ($)

Onv=v
o“

Moreover equation (5.16) requires

and so

which gives a relation

the
‘3

coordinate

[1
2,

a.
- Cos (V. )

= ~an2 ~vo)

q = 1 + Cos(vo) -Z

with those describing

(6.20) . The resulting

s
(6.26)

(6.27)

‘o
tan (pnh (;) = tan ($ , (6.28)

between the 9 and u coordinates on v = V. . Since

Is specified for the iens by equation (6.20) and for the

conical line by equation (4.23), we must have on v = V. the relation

‘o
8 ran F—) =

I

-l_r

2
a \ s)n (vo)

o
(6.29)
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and hence we must have
‘o

defined by

...-

Q= 1 ‘o
a

— - tan (~) = -cot (Vo) .
Sln (V. )

Thus
“1

and
“2

will be continuous

by equation (6.21). will also be continuous

(6.301

across v = v
o

and hence h , given

on this surface. However
‘3

, given

in equation (6,22), has a step discontinuity on v = V. , In any event,

wave will pass through this surface with no reflection. In the lens.

bounded byv=O, v=vo, U=ux, the modified coordinates are

equations (6.20), and the Constltutive parameters are given by equations (5,21) and

(6.22), where e’ and B’ assume their free space values. Thus we have

our TEM

which iS

given by

E B 1—=— =—= cosh (U) t COS(V) (6.31)
‘o ~o h3

1 + Cos (v)

for the lens. This lens, which is based on a toroldal coordinate system. is

classified as a divergent lens. For this lens, all of the assumptions which were

made for Case II are satisfied. That is,

ah
(a)

u a slnh (u)
x=-

< 0 for U>o,
(cosh (fJ ) + COS (V))2

(b) R’ > z: where R and .0 are as given In equations (6.23) and

(6.24),

(c) g(u,v) 1“=0 = a s~nh (u) sin (v)
2 “=() = o, and -

(cosh (LI ) + COS(V))

(d) g(u,v) =
a sin (v)

cosh (U) + COS (V)
for fixed u is an odd function of v .

—
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x
)

R o

free space 1ens free space
1‘ r ?s z.

Z. v =0

=-9 )r
Figure 2

Thus in this section examples of lenses

secllon between conical and cylindrical coaxlai

order to obtain a class of

condition given in equation

f

solutions for a lens

(4.16), namely.

which provide a

waveguides have

design it should

petiect matching

been given. In

be clear

is one that must be satisfied. The functions f and g must come

reai and imaginary parts of an

next section we will find that a

described.

7. A CiASS OF SOUJTfONS TO

in Section 5 the conditions

lens section matching a conicai

analytic function of a compiex variabie.

that the

from the

in the

class of soiutions to the design probiem can be

THE LENS DESIGN PROBLEM

necessary to obtain a satisfactory design for a

transmission iine to a cylindrical transmission ilne

were stated. The main result of this section is that the solution of a Riccati

differential equation

*

*
dq

= *1+P2 ) (7.1)
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where p = z andq=worp

satisfy both equation (4.1 6) and conditions

II for either a convergent or a divergent

a = 1, where a Is the constant

a#l , the form of (7.1) becomes

= /z and 4 =/w,/= m , ‘+/111

(a), (b). (c), and (d) of Case I or Case

lens. For simplicity we will assume that

which appears in equations (5.2). If

g=
$+(y) , (7.2)

and thus our anaiysis when a#l is basically unaltered.

