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ABSTRACT

A lens design technique developed by Cart E. Baum for transitioning TEM
waves, ideatly with no reflection or distortion, between cylindrical and conicai
transmission lines is investigated. This method uses a differential geometric
approach combined with Maxwell’'s eduations and the constitutive parameters €
and 13 in an orthogonal curvilinear coordinate system. Isotropic  but
’l\ inhomogeneous media are considered. it s shown that rotational coordinate
sysiems obtained from complex analytic transfonﬁa;ions in the plane may be
utilized in the design. and that a class of soiutions to the design problem exists.

This class of solutions is based on a Riccati type of differential equation.
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1. INTRODUCTION

The ditferential geometric approach to transient lens design Is one of severai
promising approaches to salectromagnetic problems. In general one starts with
Maxwegll's equations together with boundary congitions and general thecrems such
as conservatlon of energy and reciprocity and looks f{or varlous mathematical
concepts for representing the solution of an EM problem. For sxample. opserator
diagonalization and the use of the compiex frequency plane have proved to be
extremely useful in the analysis and synthesis of EM devices (ses [1D. Other
promising approaches, which remain to be thoroughly investigated, but which could
have Important application to EMP simulators and energy transport in pulse power
equipment include topological properties of scatterers and group theoretic

properties as well as the differential geomstric method considered in this paper.

This paper concerns inhomogsneous TEM plane waves which propagate on
"ideal cylindrical transmission fines with two or mora independsnt perfectly
conducting boundaries. These types of inhomogeneous media can Dbe used to
deflne lenses for transitioning TEM waves, without reflection or distortions, between
conical and cylindrical transmission lines. While there are practical Ilimitations
(e.g.. the properties of materials used 1o obtain the desired permittivity and
permeability of the Inhomogenseous medium) perfect characteristics are not really
necessary. This differential geometric approach to lens design was initiated by
C.E. Baum in (2] and further aspects of this method appeared in [3]. Specliically,
the differgntial geomstric scaling method creates a c¢lass of equivaient
eiectromagnetic problems each having a complicated geomsetlry and medium from
an electromagnetic probiem having a sim'ple (Cartesian) geometry and medium.

-~ Included ~in these papers were examples of lenses which provided a perfect
‘lrpé_tchinglgl/"s’ection between conical and cylindrical coaxial wave guides. In this

.* pdper 'a general deslgn procedure for such lenses Is speclfied and It is shown
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that the class of solutions of a certain Riccatl equation yield a suitable lens
design. This class includes in particular the examples given in (2. Whether or

not this class Is in any sense unique is an open question at this time.

2. THE SCALING METHOD

We first consider a Cartesian coordinate system (x.y.2) and an orthogonal

curvilinear coordinate system (ul,u2,u3) with line elemeant

2 _ .2 2 2 2 2 2
ds)™ = h.‘(du.)) + h2(du2) + hs(du3) 2.1

with the scaie factors hl . =123 . given by

2 ax . 2 dy.2 3z.2
hS = &L Iy 92,
i (au’.) + (aui) + (aui) (2.2)

If certaln combinations of the h’ . assumed positive, are defined as

(B“.) = 0 h-h 0 2.3)

,) = 0 h h,/h 0

then one can write out the usual expressions for V& , vxE ., and V-E In the

Y, coordinate system in terms of physical components of the vector E




Another set of vectors and operators (formal vectors and formal operators) may be

written out in terms of tensor components. For example. if E nas componants

E.l . 52 . E3 referred to the u, coordinates, then E' . the formal vector.
has components E,'I . E'2 . E'3 and we write
g = CRRE E (2.4)
while
9o = (a”)-] . VO . where & = & | 2.5)
and
uxE = 8 . vxE . (2.6)

l

The resuit one c¢btains is that Maxwseil's equations

ng = - .a_.B-.
t
UXH = J + -a-% 2.7
v-0 = o
v-8 =0
together with the constitutive relations
b =) - E
i,
g = (e, ) H 2.8)
and the equation of continuity
Jo=- 238
Ved 3t
4




can be rewritten in the form

V' XE' = - 38
t
vixi = Jov 3
V"-C-J.'" = p’
v -8 =0 (2.9)
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v ed 3t
where
(e “.) = ('y”) . (e”)
1§73 ii)_ = (‘y”) . (u”) | | _(2.]0)
and

(a ”) (7”) . (a“)

whare it is assumed that (€ii) . (u.”) . ,(a”) are real constant glagonal
matrices which are independent of frequency, though possibly functions of position.
Note that the primed equations (2.9) are of the same form as equations (2.7) and
(2.8), and so if we think of the u, as a Carteslan coordinate system, a known
solution of Maxwell’'s equations referred to Cartgsian goordlnates can be taken and
if primed quantities are substituted for unprimed quantities. solutions to (2.9) can

be found. The result turns out to be that we have a solution to Maxwell’'s

equations for which (e”) . (u.”) and (a”) may be anisotropic and/or




inhomogensous. The Dbasic idea is then to pick (e'”> . (u.'”) . and (a'!) and

i
boundary surfaces of convenlent forms I[n the u, coordinate system so that a
solution can be obtained in terms of the formal quantities. | some particular
relationship between the u; coordinates and the x.y.z coordinates Is chosen.
then the parameters (e”) . (,u.”) and the geometry of the boundary surfaces are
determined and the solution can be appliled to the case under study.

Since we are concerned with problems relatad to inhomogeneous isotropic
media in this paper. the constitutive parameter matrices are diagonal matrices of

the form

= 0 B ) = . RN
(e”) 6(6”) (u.“) ,u.(éu (2.11)

where € and u are scalar functions of position. The formal quantities then

look like

(e ”) = 6(7”.) , ”) = u.('r”) . 2.12)

We impese the restriction that o = 0 , so that the conductivity matrix Is the zero
matrix. Note that an inhomogeneous TEM wave with subscripts 1 and 2 oniy has
no interaction with e'33 or u.'33 in which case each of the matrices (e'”)
and (,u.'“.) has constant and- equal diagonal entries in ths first two diagonal

positions. Hence such TEM solutions may DbDe used to define lenses to match

waves onto cylindrical and/or conical transmission lings.

