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Abstract

Field - containing inductors are required in certain simulator applications

e.g., elements of pulse shaping networks, terminators for transmission lines

etc. Typical coils such as solenoids have a large magnetic dipole moment

resulting in excessive interfering magnetic fields. An improved design based

on the traditional toroidal coil windings is presented. This new design con-

sisting of two windings is capable of higher voltage operation. Optimal

shapes, energy and forces exerted are also discussed. The normalized plots of

attainable inductance for varying geometrical parameters presented in this

note should prove useful in future designs and applications.
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1. INTRODUCTION

Field - containing inductors are useful in certain simulator applica-

tions, e.g., pulse-shaping networks and lumped-element terminations for

transmission llnes. If the magnetic field produced by the current flow in

the inductor is not contained, the exterior magnetic field from such an

inductor could adversely impact the simulated environment. A second example

‘is when there are different pulse generators (drivers) designed to produce

the required environment in different time regimes (early time and late

time drivers), one has to be cautious of the compatibility between the

sources. If lumped elements such as inductors are used in one driver or

in connecting the two (or more) drivers, it should not adversely impact the

performance of the other driver(s) via magnetic coupling.

In view of the above outlined need, it is the purpose of this note to

formulate the design principles for a field containing inductor, for high

voltage applications. In this introductory section, the classical solenoidal

inductor is reviewed to indicate the presence of external magnetic field,

which could be excessive.

Consider a long solenoid of length L and winding radius a as shown in

its cross section in figure 1.1. Both rectangular (x, y, z) and cylindri-

cal (Y, $, z) coordinates are useful for this geometry as indicated in

figure 1.2. In addition, the general appearance of its magnetic field is

shown in figure 1.3. It is relatively easy to determine its inductance

especially under the assumption of negligible end effects. The inductance

Ls is defined as the magnetic flux linkages A ~ivided by the current I

causing the flux. The number of flux linkages is of course given by the

sum over all the N turns of the magnetic fluxes on in each turn, or

A.

(1.1)

n= 1
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o The magnetic induction B inside the long solenoid is fairly constant and

is given by

where N’= number of turns per unit length. Therefore

(1.2)

(1.3)

(1.4)

Having reviewed the inductance Ls of the solenoid, we may estimate the

magnetic’ field at a distant observation point. At low frequencies, the quasi-

static magnetic field ~~ from the solenoid current is dominated by the

magnetic dipole moment 3, which is given by

i =7Zmz

=~zNIma2

The quasi-static magnetic field from such a dipole moment at a general

position vector~is given by [1],

(1.5)

(1.6)

where

+
1 = unit vector in c direction
C’

(1.7)

++++
1 =lXIX+:Y:Y+TZ:Zs identity dyadic

5
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The magnitude of the distant quasi-static magnetic field is then

bounded by

II+-
Na21H~ (r) S —
2r3

In addition+to

magnetic field HL
4

(1.8)

the above solenoidal field, one also has an azimutual

due to the current I flowing in the lead wires,

which is simply given by

(1.9)

Considering a ratio of field due to the solenoid and the field due to

the lead wire, we have

H++
H~ (r) <

NlTYa2— ..—
H r3
‘$

(1.10)

Because of the factor N, which is typically large, it is observed

that the field due to the solenoid could far exceed the field due to the

current in the lead wires entering and exiting the solenoid. Such exces-

sive magnetic field could interfere with other parts of circuits in which

such solenoidal inductors are employed. Such interference may not be .

tolerable in certain simulator applications, thus leading to a requirement

of field - containing inductors, that can also possess high-operating-

voltage capabilities, which is the subject of this note.

In concluding this section, we remark on how the note is organized.

