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I. Introduction

After many years of trying to understand the various ramifications of ●
electromagnetic theory, there has occurred to me an interesting apparent

discrepancy. We are generally aware of the fact that a vector field can be

considered as comprised of a solenoidal (zero-divergence) and irrotational

(zero-curl) part. Considering the current density (such as might exist on a

scatterer or antenna) this can be explicitly decomposed into two such parts

[1]. It is, furthermore, well known that the interior or exterior problem of

a perfectly conducting sphere can be represented in terns of eigenmodes of the

Maxwell equations in spherical coordinates which are E (TM) or H (TE) in

character and that the resulting surface-current-density modes can be divided

into these same categories [2,3,8]. Here the surface-current-density modes

have either zero curl (E modes) or zero divergence (H modes), but not both

(otherwise being identically zero). One can speculate that this property may

extend to the eigenmodes of more generally shaped perfectly conducting objects

as may be defined from appropriate integral equations [5,7,11]. From this

vantage point such a property can be readily extended to natural modes as used

in the singularity expansion method (SEM).

Actually, we are quite familiar with the divergence of the surface
e a

current density on a perfectly conducting object which is proportional to the

surface charge density or normal electric field; this is, in fact, commonly

measured. Perhaps one should also similarly consider the curl of the surface

current density on a perfectly conducting object. Can this also be

measured? This paper investigates this and related questions.

2



.

11. Considerations from the Maxwell Equations

As a first perspective consider the Maxwell equations

ail -jVxt=.=-m

VXX=:+3

(2.1)

where both electric and magnetic current densities have been included in the

usual way for generality. Taking the divergence of these equations and assum-

ing zero initial conditions gives

V.ts-a
m ~Pm, v”t=pm

v*~E- &v. h.p

(2.2)

With constituteve parameters we have

~= :.: ,i=i. i (2.3)

where the tilde, ‘, above a quantity indicates the two-sided Laplace transforn

‘ making the quantities functions of the complex frequency, s.

Restricting our attention to free space, we have the constants

c = (Boco)l/2 (propagation speed)

~ 1/2
Z. = (+) (wave impedance)

and a separation index

q = *1

l~ehave the combined-field form of the foregoing quantities [4,6]

(2.4)

(2.5)

(2.6)
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Then the Maxwell equations reduce to

Applying the divergence gives (with zero initial conditions)

●
(2.7)

(2.8)

expressing the equations in compact form which incorporates the symmetry

between electric and magnetic parameters.

Hhile it is not our purpose to introduce magnetic charge per se, still it

is a useful concept for our development. Note that we have the quantities

electric charge: Q (coulombs, C)

magnetic charge: Qm (teslas, T)

electric charge density: p (C/m3)

magnetic charge density: pm (T/m3)

electric surface charge density: PS (C/m2)

magnetic surface charge density: p~ (T/m2)
m

The units of these quantities provide additional insight, including some

indication concerning measurements.

(2.9)
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111. Boundary Conditions on Surface

●lllg)

Consider some general.scatterer such as depicted in fig. 3.1 and charac-

terized by some surface S which we often take as perfectly conducting, hut not

necessarily so, in which case the interior volume V and whatever it may con-

tain are significant. In any event, we have a surface current density ~s

(electric) on S.

For convenience, let us establish a coordinate system, in general an

orthogonal curvilinear system, on this surface. In a U1, U2, U3 coordinate

system let S be a surface of constant U3. As indicated in fig. 3.2 consider

some patch of S on which there is indicated a right-handed set of unit vectors

. ._-

corresponding to the coordinate system. Note that
,

$//s , 12//s , }3 1 s

(3.1)

(3.2)

i
If S is a closed surface we..canchoose 13 as outward pointing. If S is

not closed then our choice of 13 orientation is arbitrary. Let us designate

the two sides of S by S(+); and S(-) and have ~3 as the outward normal to
~(+). In effect 13 as in fig: 3.2 defines S(+).