3. THREE-DIMENSIONAL TEM WAVES

As indicated in the previous section we consider inhomogeneocus TEM plane
waves which propagate on Ideal cylindrical transmission iines. Such structures are
assumed to have two or more separate perfect conductors In a homogeneous
medium. and these conduclors form a cross section in a pilane perpendicular to

the z axis independent of =z .




i this situation is considered with reference to the formal fields discussed In

Section 2 and we assume the wave to be propagating in the positive ug

direction with formal constitutive parameters given as

€’ 0 0
ey = 10 e o @0
0 €y
m’ 0 0
Wi =0 w0
0 0 ;1_‘3

whears €’ and it are constants, then the dependence of e’s and /.L'3
on coordinates doesn’t matter. Hence, since only €’ and u° are relevant.
we may assume the medium to be formally isotropic and homogeneous. We also

note that by a direct application of known results far cylindrical transmission lines

to the formal setting we have, for 7 = 1.2
E'. = Ei (u],u2)f(r-u3/c )
0
H, = H ‘,O(u],uz)f (t-u3/c ) 3.2)
and
E3 =0 . H 3 = 0
where ¢’ = (}.L'€')_]/2 and ¢ = (;Looso)-‘l/2 and f(t-us/c') .can be chosen

to specify the waveform. These formal fields are related by

E’] = Z’OH'2 and E2 = -Z'OH.l (3.3)

where Z’0 = (u.'/e')Vz is the formal wave Impedance. These results all

require that the conducting boundaries be represented In terms of oniy their uy

and u, coordinates and {ead us to the conclusion that it is only necessary to
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restrict the first two diagonal components of the formal matrices given in equations
a.D. The constitutive parameter matrices given Iin equations (2.17)  stiil
correspond to lsotropic Inhomogeneous media and so the formal constitutive
parameter matricas have the form (2.12). If equations (2.1 and @G.1) are

combined. we oOblain

hohg/h, 0 0
(y,) = 0 h.h./h 0 = Ler y = Loy
1 37172 € TR (3.4)
0
0 hih,/hg

- L
h 5 (3.5)

we obptaln the result that
"h, = h (3.6)

and also that € and L4 are given by

€ = e’/h3 and 4 = w'/h 3.7

3

Clearly €h, and uh, are constants and the formaj wave impedancs is equal

to the physical wave impedance since

. wh
7o = B2 2 VR L /12 g (3.8)
0 € €h € 0
3
Finally. since e'3 and “"3 are arbitrary. we look for orthogonal curvilinear
coordinate systems for which the scale factors h] and h2 are equal, For

these systems the scale factor h3 determines € and & in view of equations




(3.77. It is Important to note. however, that there s another restriction on our

coordinate system which results from the condition that h1 = h2 . Equation

(3.6). as we shall see in the next section, yields the result that the surfaces of

constant u must be spheres or planes.

3

4. COCRDINATE SYSTEMS AND DIFFERENTIAL GEOMETRY

A W w,.u)  coordinate system with the property that h. =h, s

constructed as follows by considering any complex analytic transformation in the

plane, say

z = Fw) = tu.w) + jguwv) = x + jy . j = \l-1 ) @4.n

The (x.,y.z) coordinates are then obtained In the form

x = f(u,v)cos ()
y = f.visin(p) (4.2)
2= glw.w

by pertorming a rotation about the y-axis. The line slement which results is

ds)? = hff«:ru)2 y 12dp? 4 hﬁ(aw)2 . 4.3)

where

ho= 18524892 4
y GG . 4.4)

Note that any plane orthogonal differentiable transformation., say x = q(u.v)

y = £.v) would yield on rotation about the y-axis the line element

@s)? = hz(du)z + 22 + hf(dv)z : 4.5)

The condition that h h then implies 7 and £ are the real and




imaginary pants of an analiytic function. This fact results from the equations

37,2 3§.2 _ 37,2 3¢.2
(au) + (au) (av) + (av) (4.6)
and
a7,.37 8¢, 38, _
(au"av’ + (au)(av) = Q 4.7

which yield, after a little manipulation, the Cauchy-Riemann equations

8n _ , 3%

3y + 3y (4.8)
__7_13 = F —g-a . (4.9

v du

Conversely. if m and £ are the real and imaginary parts of an anaiytic

function, then we fing hu = hv .

Next, because of the requirements on the constltutive parameters we must

have the scale factors h and h equal for the

1 5 coordinates,

1.u2.u3)
which are constructed from the (u.p,v) coordinates. As a consequence additional
restrictions will be Iimposed on our coordlnate systems. Howaver before

investigating this, let us introducs some diiferential geometric terminology.

If one consliders surfaces of constant v ., then our line element (given in

gquation (4.3) becomes

Ws)? = E@w? + 6um? 4.10)

where £ = hﬁ ang G = f2 . and this equatlon deflnes the ftirst fundamsental
form for these surfaces. This form may aliso be caiculated directly from the

formula

Ws)2 = dR -dR 411

- 10.




where R = [f wWw.vicos ()l + [f (u,v)sin(«b)]i + g(u,v)l? is the position vector of
any point on the surface. The second fundamental form of a surface is denoted

by IL and Is calculated from the formula

)

T = -dR -dN 4.12)

Ll

. —-d
where N Is a unit normal to our surface. For the surfaces of constant v

one obtains

2 2

a3 f ag d g af 2 ag 2., ‘
IL=(-— + —= == + 4
7 3y 2 3 ) (du f 3 (d )Y 1/h 4.13)

which we write in a simpler form as

2 2

T = L&) + Ndp) 4.18

where the coefficients L and N have the obvious meaning. When the
surfaces of constant v - are planes, we clearly have L = N = 0 , and
I =0. A well known result in classical differential geometry Is the fact that
the surfaces of constant v are spheres or planes if and only if the coefficients
of the first and secénd fundamentél forms are in proportion. That is. if and only

it

L N
E~ G- (4.15)