Certain general topological considerations cm field containment are dis-

cussed in Section 11 and a solution for a general body of revolution is

presented in Section 111. Toroidal forms with rectangular cross section

is the subject of Section IV. Given such a ~oroidal form, certain optimi-

zation procedures, considerations of energy and forces exerted due to the

current flow are discussed in Section V. The note is concluded with a

-,

summary in Section VI followed by a list of references.
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11. GENERAL CONSIDERATIONS

Since the object is to provide design guidelines for a magnetic -

field - containing inductor, it is desirable to review the general behavior

of magnetic fields. Since isolated magnetic charges are not yet found,

the divergence of the magnetic field is taken to be zero, i.e.,

(2$19

+ +

where B and H stand for magnetic flux density and field intensity respectively

and the permeability B of the medium is assumed to be uniform. Physically,

the above equation requires that the magnetic field lines are closed loops,

since there are no isolated magnetic charges upon which they can terminate.

To illustrate the vanishing divergence of the magnetic field and also the

general appearance of magnetic fields, let us consider several shapes of ‘

perfectly conducting surfaces as illustrated in figure 2.1. Note that at a

perfectly conducting surface the normal component of the magnetic field is

zero. For example, figure 2.la shows a single turn of current and its

associated magnetic field. Several such turns arranged together leads to

the tubular ‘conductor’ of figure 2.lb. The magnetic field lines now are

closed and parallel to the conductor, satisfying the boundary condition on

the normal component. Figure 2.lc is an example of a bent tubular con-

ductor leading finally to a closed surface of figure 2.ld, that could con-

tain the field. Assuming a perfectly conducting surface, the surface

current on this closed surface is whatever is needed to satisfy the boundary

conditions. Such a closed surface could have a ~ outside, but it is not

essential to have an external field, since a zero external magnetic field

automatically satisfies the boundary condition on its normal component,

i,e. Bn = O. ~-

Having established that a closed surface, S, enclosing a volume

required for field containment, one needs to consider the particular

7
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types



.
-..
-.,’

-- -.

Il.
-----—.—-_———.———-+-------- B

(a) Single turn of current with its magnetic field.

4 *----- ------- .-, -
e

---

t
-

8
% +

\
< ----- ----

\
\

---- -----
.- -- ---- ---- ----- -. “ -“-+1-- ”-- ----- ----

------ --- ____ _-

/ K ‘*\
\ 1

- R’------ ----- - ---- ----- -.

(b) Magnetic field associated with a tubular perfect conductor.

(c) Another example of

tubular conductor. (d) Closed volume formed by

conducting surface.

No outside
is needed.

a perfectly

field

Figure 2.1 General behavior of magnetic fields around perfectly

conducting surfaces.

8



. .

of closed surfaces suitable for field containment. Some examples are shown

in figure 2.2 using the multiplicity number p, that characterizes any simple

closed surface S [2].

It is easy to show that a simple closed surface p = O of figure 2.2a

does not meet the requirement. Recall that a quasi-static magnetic flux

density; is a negative gradient of a scalar potential @m [3] i.e.,’

+

B = - v@m (2.2)

which implies that

Vx;=o
(2.3)

Vxii =0

and @m is the solution of the Laplace equation and not Poisson’s equation

owing to the absence of isolated magnetic charges. Also, from Maxwell’s

equations, we have

‘, $M=/p+$)*&=Itv.x;=:+~ (2.4)

c s!

-b

where the contour C is any closed line of B, S’ is a surface with

boundary C, and
lt is the total current through S’. In the quasi-static

limit a~/at is negligible, so that It = I (the current through S’). But

the configuration of figure 2.2a has a non-zero value for I and therefore

~, contradicting (2.3). This requires that there be a current flow through

s’. Since this is not possible in the absence of a conductor, one must have

a closed current path, not in V, through which the magnetic field, and hence

V, passes. Thus one is led to conclude that we need a surface that is multiply

connected, i.e., p > 1. Putting it differently, the ‘coil’ we are designing

could be thought of topologically as a sphere with 1 or more .fiandles.

It is observed that a singly connected closed surface (p = 1) is the

simplest of all ”permissible closed surfaces to meet the requirement on field

containment. A solution to a general p = 1 surface or a body of revolution

is the subject of the following section.

9
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111. SOLUTION FOR BODIES OF REVOLUTION

In the previous section, we observed that a singly connected closed

surface (p = 1) will meet our requirement of field containment while

satisfying the boundary condition on the normal component of the magnetic

field at a perfectly conducting surface. It is further observed that it

is desirable to have a uniform cross section for this surface so that the

current density is uniform also. The two criteria above along with a con-

sideration of symmetry leads us to a generalized toroidal body of revolu-

tion as shown in figure 3.1.