as a

Here

The surface current density on a surface (infinitesimally thick) serves

boundary condition for the tangential components of the magnetic field as

(3.3)

we have assumed that there is only an electric surface current density on

S as in fig. 3.3A. More general conditions are found in [6]. A boundary

condition for the normal components of the electric field is

eo13 . [1(+) - t(-)] = p
.s (3.4)

with the surface charge density related to the surface current density as in

(2.2).

o‘d
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Fig. 3.1. A General Scatterer
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Fig. 3.2. Patch of General Surface with Local Coordinates
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A. General Surface (Sheet)
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B. Perfectly Conducting Surface

Fig. 3.3. Boundary Conditions
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Suppose now that S is perfectly conducting. Then the tangential electric

and normal magnetic fields are well known to be zero and, as in fig. 3.3R, we

have

Tt. = -13 x [13 x ]

as well as the conditions in (3.3) and (3.4).

An important

but also closed.

conditions reduce

case is that in which S is not

Then the internal fields are

to

. =
‘s

Nith this summary of the boundary cond

tional considerations.

dyad

only

al1

(3.5)

perfectly conducting,

zero and the previous

(3.6)

tions on S let us go on to some addi-
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Iv. Surface Divergence and Curl of Surface Current Density

One can look at the divergence of the magnetic field as in (2.2) to o

define a magnetic charge density, but that is not our purpose here. Let us

look at what can be considered analogous to this by looking at the conven-

tional (electric) surface current density on a perfectly conducting surface.

In particular, let us consider the divergence and curl of the surface current

density and the electromagnetic quantities related to these. Let us also

regard the surface as closed so that the electromagnetic fields are only

nonzero on one side (the exterior). The results are readily generalized to

open surfaces provided the surface current density is divided into two parts,

one for each side as defined by the surface magnetic field on each side. The

Ul, U2, U3 coordinate system is taken as an orthogonal curvilinear system.

First consider the surface divergence of a vector field which is given as

[9]

(4.1) 9

hn = &
I

for n = 1,2,3 (metrical coefficients)
n

‘1 ‘R2 s principal radii of curvature

V. F=V5. +

a
‘+here%i- indicates the normal derivative, i.e., in the U3 direction, but with

respect to the ~ coordinates instead of U3. Applying this to the surface

current density we have

V*3=V5*3
s s (4.2)

J3=o

Next for simplicity let the U1,U2 coordinates be taken along lines of

curvature of S. Then the surface curl is given as [9]
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where the surface gradient is simply

laf~
vsf=~~ 1

Applying the surface curl

laf~
‘~q 2

to the surface current dens

Carry’ingthe development further

(4.3)

(4.4)

ty gives

13 Vs “ [~, x ~J (4.5)

consider the important normal component

of the surface curl as

t3*[vJd J=v*+” Q (4.6)

the deleted terms in (4.3) all being vectors tangential to S. Applying this

to the surface current density gives

(4.7)

Now apply the

side) of S, noting

conducting surface.

V=il=v

Writing

above

that

Note

●B=

formulas to the magnetic field on the outside (+

the normal magnetic field is zero at a perfectly

first that

o (4.8)

then

h = Es +-H3t3

a!43 aH3
Vsefi=v. fi-—=

an -m

a03
vs.~=

-3ii-

(4.9)

(4.10)
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So while the d vergence of the magnetic field is zero, the surface divergence

need not be so.

Another relationship of interest is

Vs “ [b x 13] =T3*[VSXP]

Recall from section 3

again assuming

Combining

‘i3 ●

.

and similarly

13 ●

So the normal

jq(+) = ~s , 13 x 3s = .B}+)

nonzero magnetic field only on the plus side.

some of the foregoing results

[Vs x 3J = Vs “ [3s x 13]

[Vs x R:+)]=Vs . [1:+)x 13]

= -Vs ● 3s

component of the surface curl of

proportional to the surface divergence of the

conversely.