The reader should ses references [4] or [5] for a proof. One may then obtain by

direct calculations the resuit that the surfaces of constant v are spheres or

planes if and only if & /f.v) Is indepéndent of v . That Is, if —LE = % .
2ot
then one obtains
af a°g ag a%f. _ ag .2 :
fEL 29 _ 99 21y - 2g p2 | 4.16)
3u 52 ou 2 " du
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With the aid of the Cauchy-Riemann equations one may then easlly obtain the

resuit that

2 2

E_Lnu,)=-l(ﬂ§_€__aﬂa_1)
dv y h2 u 2 du 2
v du du
and hence obtain .
3 _ a
3v Ln(hu) = I Ln (f)
3 hu ' h
Thus Iy n (—T) = 0 and we must then have _Tu_ indgpendent ot v . The

preceding steps are opviously reversible and thus we have an it and only if

statement.

The ., p.v) coordinates are now utilized to detfine new coordinatas

w,.u,u,} as follows. We sst

17273
u hu(u'.v)
u.l = ao(exp J T du’){cos (p)
b
0
hu(u‘.v)
i..!2 = ao(exp . Wu Yisin (p)) (4.17)
0
v
g, = Flw) = J h (u.v)dv’
3 u
0
whers a, and bo are positlve constants at our disposai. There are several

reasons for Introducing this particular choice of coordinates. First of all. we will

have an orthogonal system of coordiates in which surfaces of contant u, are

also surfaces of constant v which must also be spheres or planes. There is

also some flexibility In choosing h3 which then determines € and o .

Finally, the choice of u and v

] s one which wili make h, = h, . in

2 1 2

equation (4.17) we will take u = 0 If h, is decreasing (for fixed v) in the
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range of interest for the coordinates (u.p.v) . while U = ug M b, s
increasing (for fixed v) in the range of Interest. it is also assumed that
gw.0) = 0 since this will be seen to guarantee continuity of conductors across
one of the boundaries of the lens. say at v = 0 . The line element is then

calculated with the result that

2 _ .2 27" 2 2 2 2
ds)™ = h](du.‘) + h2(du2) + hS(dUS) . (4.18)
where
u hu(u’.v) .
h‘l = h2 = (f (q.!})/(aoexp J Ty du’) (4.19)
T b
0
hu(u,v)
' ”3 =
hu(u,v)

The scale factor h, will satisfy the condition that hg <1 in the range. of
interest, and the equation (4.16) will guarantee continuity of the conductors'across
- the other lens boundary say at v = Yo - Knowledge of h3 then perrmits
calculation of the constitutive parameters for the lens.

Let us illustrate the use of equations (4.17) in the case where the (uv.p.v)

coordinates are the spherical c¢oordinates (8.9.r) defined by

r sin(8)cos (p)

x =
y = r 8in(8)sin (p) 4.20)
z =z, + r cos(®

where r 2 0, 0 86 < 2mr, 0 ¢ <7 and 2z i{s a constant which we

1
can specify. Since spherical coordinates are not obtainable directly from complex
analytic transformations of the form specified by equation (4.1), the condition that

hu = hv is not satistied and we will replace hu by hv in the equation which

- 13 -




defines Uy in (4.17). We note that surfaces of constant v = r are spheres

and propation is In the r direction. Since the line eiement is

(c.'{s)2 = r2(d9)2 + r2sln2(e)(dp)2 + (dr)2 4.21

we have

h =r,hlp=rsin(6)=p.hr=]. (4.22)

and equations (4.17) will then yieid the resuits for the (u,.) coordinates. which we

will rafer to as modified spherical coordinates. Thus

O Lo
g T %P He m]cos N
0

and so :

cos ()

= __costp) 8
“1 ‘80 cot(@d+csc (8) '80‘3" (3)cos (p)

where [30 = aolcot(eo)fcsc (90)] .

The coordinate u, is calculated in a similar way. while the coordinats ug Is
found by calculating J(hrdr' . Thus the results for the modifled spherical
r
0

coordinates arse

- 8.
vy = ,Bozan( Ycos ()

>

u. = A tan Ssin () (4.23)
2 - 0 28 ‘P .
ug =1 -1y

and consequently the scale factors are

i = h, = h, = r{itcos (9)1/,80 4.24)

for the modifled spherical coordinates. The constitutive parameters. glven by

_14_




equations (3.7), then satisfy the conditions

= = -‘-L“- = 4.25)
since h, = 1. Thus one might choose €’ and 4’ as €, and 4, with
the result that € and g are also eo and ;.Lo and the medium is free
space. The structure defined by perfect conductors satisfying f(u].u2) =0 s

called a conical transmission lins. The transformation specified . by equations
(4.23) is the well known transformation for finding the TEM waves on such a
conical structure (see [6)). Thus. while this example is a relatively simple one. it
is illustrative of the procedure used 1o .construct the (u,) coordinate system.
Moreover, the conical transmission line Is used later In our design procedure.

We next derive some formulas for the radius and center of the spheres
corresponding to surfaces of constant v in the case where the second
fundamental form coefficients L and N are non-zero. Several approaches

may be used and perhaps the simplest one would be to note that in our case we

have the second fundamental form I expressed as

Ir = )\(ds)2 .

One may then show (see [5] for example) that the radlus AR of a sphere of

constant v is R = ﬁ-l- . which may also be written as R = K—Vz . where
. LN
K is the Gaussian curvature given by K = 6 - Direct substitution from our

previous formuias for L , N . E . and G Yyieid the formulas

1,3, .2
K = h4(-3_;hu) (4.26)
u
and
R = (twwh w2l | (4.27)
] du

- 15 -




The quantites K and R depend only upon v which is assumed 1o be
constant,

The center of each sphere
(depending on v

is located on the z axis at a point 2

0
alone) given by

- (498f, 3
z (rwg-ﬂau)/%ﬂu 4.28)
This resuit may be checked seasily

from substitution Into the
x2 + y2 + (z—zo)2 = R2 .

equation

5. THREE-DIMENSIONAL TEM LENSES
We now conslder the design of lenses for transporting TEM waves of the type
considered in Section 3.