We cons{der first the case In which p = z andq=w in equation

(7.1), and we investigate the initial vaiue problem

dz—=
dw

;(1+22) (7.3)

z(o) = xo“

The soiution of this problem wili be

[(1-x; )sln (U) + 2XOCOS(u)] + / [(l+X; )SM w)]
z = ‘ (7.4)

(1-X: )COS(v) t (ltx; )cosh (v) - aosin w)

where
‘o

IS a

a standard way

constant. is a

trigonometric and

the initial vaiue

then

real number. and w = u + Iv . This soiution is obtained in

by first noting that z = tan (~ , with c an arbitrary

soiution of the differential equation. if one uses various

hyperbolic Identities, the resuit (7.4) wiil then be obtained, with

‘o satisfying ten (; = X. . We next note that if we write

z = F(w) = f (U,v) + Ig(u,v) ,

dz=~
dw

~“ + i% = ;(1+2%

33-
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and so

dz
— = +(l+f%.v)-g%v)) t /2f (U.v)g(u,v)l o
dw

Hence we obtain

and

Since we also have

and

and

af— = $l+fw]
au

&
au

=fg.

d2z af q,
— = (f +ig)(~+jau
dw2

d2z ~faf—= *+*)% t /(fau— – 9au
dw2

au

it follows that

&= f~+&.

aU2

Equations (7.13) and (7.14J can aiso be obtained directly

derivatlveg with re?apc3Ct to u In equations (7.8) and (7.9).

&
(7,13) Is multiplied by au . and equation (7.14) Is rnultl~lled

-34 -
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(7.8)

(7,9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

by taking patilal

if now equation

by
af
-m

, and we
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subtract the resulting equations, we obtain

~ a2fg[(~* + (g)? = ~ + - au —
au au2

~2 a2and since u = (%2 + (~) , we obtain

af~-~fi
gh: = ~

aU2 au au2 -

C&
Thus, since au = fg from equation (7.9), we obtain

sufficient condition that surfaces of constant v be spheres or

% a2f] = au uf@&au_ ~ ~2

au au2

which agrees with equation (4.16).

(7.15)

(7.16)

the necessary and

planes, namely

(7.17)

,.,

Similar algebraic manipulations applied to the equations (7.13) and (7.14) yield

another condition which is

i2L&L+#Q1=
g ‘au au2

&h*.

aU2
au u

(7.18)

Equations (7.17) and (7.18) may now be used “to vLerify that the conditions (a), (b).

(c) and (d) of Case I in section 5 are satisfied. Thus

(Uh )/g =fhu>o
‘aUU.

if f(u,v) > 0 . Since

(l-x: )S/n (u) t %Ocos (u )
f (u#v) =

(bX:)COS (V) + (ltx; )cosh (u) - 2xOsin (u)

(7.19)
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we see that if O<xo<l and O <

!lU wIII be posltlve In a Suitable range of

U<$ we will have f> O, and

u , and condltlon (a) must hold,

To verify that condition (b), namely that ~2 < z: , where R and ZO

are given In equations (4.27) and (4.28), Is also satisfied. we use equations (7.8)

and (7.9) In combination with the expressions for R and ‘o and find that

2 2
‘o-R=’ (7,20)

and hence condition (b) Is verified.

as the real and Imaginary parts of

Finally. since f (u .v) and g (u .v) are given

z In equat!on (7,4) It Is clear that

and g(ll,v) is an odd functiOn in

also satisfied. Thus we have verlfled

~(u.v)lv=o (7.21)

(7.3) satisfy the condhlons for a design

restrictions are placed on the range of u

restricted. The case X. corresponds

v, and hence conditions (c) and (d) are

that all solutions of the Inltlal value problem

of a convergent lens. if appropriate o

, and the initial value
‘o

Is suitably

exactly to the case of blspherical

coordinates given in equations (6.3), with a = 1 .

if we now set p = Iw in equation (7.1) and consider the Inltlal value

problem

g . 41_z2)
dw 2

, z(o) = xo’
i7.22)

where
‘o

is a real number. we find that its solutions are given by

1(1+X:)Sinll (u) + 2xocosh (u )1 -t / [1-x; lsln (v)
z = (7.23)

(I+x:lcosh (u) t (1 -X:)cos (v) + ZXosh-lh (u)

w tc,
This form of the solution 1s obtained from the general solution z = tanh (~ ,
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where c Is an arbitrary constant. One may then verify that all

initiai value probiem, with XO and u suitably restricted, satisfy

equation (4,16) as weil as conditions (a). (b), (c). and (d) for

divergent lens. The case ‘0=0 corresponds exactly to the

coordinates given in equations (6.16) with a = 1 .

solutions of this

the condition of

the case of a

case of toroidal

Thus we have established the result that a class of solutions to our iens

design problem Is

8. CONCLUSION

obtainable from the solutions to a Riccati differential equation.