(4.11)

(4.12)

(4.13)

(4.14)

the surface current density Is

tangential magnetic field, and “
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v. Interpretation of the Surface Divergence and Curl of the Surface Current
Density

Noting from (4.2) that the divergence and surface divergence of the

surface current density are the same thing, we have from (2.2), (3.6), and

(4.14)

(5.1)

Thus we can think of Vs o ~s in terms of the surface charge density, the

normal electric field or displacement, and the normal component of Vs x ~~+)o

Turning to the surface curl of the surface current density (4.13) gives
..—,,-, ..-,.

(5.2)

From (2.2) this can be then thought of as a magnetic charge density. Define

Vs . ~:+) = k (5.3)

similar to

Dimensionally these are the same (T/m3 or n&gnetic charge per unit volume).

However, even if we let the magnetic charge density pm be zero, the equivalent

magnetic charge density k is not in general zero. Note that k is a volume

rather than surface magnetic charge dens

k =- & B!)

ty. Since we can write

(5.5)

then k is not given by a discontinuity in the normal component of the magnetic

flux density, but by a discontinuity in the normal derivative of this compo-

nent. Note that since k “exists” only on the surface S, a volume integral of

k over a finite volume containing some portion of S within it will give zero

net “magnetic charge” on any portion of S.

13



Turning the equations around we have

p5(;5,t) = - /t V5 ● 35(@
-e

k(~s,t) = V013 “ [V5 x ~J

+
rs =;onS

dt‘

(5.6)

illustrating the decomposition of the surface current density into two terms,

the first associated with the surface charge density and the second associated

with the equivalent magnetic current density. To help in understanding this

decomposition consider the diagrams in fig. 5.1. Figure 5.1A shows a case of

a surface current density with no curl (locally) but a local maximum in the

surface charge density. Figure 5.18 shows a case of a surface current density

with no divergence (locally) but a local maximum in the equivalent surface

magnetic charge density.
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B. Divergenceless (Solenoidal) Surface Current Density

Fig. 5.1. Types of Surface Current Density: View Normal to S from + Side
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VI. Measurement of the Equivalent Magnetic Charge Density

Having defined an equivalent magnetic charge density associated with the

curl of the surface current density, let us now consider how to measure it.

From (5.5), and assuming a nonzero first normal derivative of the normal

magnetic field, we can sample the normal magnetic field at a distance h from S

giving

k =. a B(+) =-lB
%3

I
ly3++

r=rsi-h13

+
r s position of measurement of magnetic field

-+
rs z position of interest on S

noting that

B!+)

I++=0
r=rs

(6.1)

(6.2)

So our problem is how to measure the normal magnetic field at some

distance away from, hut near, S. Since at S the normal magnetic field is

zero, then at small h there will be a small normal magnetic field, leading to

a possible signal-to-noise problem. In this case the “noise” may come from

not-so-small other electromagnetic-field components.
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VII. A Type of Sensor for the Equivalent Magnetic Charge Density

Let us now consider some location on S for which

h c< IRl , IR21 (both principal radii of cUrvatUre) (7.1)

so that the local geometry of S near the ~s of interest can be considered

approximately flat.

Consider a special magnetic field distribution near ~s like that in fig.

5.lB. At ~s place the origin of a cartesian coordinate system (x’,y’,z’) with

z’ normal to S in the + direction as indicated in fig. 7.1. Here is also the

magnetic-field distribution of interest in which the tangential magnetic field

(as well as the normal magnetic field) is zero. Furthermore, the magnetic

field and associated surface current “density are assumed to have axial (or

rotational) symmetry about the local z’ axis. Define cylindrical (Y’,+’,z’ )..- .
and spherical-(r’~,~’j$’-) coordinate systems as indicated in fig. 7.1 and

*-w.>y. ..
related to the local cartesiari~~%m b~: .. ,

f -, i, ._-.. .

X’:=Y’ Cos(+’)”= r’_~in(~t) COS($’)
( .. A A..,‘.,-,...—-.”-..-!.-..