These TEM waves propagate on

transmission lines with
independent perfectly conducting boundaries described Dy

f(u1.u2) =0 5.1
That is. the boundaries do not involve the

u3 coordinate. These lenses will be

used to transition TEM waves between conlcal and/or cylindrical transmission llnes.

We begin with a given coordinate system similar to that given by equation
(4.2), namely

=
n

af Ww.v)cos ()

Yy = af (u,vlsin (p) (5.2)
z = aglu.v)
where  , g are the real and imaginary parts of an analytic function of u
and v , and a is a positive constant to be specified later. The (u],uz,us)
coordinates are specifled by equatlons (4.17). le., by

u hu(u'.v)
u1 = aoexp(Jb Wu Y{cos (p))

[
0

- 16 -~




u hu(u'.v)
up, = aOOXP (Jb m)—du’)(.sln () (56.3)
0

ug = rhu(uo.v av' = F(v) ,
0
where hu (given as in equation (4.4)) is the scale factor which appears in

ds)? = nﬁ(du>2 + 2o + hg @2 | (5.4)

and « and b positive constants to be specified. The line element, (ds)2 .

0 0
may then be written In terms of the (”1'u2'u3) coordinates as
Ws)? = hPtdud® ¢ @u A + e w2 5.5
1 2 3778
where
U h w'.w
2 2 ’
W = Ulexp2|  L—qu1dy? 5.6)
f W'.v) a
bo 0
and
» h? Pouvy G wwvn? ¢+ Elwn?
Re = “2= 2“ = 8y - v > (5.7
3 , 3f af ’ )
F’(v) hu(uo.v) (au(uo,v)) + (av(uo,v))
Note that on the one hand |t Uy {s a positive maximum for v in the range
ahu
of Interest and if a5 > 0 so that for fixed v, hu(u,v) is a monotonically
increasing function of v for 0 < u < u, . then h:3 < 1 and hy = 1 on
u = uy . Since h3 is also related to the constitutive parameters from the
equations (3.7), iLe.. from
-4 BL (5.8)
® 3
one obtains the same condition on h3 by setting €' = €y AN and
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restricling € # € and & 2 by -

ah
On the other hand, i puy = 0 and —2 <0 for u » O then for fixed

du
v, hu will be a monotonlcally decreasing function of v for wu > 0 and once
again h3 < 1 and hg = 1 when v = 0. The analysis which f{ollows is
based on these two observations. which we’ll separate into two cases. Thus, we

have:
Case |1 The main assumptions in this case are:
(@) for fixed v. — > 0 in a range 0 < u <X u*

€o)) R2 < zg ., where A and Z, (see equations {(4.27) and (4.28))

genote the radius and center of spheras corresponding to surfaces of

constant V ,
3f _
) a"_(u.v) v=0 0 . and

d gw.v)y for fixed wuv is an odd function In v

Case li: The main assumptions in this case are:

ahu "
(a) for fixed v'—5-1T<0 in arange 0 < v S u

o N

) R > z whers A and ZO are as above. and

af _
()] aV{u.v) v=0 0 . and

@ gl.v) for fixed u is an odd function In v
The analysis for Case | will correspond to a convergent lens, while that for Case

it will correspond to a divergent lens.
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Case | Analysis: (Convergent Lens).

Now that the u coordinates and scale factors h are known via

/ /
equations (5.3), (5.6}, and (5.7) let us consider the problem of joining a lens to a

cylindrical transmission line. On the plane z =0 on which v =0 and

ug = 0 (the conditlon g .0 = 0 will guarantee this) we have

u --g%(u’.O)

’-’-l = aoeXP( R Wu’)(oos(tp))

o
and so u, = aoexp(Ln!(u,O))cos(«p) = aof (v.0)cos (@) while x = af (w.0)cos (y)
from equations (5.1). Thus, if a, = g we will have

u; = x
and aiso u, =y by a similar calculation, Now if the lens material specifying
13 and € is present in the region where u

3

< 0 (corresponding to
v <0,z <0 and if for z > 0 the medium is free space, and If there are

two or more perfect conductors forming a transmission line described by
f(x,y)[z>o =0.and fwiupy|, =0
then clearly the conductors are continuous through the interface. Ones may then

conciude that the tangential components of E and H are continuous across

z = 0 and the TEM waves are matched at the interface. and hence a TEM wave

Wu.ou_)  and fields are E’

in the inhomogeneous lens (where coordinates are (u.l o°lg

and H' ) will propagate Into free space with no reflection. This TEM wave has

the form

m
]

G (t—ua/c )ve (u.l .u2) (5.9)

T
1

= G (r-ua/c’)vh' (u.l .u2)

- 19 -




We next Introduce a second interface at v = Yo < 0. The surface s a

sphere described by

x2 + y2 + (2-20)2 = !-72

where z and R are given by equations {4.26) and (4.27). The region inside

0
the sphere Is assumed to be free space and In this reglon a conical transmisslon

line with conductors matching those in the lens is placed. In order to center the

apex of the conical line at the center of the sphers ws c¢hoocse 2, =z - The
coordinates Uy and Y, for the conical line are as glven in squations (4.23),
namely,

_ 8
u, = Bolan(2)cos {p)

8

u, = ﬁoran (2)sin )

while for the lens the u1 and u2 coordinates are

u hu Ww’',wv,)
u, = ao(expf —{—(u—rﬁdu’)(cos(@))
b 0
0
u hu wWw’'.v,)
u2 = ao(expj m)—du Yisin (p))
:b0 0

We seek conditions which will guarantee continuity of the u, across the sphere

surface corresponding to v = v On this surface the cylindrical coordinate p

0 -
is given by

p = A sin(® (5.10)
for the conical lina, while for the lens we have
p = flu.v,) . (5.1

0

Since R . which depends only on v (a constant, is given by

- 20 .