Referring to figure 3.1, the magnetic field from such a current

distribution is oriented in the azimuthal or $ direction and is inversely

proportional to the cylindrical radius Y as one moves away from the sur-

face, according as

++

H
= l$”H$

‘$ = constant/y
(3.1)

The above magnetic field comes from a solution of the Laplace

equation and also satisfies the boundary condition. Of course Y > 0 in the

above, for p = 1, which is the case. The surface current density is then

given by

+ + +
Js = lsx;=l$H+ (3.2)

or

J
S$l= constant/Y (3.3)

The above general solution of a toroidal surface can nowbe applied

to a coil requiring that the current density in the toroid b; also

inversely proportional to the radial distance. Figure 3.2 shows a section

11
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of a toroidal

observed that

approximately

form on which the wire carrying current I is wound. It is

the current densities at inner and outer extremities are

J
S1 = I/Al , Js2 = I/A2

illE inner spacing between turn centers

‘2 z outer spacing between turn centers

If we majntain

A+2 = Y1/Y2

(3.4)

(3.5)

then, we have the cond~tion that the current densities which the turns

approximate are inversely proportional to the cylindrical radius Y. In

other words, the insulating space between the adjacent turns (plus the

turn thickness) at the inner and outer boundary should be in the same

ratio as the inner and outer radii. This condition is easily met in

actual fabrication.

In concluding this section, it is noted that the results of a

perfectly conducting surface have been applied to a practical coil and the

nature of adjusting the winding spacing is also determ~ned. Based upon

this toroidal form, the results for a specific toroid with a rectangular

cross section are presented in the following section, for two different

winding arrangements.

14



*

.

IV. TOROIDS WITH RECTANGULAR CROSS SECTION

Toroidal forms have been frequently used in fabricating inductors

to obtain desired values of inductance. Typically, such inductors are

wound on a ring shaped form (see figure 4.1) in a single layer as shown

in figure 4.2. Such inductors have the advantage of very little external

magnetic field. Formulas for the ideal case of a current sheet, such as

would be attained by a winding of very thin tape with negligible insulating

space between the turns are simple [4].

For the geometry of figure 4.2, using the Ampere’s Law, we have

4

++
B.d~= vI(enclosed) (4.1)

c
The current enclosed is simply the number of turns $times the current

through the wire, leading to the magnetic flux densi;y in the toroidal

form given by

pNII
B(Y) =W

The total magnetic flux in a cross section is then

and the inductance 11 is therefore given by

(4.2)

(4.3)

(4.4)

15
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Figure 4.2 Ml-turn winding and the magnetic field direction.
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Next, we may coside.r a similar toroidal form but with a different

winding arrangement as shown in figure 4.3. Once again, invoking

Ampere’s Law, we have

$++
B* dk= ~ I(enclosed)

c
The current enclosed is now the number of turns N2 times the current

(1/2), leading to

(4.5)

(4.6)

Note that symmetry enforces that equal currents 1/2 flow between terminals

A and B by the two parallel winding paths. Consider a rectangular cross

section, in which the total flux is given as before by
w Y2

@
J[

dz I 1 d~=
~N22x

o 1

()

Y
= ~ N2 Ln -~w% ~

Y1 (4,7)

The inductance L2 of the toroid of figure 4.3 with two windings is easily

written down as

(4.8)

In computing the total flux, the cross sectional flux Q is multiplied by

(N2/2) and not (N2) since the number of turns in either of the two parallel

paths between the terminals A and B is (N2/2).

The inductance L2

energies as follows

f

can also be derived in an alternate way by equating

I+L212=UM= +“PH2dV (4.9)

17
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Figure 4.3 Toroidal form with )42/2 turns of opposing winding Sf213SeS

in each half.
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o leading to

‘2 = $+ [‘z (22TY (+k~ ‘y

2

()

Y2

‘%Iw N2 Ln ~

which is the same result as

(4.10)

(4.8).