A question that arises naturaliy from

not ail soiutions to the design problem

cylindrical transmission line have been

our analysis in section 7 is whether or

for a iens matching a conicai to a

obtained.

media for such lenses have been considered, and

one might permit the medium to be anisotroplc.

Only isotropic inhomogeneous

in order to extend this work

The main condition to be

satisfied by an analytic function z = F(w) = f (u .v) + ig (u ,v)

equation (7.17). One may impose some additional requirements on

that the differential equation (7.1) is satisfied, but the question

naturai? For example, if we require that

(7.17) and (7.18) then it is a straight forward

f and g satisfy

exercise to verify that

dwc
--&-, = g/fg .

G

Hence if
~fg = ~“ as in equation (7.8). then

Is given by

F(w) and find

is are these

both equations

—

d2z dz
—=%
dw2

and If Initkd conditions
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z(o) = o

z’ (0) = :

are specified, then one recovers the dlfferentlai equation (7.13), namely

dz=l
dw ~(l+z% .

Thus one is !ed to ask the obvious question concerning uniqueness. That is. if

the condition given In equation (7.16), which is necessary and sufficient for

surfaces of constant v to be spheres or planes, and the conditions given by

(a), (b), (c), and (d) of either case I or case Il. are all satisfied, then does

z =t+\g Satisfy a Rlccatl equation of the type described by equation (7.1)?

In addltlon to the question of uniqueness, there are several other problems

which should be addressed. For example, If the medium is allowed to be

anlsotroplc as well as Inhomogeneous, or If the orthogonality condltlon on our

coordinate systems is removed, how should the lens design be specified? The

determination of a symmetry group for which the lens problem considered here Is

a subgroup may provide further Insight on these and related questions. The

techniques of differential geomet~, if properly applied, can be one of possibly

several fruitful ways In which modern mathematics can further contribute 10 the

development of transient and broad-band electromagneticst

-38-



REFERENCES

—

—

1, C.E. Baum. “Emerging Technology for Transient and Broad-Band Anaiysis and
Synthesis of Antennas and Scatterers”. Proceedings of the ~, vol. 64,
~ 11, pp. 1598-1616, November 1976.

——

2. C.E. Baum, “A scallng technique for the design of ideaiized electromagnetic
lenses”, Sensor and Simulation Note F 64. August 1968.— — ——

3, T,C, Mo. C.H, Papas, and C.E. Baum, ‘Differential geometry scaling method for
electromagnetic field and its applications to coaxial waveguide junctions”,
Sensor and Simulation Note ~ 169, March 1973. (Also as a paper by the
same au~rs under the title ofyGeneral scallna method for electromagnetic
field with application to a matching problem”, ~~ Math Physics, Vol. l:, pp.
479-483, April 1973.)

4. ‘ L.P. Eisenhart. A Treatise on the Differential Geometry of Curves and Surfaces.
Dover, New York, 1960, pages 446-449.

5. A. Goetz, Introduction to Differentlai Geometry, Addison-Wesley, Reading,
Massachusetts. 1968, page 169.

6. W.R. Smythe, Static and Dynamic Electricity, 2nd edition, McGraw-Hill, New
York, 1950 , page 479.

7. P. Moon and D.E. Speaker, ‘Cylindrical and rotational coordinate systems”, J.
Frankiin institute, vol. 252, p. 327-344. 1951.

-39-