= éﬂl
R f (u,vo)hu(u ,vo)/au (5.12)

from equation (4.26). we must have

- S - -
sin(®) = P )!aul X (5.13)
u 0
Thus
Uuh w.v.)
8 u 0
tan (=) = —_— .
Boran “oe"pL fa v,y
0 0
and so

28 @5 p U hu(u’.v )
tan (—2-) = (=—)"exp |2 —_—du’ . (5.14)

B f(u’.wv,))

0 bo 0

it the trigonometric Identity

1angy = lmcos(O) 1-J1—sfn2<a)

2 1+tcos (9) — , -m < 8 < 7w, (5.15)
T+\ 'I-sin2 8)

is used with sin(8) given by equation (5.13) and hu given as In equation

(4.4), one obtains

P14
tanac%) = 4 2 (5.16)
h +—
v du
and hence we must then have for v = v0
czo 2 hu— —g—{? u hu (u'.vo)
E"] = 37 | &%P ['-2] 'W‘T"‘Tdull . 5.7
0 hos L b u .v0
u Jdu 0

While a, and BO are constants 1t Is not clear that the right hand side of
equation (5.17) is independent of u . The fact that it does not depend on U

{s a consequence of the condition. given in equation (4.16), that the surfaces of
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constant v be spherss o0Or planes. It is an easy exercise to check that the

partial derivative of the right hand side of equation (5.17) with respect to

vanishes identically on surfaces of constant v . Thus Uy and u, will be
continuous across the surface corresponding to v = Yo We would also like to
have ug continuous across this surface. For the conical line we have
ug = A - ra (5.18)
while for the lens
‘o
ug = J' hu(uo,v day (5.19)
g
and hence we choose o by setting
Yo
r0 = A ~ J‘ hu (uo v idy (5.20)
0
Since Uy and Uy, are continuous across the surface v = Vo - the scale .
factor h Is also continuous there. However, hs will have a step dlscontinuity
at this surface. In any case our TEM wave will propagate without reflection

through this surface.

To summarize the situation for Case |, we have the (u]) coordinates inside

the v = Yo sphere given Dby equations (4.23) and the constitutive parameters

are €0 and Ry - In the lens bounded By v =0 , v = Vg - and u = u

the (u’.) coordinates are given by equatibns (5.3) while the constitutlve

0

parameters are determined from equations (5.7) and (5.8) with €' = €, and
L= ”'0 . Thus we will have
] h W, .v)
EE_ = _u!i_ = L. (uov) (521
D Q 3 v’
and hs < 1 within the lens, which will be classified as a convergent lens. In .

the next section we wlll glve a speclfic example of such a lgns by chosing a
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suitable orthogonal coordinate system of the form given by equations (4.2).

Case Il Analysis: (Divergent Lens).

The analysis in this case is similar to that in Case i. Again we wish to join
cylindricai and conical transmission lines to our lens. We take one boundary

surface for the lens to be the plane 2z = 0 on which v = 0 , and hence

us = 0 . Note that this is guaranteed by equations (5.2) and (5.3) coupled with
the assumption that gw.,v) Iis an odd function in v . As in Case | we find
that u, = x and u2 = y when ao = a . However, In this case we assume

that the lens material is present only for ug > 0 (corresponding to v > 0 and
zZ > W and that for z <0 the medium Iis free space with constitutive
parameters € and By - and (u1,u2.u3) are cartesian coordinates (.y.z)
when z < 0 , where we have a cylindrical transmission line. In the lens the
conductors are curved to satlsfy the expressions for Uy and u2 in equation
(5.3) and the conditlon given in equation (5.1) which describes the conductor

boundaries. Thus the ul. . h ., and transmission line conductors are continuous

through the plane z = 0 and tangential components of E and H will be
continuous through this pilane. However, for 2z < 0 we have h, = h =1

and h, has a step discontinuity at z = 0 .

The other bounding surtace of the lens Is Introduced at v =v_. > 0 and

this surface is again assumed to be a sphere whose equation is

x2 + y2 t (2—20)2 = R2

where Z, and R are given by equations (4.27) and (4.28), and 24 < A
The region outside of this sphere Is free 3pace and [t contains a conical
transmission line whose conductors are matched to those in the lens. One may

then calculate the u; coordinates for the lens and compare them with the
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modified spharical coordinates for the conical line to obtain conditions which
guarantee the continuity of g, and Ak across the surface v = Vo SO that
the TEM wave wiil pass through this surface without reflection. The constitutive

parameters for the iens are given by

RS B R (5.22)
€ Ko h3 h W.v)
where the lens {s bounded by v =0 . v = Vo - and u = Ug - and h3 <1

within the lens, which Is classified as a divergent lens.

6. OSOME EXAMPLES OF LENSES

The procedure described In Section 5 will be lllustrated by the examples
which appear in reference [2]. Our first examplse is that of an Iinhomogeneous

lens. If we start with a compliex analytic transformation in the plane

_ W _ sinu) sink (v)
z = e tan) = aloeTy ¥ coshay T/

1
cos W) + cosh(v) .1

where a Is a positive constant and take

a sinu)
cos W) + coshy)

- f W)

*
1]

(8.2)

a sinh )
cos{u) + coshiv)

and rotate the plane about the y axis. we obtain bispherical coordinates

gw.v) =

~
1}

x = [ a sin{u)

cos(w) + coshiv) ]cos P

R e w) sin (©) 6.3)

cos ) + coshiv)

a sinh )
cos ) + coshiv)

z =

with 0 S u S 7, -= < v < +o ., Surfaces of constant v are spheres, whlle

surfaces of constant u are either "apple-shaped® with dimples on the x axis
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(for u < -725) or spindles (for u > -721) . ~The surfaces of constant u will

intersect planes of constant ¢ in circles. The scale factors arg

h o= h = 8 - __p
u v cos(u) + cosh(y) sin w)
. 2t £ L . .