Having looked at two possible winding arrangements, i.e. , single

winding of figure 4.2 and double winding of figure 4.3, several observa-

tions are in order.

(i) For the same current I and same number of turns NI = N,, the

single-wound coil has 4 times more inductance than the double-

wound coil.

(ii) The stray capacitances associated with the double-wound coil

is less than the single wound coil. Think of the turn-to-

adjacent-turn capacitance, place N2/2 of these in series, and

place the two “halves” of the coil capacitance in parallel.

This is an over simplified view and the advantage gained is

actually not this great.

(iii) The double-wound coil can be operated at a much higher voltage

level since its terminals are at diametrically opposite points

in the coil as opposed to being adjacent to each other in the

single-wound case. In effect, the voltage is graded along the

two “halves” of the coil with N2/2 gaps instead of just one

gap.

Items (ii) and (iii) above are the advantages of the double-wound

coil, especially in simulator applications at the cost of reduced induc-

tance for a given number of turns. This cost is not prohibitive since

‘1 =L2 ifN2 = 2NI
. (4.11)

In other words, a double-wound coil with twice the number of turns has

the same inductance as a single-wound coil, in addition to its enhanced

suitability for high-voltage, low-capacitance applications.

19
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L&us then focus our attention on a toroidal form with a rectangular @

cross section with a double winding similar to what appears in figure 4.3.

The cross section of such a toroid is shown in figure 4.4. The inner and

outer cylindrical ‘radii’ are ‘iIland Y2. The width of the form is w and

it is inscribed in a spherical radius a as shown. A specification of w,

Y’l,Y2 uniquely specifies the geometry and dependent parameters 30 and a,

are also defined as indicated for the convenience of presenting the

numerical results.

From the derivations in the earlier part of this section, the induc-

tance L2 of such a coil as shown in figure 4.4 under the assumption of a

double winding in the sense of figure 4.3, is given by

(4.12)

where N2 is now the total number of turns in the entire coil with N2/2 in

each half wound in opposite senses.

In the next section, we start with (4.12) above and determine optimal o
shapes and also discuss related performance characteristics e.g., forces

or pressure exerted.

20
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v. OPTIMUM SHAPE FOR CONTAINMENT IN FINITE SPHERICAL VOLUME AND OTHER

PERFORMANCE CHARACTERISTICS

We start with the previously derived result for the inductance L of

a cojl with two windings, wound on a toroidal form

section. Ignoring the suffix ‘2’, it is given by

The object now is to optimize this inductance with

of rectangular cross

(5.1)

respect to geometrical

parameters. Two independent geometrical parameters g and e. are defined

according as

.

sin(oo) = y2/a

Cos( 130)= w/(2a) (5.3)

tan(O.) = 2Y2/w

Also, if Al is the minimum spacing between the turn centers at the inner

boundary of the toroid, we have

(5.4)

Using

field

N~ax in order to obtain the maximum possible L and also for improved

containment, we have

22



2. u7rwa
Sin%o) *

2A:
<2

If we make use of a change of variable

Cos(eo) = v

(5.5) can be written as

It can be easily shown that

and c = ~. With reference

(5.5)

(5.6)

(5.7)

Cos(eo) = 0.5773 or 01

(y~/y~) = 1.648

L attains its maximum value Lmax when v = l/~

to figure 4.4, this corresponds to

o = 54.74”

and

Alternatively, for a specified L and Al, the minimum radius ~min

corresponding to the smallest spherical volume required to attain the

specified L for a given Al’is

23
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() 1/3
amin = 4.5: A:

(5, 9) and (5.10) are useful when one is designing a specific inductor that

is optimal.

We may also present the results of

normalized plots. Rewriting (5.5) in a

the inductance values in a set of

normalized form, we have

Observe that Lnorm is a dimensionless parameter

(5.11]

which could now be plotted

as functions of @u and g separately. These results are shown in Table 1

and plotted in figures 5.1 and 5.2. The maximum value of L(n) i.e., 1$~

is observed to be 0.222 for e. = 54.74° and g = 1.648 which is consistent

with (5.9). The inductance equations and the results plotted are useful

in actual design and fabrication of such field-containing inductors in
high-voltage, low-capacitance applications.