Y{ =y’ ~in($’) = r’ sin(tl’)sin($’)
.. . ,-

.2’ = r’ cos(e’), . .
r-

(7.2)

Let us then .seek a quasi-static surface-current-density distribution of

the form
,*,

ts=Js ,(Y’) $,
4

and an asociated surface-magnetic-field distribution of the form

with

F:+)= Ht ,(Y’) Iy,
Y

Ht ,(Y’) =Js ,(Y’)
Y ‘$

Js ,(0) =0
‘$

ok) 17
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(7.4)

(7.5)
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Fig. 7.1. Local Coordinates, Magnetic-Field Distribution, and
Sensing Loop Near7s
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The magnetic field can be found from a magnetic potential which is

expanded in spherical coordinates using terms of the form [10]

(7.6)

n>O

with all possible combinations of terms in the braces allowed. First we rule

out negative powers of r’ since the desired magnetic field is zero at the

origin. Secopd we choose m = O for the desired symmetry in the magnetic

field. This leaves terms of the form

The Legendre functions are calculable from [3]

(7.7)

(7.8)
. . .

giving the first few as

PO(G) = 1 , Po(cos(e’)) = 1

Pi(G) = E > PJCOW’)) = Cos(e’) (7.9)

The n = O term is a constant giving no magnetic field. The n = 1 term

is r’cos(f3’) or just z’; but this is not allowed by the boundary condition at

S that allows no normal magnetic field. The n = 2 term is the one of interest

giving a magnetic potential

Hor’2
~=- = P2(cos(e’)) (7.10)

●
d.
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e-,

with constants Ho a convenient magnetic field and r. a convenient distance;

the coefficient of -1/2 is for later convenience.

.

0

In spherical coordinates we can now find the magnetic field (for z’ > O)

from

which gives

i! = - & r’[3 cos2(0’) -
H

lllrl+~r 3Qr’cos(O’) sin(e’) 161
0 0

(7.11)

(7.12)

Note that on S (corresponding to 0’ = Ir/2 ) the normal magnetic field (Ho, )

is zero as required. This result can also be cast in cylindrical coordinates

as

Hy, = Hr,sin(O’) +H8,cos(8’)

=~r’sin(e’) .~’i”
r. 2 r. F

Hz, = Hr,cos(e’) - He,sin(6’)

H H
= -#r’cos(13’) . -~z’

o 0

which is quite simple in form.

From (5.5) we have

k a B(+) . - ~o&Hz,=-—
an 3

H
‘PO+

o

and (7.13) can be written in the form

(7.13)

(7.14)

9-.

Bz, = -kz’
(7.15)

●
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This expresses our special magnetic field distribution in terms of the equiva-

lent magnetic charge density (which is conveniently uniform on our local part

of s).

As in fig. 7.1, the loop of radius a and height h from S has a flux

through it

#= 2-wa Bzt = ~a2hk

which allows us to define an equivalent volume

v GO
eq-l?’ = razh

as the sensitivity parameter for this type of sensor.

tage from such a sensor is

v .~=v dk
O*C* dt eq ~

This type of sensor has properties similar to a

(7.16)

(7.17)

The open-circuit vol-

(7.18)

regular magnetic-field

sensor (loop). Its Thevenin equivalent circuit (assuming the sensor is elec-

trically small) is the series combination of a voltage source from (7.18) and

an inductance, L (at least in the case of conducting loops without impedance

loading). There are various possible specific sensor designs involving

various numbers of loop turns, spatial distribution of loops, and specific

loop geometries. Such designs might be considered

IrI optimizing the sensor design one may wish

other constraints, such as electrical or physical

in future papers.

to maximize Veq subject to

size, or upper bandwidth.

Suppose, for example, one wished to place the sensor in a hemisphere of radius

rl centered on ~% =~e Then for a single loop lying on the hemisphere

surface at some e’ = f31we have

a = rlsin(Ol) , h = rlcos(el)

v = mazh = mr~ sin2(01) cos(el)
eq

(7.19)

With rl assumed fixed, this is maximized by setting

o
J
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-#Ie
= O =wr~ [2 sin(el) COS2(QI) - sin3(f31)]

6’43
1

giving

tan(el) =/2 , sin(f31)=/$_, cos(f31)=&

h-= Cot(el) =>
a

(7.20) .
0

(7.21)

One should note, however, that this is not necessarily the only kind of opti-

mization condition.