_ a sinw) _
h~p T cosu) + cosh(v) fluw)

(6.4)

From equations (4,17) we calculate the modifled ul." coordinates 'and obtain

(using b, = m/2 and u = u

0 )

oL o L [ L Y]

Lelre = L oal -t - —_ - tand

<
n

U
3 aotan (5)cos (p)

u

u2 = aotan ‘-é-)s:n ) (6.5
Tasn- a3 Leea u : . 2T
_ 2a 4 Y0
Us = S (uor)arctaq’[_t‘anh‘(‘?)tan (?-)l . Sl amanno

IR S S ~

while the scale factors which are calculated from equations" (4.19) are giben by

T gt P i w)
ho = h o= + cos

1, 2 (a, cos) + cosh(v)
20

and

cos (u )_ + cosh (v)
Py = osw) + cosh ™) 6.6)

where 0 € u < Uy in the Iinhomogeneous delum. We alsgo note that since
hu<u wV/f ) = 1/sin W) ,' hu/f u.v) s Ingependent of v and so, as
expected. the surfaces of constant -v. are -sphéres or planes. The radii and

location of the centers of the spheres are calculated from equations (4.27) and

(4.28), and we obtain

A = f(z)'.v)huéu'.v')/%% = alsinhtw)l™! 6.7

and
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3f 39 38g _
zy = (ré—;fg-é%)/au = a coth(y) . (8.8

Thus if we follow the analysis outlined In Case | of section 5 we find that on the

plane z =0 on which v =0 and wu, =0 we will have Uy = x and

Uy =y it a =a Hence the transmission line conductors are continugus

0 °
through this Interface. The medlum Is free space when 2z > 0 and the lens

material is present In the region defined by u, < 0 (which corresponds to

3
v < 0.,z < 0} A second Interface is then introduced at v = Yo < 0 and the
surface |s a sphere whose equations Is then
x2 + y2 + &-a coth (vo))2 = 'az/smh2 (vo) . (6,9)

A cross sectlon of this lens Is llustrated In flgure 1. At the second Interface

contlnuity of the uy and u, coordinates is guaranteed if a tan & = ﬁoran (2)

0 2 2

on v, , where «a and B8 are chosen to satisfy the condition

0 0 0
ao 2 cosh(vo) -1 2%
[B—'] * Goshwy 33 - tanh (—2—) (6.10
0 0
and sOo on v = \»'0
VO U 8
tanh (-E)ran (—2-) = tan (—2-) . 6.11H
The constant 9 Is determined by
v u
- a _ __2a 0, 0.
ro = Ismh(vo)l sm(Uo)arcran[tanh(2)ran(2)] . (6.12)

Moreover, the constitutive parameters for the lens material are given by

radalrade ccoss((uu )y E c;:shh(::) = hl .19
o Hg Co%%, 3

Finally, we note that all of the assumptions made for Case | are satisflad in this
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example. That is. we have:

dh

@ for tixed —= = - asinh (v) > 0 for fixed v < O
(cosh(v) + cos W) ’
®) Ft2 < (zo)2 where A . z, are given by equations (6.7) and (6.8)
af . _ _@ sin) sinh(v) _
© aV(u,v) = 51y =0 .0 and

(cos (W) + coshv))

a sinh(v)
cos(u) + cosh(y)

@ gw.w) = for flxed v Is an odd function In v .

The lens given in this example is that of a convergent lens.

. .
A

free space lens free space -

R

Z, | i
V = \ =
Vo /v 0
Figure 1

OQur second example is that of an Inhomogeneous divergent lens. We start,
as in our first example. with a complex analytic transformation in the planse. This

time we consider

sinh (u) sin(v) .

w —-—
2 =8 tanh @ = a5y ¢ coswy | Icosh@w) + cos @y

6.14)

where a is a positive constant, and take

-27 -




a sinhWw)

x = fuy) = —h @) * cos ™)
6.15)
- - a sinly)
Y glw.y) coshWw) + cos)
A rotation of the plane about the y axis yields a toroidal coordinate system
- a sinh )
X [cosh w) + cos (v)]cos )
_ a sinh W)
Y [cosh () + cos (v)]sm ) (6.16)

= a 8iniy)
cosh{u) + cos{v)

where 0 S u < t= , -7 < v S 7 . Surfaces of constant v are spheres,

surfaces of constant ¢ are haif planes through the =z axis, and surfaces of

constant u are torolds. Since the line element is

2 _ a \2 2 2 2 2
ds) ™ = (cosh W+ cos ) {(du)” + sinh Witde)™ + WWv)] 6.17)
the scale factors are given by
h =h = a (6.18)
v 4 cosh(u) + cosiv) )

and

a sinlu)

hcp = coshlu) + cosy) = fww . (6.19)
The modified coordinates u, are calculated from equations (4.17), with b0 = ©
and 4 = 0 , and we obtain
u, = a.tanh@cos (0
1 T % 5)COS (P
u, = ajtanh@sin ) (6.20)
= Y.
u3 = a tan(2)
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The scale factors for the ul coordinates are then

a cosh () + 1
h = h = = e
17 "2 T 4 Toshw) + cos®) ®.2h
while
_ 1 + cos(v)
hy = Goshw) + cos ™) 6.22)
and clearly h3=1 on v =0 and for fixed v,--7r<v<11,h3 is a
monotonically decreasing function of v . The surfaces of constant v are
spheres (the ratio hu/f Is of course Independent of v ) whose radli and
centers are calculated from equations (4.27) and (4.28) as
= 8gy _ -1
R fwwh, we/g| = ajsinw | (6.23)
and
= 31,589,380 _ _
zo (f-é—u-fgau)/au = -a cottv) . (6.24)

If we proceed as in the analysis outlined in Case Il of section 5. and join the
conical and cylindrical transmission lines to the lens, then one boundary surface

for the lens Is taken as the plane 2z = 0 on which v = 0, ug = 0. The

lens material is assumed to be present only for ug > 0 (which corresponds to

v>0.2 >0 as in flgure 2. For z < 0 the medium is free space and

for z < 0 the v, coordinates are rectangular cartaesian coordinates. in the lens

i

the conductors are curved s0 as to satisfy equations (5.1) and (6.20) with

a = ag . For the toroidal coordinates defined by equations (6.16) we confine our

attention 10 those u satisfying 0 < u € U™ < +o . Thus u = u* will be

a boundary for the iens material, and the wu, , h , and transmission line

I
conductors are continuous through the plane 2z = 0 .
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A second lens surface s Introduced at v = v0 . whers 0 < Yo <m.