Other related performance characteristics of these inductors are:

(1) energy handling capacity and (2) force or pressure exerted in the

toroidal form due to the current flow in the windings.

The energy capacity is simply governed by (0.5 L 12) and it is

essentially the same as the single winding inductor carrying the same

current, under the assumption of twice the number of turns in the double

winding inductor.

With regards to the pressure (= Force per unit area) due to magnetic

field, one may visualize such forces as originating from a tension T

along the magnetic field lines and a pressure P at right angles to the

magnetic field lines [5_J. Both T and P are given numerically by

(5.12)

24
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TABLE 1

Normalized Inductance L(n) ~or

Varying Geometrical Parameters

F
L=Y2/Y1

00

(degrees

10

20

30

40

50

54.74

60

70

80

1.1
.—

0.007

0.027

0.054

0.078

0.094

0.096

0.093

0.075

0.042

1.3

0.014

0.054

0.106

0.154

0.184

0.188

0.183

0.147

0.082

1.5

0.016

0.062

0.123

0.179

0.213

0.218

0.212

0.171,

0.096~

1.649

0.017

0.064

0.125

0.183

0.218

ma

0.217

0.175

0.098

2

0.016

0.060

0.118

0.172

0.205

0.209

0.204

0.164

0.092

2.5

0.013

0.051

0.100

0.146

0.174,

0.178

o.173i

0.140

J
0.078

3 3.5 4

0.011 0.009 0.008

0.042 0.035 0.030

0.083 0.070 0.059

0.121 0.101 0.086

0.144 0.121 0.103

0.148 0.123 0.105

0.144 0.120 0.102

0.116 0.097 0.083

0.065 0.054 0.046

4.5

0.007

0.026

0.050

0.073

0.087

0.089

0.087

0.070

0.039

5

0.006

0.022

0.044

0.064

0.076

0.077

0.075

0.061

0.034

inductance of the coil

inner spacing between

turn centers

permeability of the medium

spherical radius of the

coil
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and c = 1.649

c = 1.649
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Figure 5.1 Normalized inductance of

L (= Y#YJ.
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0.3

0.2

0.1

0.0

Figure
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dimensionless
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# I 1 n ,

1.1 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

c = (Y#Q +

5.2 Normalized inductance as a function of G for various eo.
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In the present case, since B is oriented in the azimuthal or @ direction,

the force is directed radially or axially, depending on which face of the

rectangular cross section one is look~ng at. In any case, this force,

quant.jfied in (!5.12)is present and tends ‘topush the enclosing surface S

in the direction of outward normal ~S. If such forces become a concern,

nonconducting mechanical restraints such as tubes, bands and weights may

become necessary. It is also noted that the pressure is maximum at or

near the inner boundary as given by

and the energy Urnis given by

Um=+L12

(5.13)

(5.14)

One could perhaps define a parameter 6 which is the ratio of the maximum

pressure to energy, as

]P/
&

max 1.2 -=
urn

4 LLf
(5.15)

It is desirable to minimize this ratio, which is accomplished by requiring

a geometry that leads to the maximum inductance value, which has been

previously discussed,

28



VI. SUMMARY

Typical solenoidal coils have large magnet~c dipole moments leading

to excessive interfering magnetic fields, in other regions of interest.

In an effort to contain the magnetic field, toroidal forms with a single

winding have been employed in the past. However such single winding coils

are limited in their voltage handling capability since the applied

voltage is graded essentially across the distance between adjacent turn

centers.

Recent advancements in simulation technology have created a need for

high-voltage, low-capacitance inductors, which is the problem addressed

in this report. Design formulas are developed, normalized inductance

values are plotted and performance characteristics such as energy considera-

tions, pressure exerted due to current flow are discussed. It is also

observed that such inductors have the added advantage of no mutual

coupling between various inductors in a given circuit. For example,

field-containing inductors can be added in series, parallel combinations

and they will have very little mutual inductance, since none of them has

an exterior magnetic field to couple jnto other inductors.
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