..
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VIII. Improvement of the Sensor by Reduction of Unwanted Field Components

*
A good sensor design considers the response of the sensor to other elec-

.
“tromagnetic field components and the amelioration of this possible problem.

It may be desirable to construct some kind of structure which suppresses any

normal electrical field, Ezi, and any approximately uniform tangential mag-

netic field, Hxt and Hy~ in the vicinity of $’ = ~ . In addition, this struc-

ture should not significantly interfere with the magnetic-field distribution

discussed in section 7, or at least leave some ”magnetic-field distribution

related to it and which can be sensed effectively.

Noting that the magnetic-field distribution of interest is characterized

.byH$, =O, then conducting sheets on planes of constant $’ do not interfere

‘with thiskind of field. If-these sheets extend above the sensing loop they

can form a shield against”the “electric field, EZI. The electric field can be

●
d

~t.erminated.at the.upper portions of the sheets, reducing the

.tric field near the sensing loop.

.. . ... A tangential ”magnetic-field distribution is distorted..-
pushing the field away from S- to go “above” and “around”

associated elec-

by such sheets,

the sheets. An

important consideration is that the distortion of this unwanted magnetic,field

not couple to the sensing loop. Distorting the uniform part of the magnetic

field around the sensor can produce a z’ component. It is essential that this

z’ component not couple to the sensing loop (or loops). In effect, the net

magnetic flux from this distorted field should be made to be zero. This

requires that the magnetic flux linking the loop in the z’ direction be

balanced by the magnetic flux linking the loop in the -z’ direction. Now a

perfectly conducting sheet on a plane of constant O’ and $’ +x will produce a

distortion of this field with the desired property provided the loop is

symmetric with respect to this plane. Since the undesired (incident) uniform

tangential magnetic field has in general two components (x’ and y’ components)

then two such perfectly conducting sheets can

that the combination of these two (or more)

distort the uniform tangential magnetic field

the sensing loop, let us constrain the set of

have at least two planes of symmetry, all of

be used to distort both, SO

sheets does not collectively

in a manner which couples into

perfectly conducting sheets to

which contain the z’ axis. A

circular loop (or multiple loops) coaxial with the z’ axis of course has these

same planes of symmetry.
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Figure 8.1 illustrates a possible realization of this concept. The

ideally perfectly conducting sheets are assumed to all have the same shape and ●
be uniformly ‘spacedwith respect to $’ . Each sheet is then also symmetrical

with respect to the z’ axis. For convenience each disk might be assurled to be

half of a circular disk, of radius r2, terminated in a perfectly conducting

surface, the z’ = O plane, or S. However, other shapes, such as rectangular,

are also possible. (Even sheets that do not continue through the z’ axis are

allowed provided the two symmetry planes for the ensemble are maintained.)

Figure 8.1 illustrates this concept for the case of many perfectly

conducting half circular disks. There may be various portions of the disk(s)

cut out for the passage of the sensing loop. However, even these cutouts

and/or connections of the sensing loop(s) with respect to these disKs should

still maintain the two symmetry planes through the z’ axis for the ensemble.

Note that the disk array described above also suppresses the electric

field (incideot) normal to S. This suppression is enhanced by the use of many

disks so that the edges of the disks are close together, approximating a

surface (e.g., hemispherical) “covering” the sensing loop(s).
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A. Top View

conducting
disks

loop

‘Y ‘ x’
-

B. Side View

Fig. 8.1. Equivalent Magnetic-Charge-Density Sensor w
for Other Field Components

th Suppress<on
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Ix. Summary

Having elucidated a way of measuring the sljrface curl of the sljrf~c~

current density, it is apparent that there is much design detail to he consid-

ered. The definition of the equivalent magnetic current density is quite

clear, but its measurement may present some practical difficulties which nay

require some time to overcome.
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