This surface Is the surface of a sphere whose equation Is

2 ,
x2 + y2 + (Zz+a cot(vc)) = 32/31n2(v0) (6.25)
Thus this sphere Is centered on the z axis at z, = -a cot(vo) and it has a
radlus equal to a\s!n (vo)r'I . Flgure 2 shows a lens cross section in the xz

plane. The reglon ouiside of this sphers is taken 1to be {res space which
contalns a conical transmisgsion line with conductors matched to those In the lens.
The apex of the conical line is centered at 24 by choosing z, = -8 cot(vo)

in equation (4.20). The v, coordinates at v = vy are matched Dy comparing
the equations describing the modified spherical coordinates with those describing
the modified torcidal coordinates (see equations (4.23) and (6.20). The resulting

requirement [s that we must havse

u 8
aotanh (2} = Boran(2) (6.26)
on v = Vg - Moreover equation (5.16) requires
2
ao 1 - cosiv,)} 2 Y0
[:é— = T7F costv ) = tan (-E) 6.27)
0 0
and so
VO u 8
ran(—2—)tanh (—2-) = tan (—2-) . (6.28)
which gives a relation between the 6 and u coordinates on v = Vg - Since
the g cogrdinate is specified for the lens by equation (6.20) and for the
conical line by equation (4.23). we must have on v = Vg the relation
14
0 -1
cap (2 = - (8.
a fan (3 a|sin vy o 6.29)
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and hence we must have r defined by

0

r v

0 _ 1 _ 0, _ _

2 - s (VO) tan(2) = cot(vo) . (6.30)
Thus uy and U, will be continuous across v = Yo and hence h . glven
by equation (6.21). will also be continuous on this surface. However h3 . given
in equation (6.22), has a step discontinuity on v = Yo in any event, our TEM
wave will pass through this surface with no reflection. In the lens, which s

x

bounded by v =0 , v =v_ , v =u , the modified coordinates are given by

0
equations (6.20). and the constitutive parameters are given by equations (5.21) and

(6.22), where €’ and pu’ assume thelr free space values. Thus we have

€ _ U 1 cosh (w) + cosv)

B N (6.301)
€0 LLO h3 1 + cos(v)

for thé lens. This i{ens, which Is based on a toroidal coordinate system, |Is
classified as a divergent lens. For this lens. all of the assumptions which were

made for Case 1l are satisfied. That is,

@ == - 2 Shl) —~ <o for u O,

(cosh W) + cos(v))
4s)] R2 > zg where R  and z, are as given In equations (6.23) and
(6.24),

©) _a_f_(u’v) - a sinh{u) sinv) =0 . and

3v v=0  (coshw) + coswn2!¥=0

_ a sinly) \
@ gw.v) cosh W) + cos ™) for fixed u is an odd function of v
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>

free space lens free space

1
v
N

Figura 2

Thus In this section examples of lenses which provide a perfect matching
section between conical and cylindrical coaxlal waveguides have been given. in
order to obtain a class of solutions for a lens design it should be clear that the

condition given in equation (4.16), namsly.

2 2

(3t 3¢ _ 3g 3%, _
3u 2 du 2
du du

e
[~

x
[~ M)

iIs one that must be satisfied. The functions f and g must come from the
real and imaginary parts of an analytic function of a complex variabls. in the
next section we will find that a ciass of solutions to the design prcblem can be

described.

7. A CLASS OF SOLUTIONS TO THE LENS DESIGN PROBLEM

In Section 5 the conditions necessary to obtain a satisfactory design for a
lens section matching a conical transmission line to a cylindrical transmission line
were stated. The main resuit of this section [s that the soclution of a Rlcecatl

differenttal equation

= -;-('Hp ) (7.1
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where p =z and q =w or p =/Jz and & = /w . | =N=1 . wil
satisfy both equation (4.16) and conditions (a), (b), (), and (& ot Case | or Case
il for either a convergent or a divergent lens. For simplicity we will assume that
a = 1 , where a is the constant which appears in equations (5.2). if

a # 1 , the form of (7.1) becomes

dp _ a
P - 2a+@5 7.2)

and thus our analysis when a # 1 s baslcally unaltered.

We consider first the case in which p =2 and q w in equation

(7.1, and we Investigate the Iinitlal vailue problem

dz _ 1 2
aw - 2('|+z ) (7.3)
2(0) = x0

The solution of this problem will be

[('I—xg)sln W) + 2xcos @] + I[(ng)slnh W)l

z = 3 3 © (7.4
ﬂ-xo)cos (v) + (1+x0)cosh(v) - 2xosin(u)
where X4 Is a real number. and wo=u + jv . This solution Is obtained in
. w+C
a standard way by first noting that z = tan(—é—) . with ¢ - an arbitrary
constant. is a solution of the differential equation. if one uses various

rigonometric and hyperbotic identities, the result (7.4) will then be obtained. with

the initial vaiue Xq satisfying tan (%) =X - We next note that if we write
2 = Fw) = flw.w) + fjglu.wy) ., ' (7.5
then
dz _ 3t 3g _ 14,2
Iw 7 b Iau 2(1+z ) (7.6)




and so

d
2 = -;-[(Hfa(u.v)-gQ(u.v)) v j2f gl . 7.7
Hence we obtain
af _ 1,..,2_2
i §H+f g1 (1.8
and
3g _
3= = fg . (7.9
Since we also have
2 2 2
d d
4z, %2024 (7.10)
dw du du
and
d°z af, .,3g
;——2' = {f ‘Hg){g-u-i'iau) 71D
w
and
%z af _ ag 3g . af
-d——E = (fg&' - gau) + ](fau + g—a—u-) (702
w
it follows that
afr a1 | o3g (7.13)
2 du gau :
du
3% _ ,3g . af
= f : . (.
au2 30 + g—au 7.14)

Equations (7.13) and (7.14 can also be obtained directly by taking partlal

derivatives with regspect to U in equations (7.8) and (7.9). If now aquation

(7.13) is multipiied Dby 3a , and equation (7.14) is multiplied by

30 and we

cu‘cu
o -
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subtract the resulting equations. we obtain

2 2

arf.2 dg 3f 37 ¢g dg 38°f

(=) ( = = - 99 8 1
glgy ¢ au’Q] 3 5,2 au 72 719

2 _ 312 3g,2
and since hu = (—au) + (au) .  we obtain
h2 = 3 a%g _ ag 3% 16
u au 3 2 3u 2 - ‘ )
u du

Thus., since %%= tg from equation (7.9), we obtain the necessary and

sufficient condition that surfaces of constant v be spheres or planes, namely

2

2
3
f[_alfj 8 g g - %a é_;__] = 89 ;2 717
du v du du "

which agrees with equation (4.16).

Similar algebraic manipulations applied to the equations (7.13) and (7.14) vyield

another condition which is -

2 2
ar 3°f . ag 3%, _ 3g ,2
083, AT au21 52 hy, - (7.18)

Equations (7.17) and (7.18) may now be used to vgerlfy that the conditions (a), (b).
(¢) and (d) of Case | in section 5 are satisfied. Thus

2
a1 + Qg..a_Q)/h
2 du au2 u

if fw.w) > 0. Since

(‘l-xg)sln (W) + 2x,c0s W)
fw,) = (7.19)

(l-xg)cos v) + (1+x§)cosh w) - 2xosln w)




we se0 that if 0<x0<1 and 0<u<% we will have f > 0, and

hu wiil be positlive In a suitable rangs of v . and condition (a) must hold.

To verify that condition (b), namely that éz < zg . where R and Z,
are given [n equations (4.27) and (4.28), is also satisfled. we use equations (7.8)

and (7.9) In combinatlion with the expressions for AR and Z, and find that

- R = ] (7.20)

and hence condition (b) is verified. Finally, since f{u.v) and g.v) are given

as the real and Imaglnary parts of 2z In equation (7.4) it Is clear that

af
av(u v) !v=0 7.21

and gw.v) is an odd f{function in v , and hence conditions (¢) and {(d) are
also satisfled. Thus we have verifled that all solutions of the Initial vaiue problem
(7.3) satisfy the conditions for a design of a convergent lens, if appropriate
restrictions are placed on the range of v , and the Initial vaiue Xq is suitably

restricted. The case X corresponds exactly to the case of Dblspherical

coordinates given in equations (6.3), with a = 1

if we now set p = [w in equation (7.1 and consider the initiai value

problem
gf - ';“"22) - 20 = x, (7.22)
where  x, is a real number. we find that its solutions are given Dby
2 . 2
+xS)sinh W) + 2x.cosh W)l + [[1~x_lsin v)
z = 9 L. 0 . (7.23)
(1+x§)cosh w) + (‘I-xo)cos v) + 2xos!nh W)
This form of the solution i3 obtained from the general sclution z = tan 5
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where ¢ Is an arbitrary constant. One may then verify that ail solutions of this
inltial value probiem, with Xo and v sultably restricted, satisty the condition of
equation (4,16) as well as conditions (a), (b), (¢}, and (@ for the case of a
divergent lens. The case Xy = 0 corresponds exactly to the case of toroldal

coordinates given In equations (6.16) with a = 1 .

Thus we have established the resuit that a class of solutions to our lens

design problem is obtainable from the solutions to a Riccatl differentlal equation.

8. CONCLUSION

A question that arises naturally from our analysis in section 7 is whether or
not all solutions to the design problem for a lens matching a conical to a
cylindrical transmission line have been obtained. Oﬁly isotropic inhomogeneous
media for such lenses have been considered. and In order tc extend this work
oné mfgm permit the fl;xedlum to be anisotropic. The n{aln condition to Dbse
satisfied by an analytic function z = Fw) = f.vy) + jglu.y) Is given by
equation (7.17). One may impose some additional requirements on F(w) and find
that thé differantial equatlod (7.1} s satléfled. but the question Is are these

naturail? 'For example., if we require that f and ¢ satisty both equations

(7.17) and (7.18) then it is a straight forward exercise to vefify that

d2z

dw2 3
i vl
dw

Hence if fg = %g- as in equation (7.8), then

and If Initlal condlitions
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zZ0O) = 0

270 =

N~

are specitied, then one recovers the dlfterentlai squation (7.13), namsly

dz
dw

= %(sz) .

Thus one is led to ask the obvious question concerning uniqueness. That is. if
the condition given In equation (7.18), which is necessary and suiflcient for
surfaces of constant v 1o be spheres or planes, and the condlitions given by

(a). (), (). and (d) of either case | or case Il, are all satisfied, then doss

2 =1 + ]g satlsfy a Riccatl equation of the type described by equation (7.1)7?

In addition to ths question of uniqueness, there are sseveral other problems
which should be addressed. For exampie., If the medium Is allowed to be
anlsotropic as well as Inhomogeneous, or if the orthogonality condition on our
coordinate systems is removed. how should the lens design be specified? The
determination of a symmetry group for which the lens problem considered hereg Is
a subgroup may provide further Insight on these and related questions. Thse
techniques of differential geometry, if properly applied, can be one of possibly
sevaral f{ruitful ways In which modern mathematics can further contribute to the

deveiopment of transient and broad-band slectromagnstics.
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