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Abstract

One way of launching a fast transient pulse in the TEM mode
of a biconic (or monotonic) antenna geometry is to use a distributed
source. This paper discusses and generalizes this concept to that
of a distributed switch which can be incorporated in typical 14arx/
peaker geometries. Various shapes for this type of distributed
source/switch are also discussed.
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I. Introduction

Over the years research into techniques for launching transient

electromagnetic (EM) waves has yielded various results incorporated

into the design of EMP simulators [9]. As one goes to higher-voltage

sources (pulse power) then the electric fields near a single-output-

switch source become larger. The breakdown-electric-field strength

of the air and of other media (gases, oil, etc.) limits the magnitude

of the allowable electric fields.

The size of the source (near the output switch) also can

limit the rise time of the desired EM wave in or around the simulator.

idhena switch (in general involving an arc to close the switch) closes,

it takes time for this closure to be effective in establishing a new

electric field around the switch because of the finite velocity of

transient EM propagation. In this context the size of the switch

itself can become important as its size increases to switch larger

and larger voltages.

As voltages become larger one can reduce the voltage on an

individual closing switch by increasing the number of switches.

However, these switches can close at various relative times, influencing

the character of the resulting EM wave (at least at early times)

launched on the simulator. The problem is to construct an array of

switches which close at appropriate times to produce the desired

EM wave.

What this leads to is the concept of a distributed source which

“matches” the desired EM wave. Distributed sources can come in

various forms depending on the type of desired EM wave. In this

note our concentration is on such distributed sources for launching

3

spherical waves on rotationally symmetric conducting conical

systems [1,2]. These can also be extended to the inhomogeneous

TEM waves on cylindrical or conical systems [3,4,5,6], or plane waves

[7,8]. In these studies, it is clear that the separation (or size)

of the individual elements (including switches as a part) limits



the early-time or high-frequency performance of the distributed

source. Of course the basic switch performance is also a factor,

but this is a different issue.

This note discusses some nuances of distributed sources for

launching rotationally-symmetric spherical waves. In particular

it discusses the combination of this distributed-source concept

with traditional circular biconic (or monotonic) pulse-generator/

wave-launching systems.
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II. Concept of Distributed Source

The basic concept of the distributed source is related to the

EM uniqueness theorem. As is well known in EM theory [1.1],

the solution for the EM fields in a volume is determined by

the fields on the associated boundary surface. The surface

fields of concern are the tangential (to the surface) electric and

magnetic fields. While various combinations are possible, it is

the tangential electric field which is our imnediate concern. It

is sufficient that the tangential electric field on the boundary

surface be chosen (and produced) which is associated with the

desired electromagnetic fields (of course, satisfying the Maxwell

equations) in the volume of interest.

The basic theory for such a source is given in [1]. For present

purposes let us summarize the basic fields here. Referring to

fig. 2.1 we have cartesian (x,y,z), cylindrical (Y,$,z), and

spherical (r,8,$) coordinate systems, related by

x= Y Cos(()) = r sin(6) COS($)

Y = Y sin($) = r sin(0) sin($)

z= r cos(e)
(2.1)

Y = r sin(6)

The expanding spherical wave of interest is TEM of the form

(for eo<~<m-eo)

4‘o
Zo= ~ (wave impedance of free space)

o

c k%’(speed of light)

(2.2)
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The 6 dependence is

fE(e) =
Cin(e) 4cotwj1

(2.3)
m-e

J
o

fE(6)de = 2

00

This is related to a potential function (voltage)

v = Vofv(e) f(t -:)

dfv(o)

de =
-fE(e)

fv(e) =
M3[ta. (j)] !Ln[cot(~)]

Ln[tan(~Q)] = ~n[cot(>)l

(2.4)

f\j(eo)= 13 fv(;) = o , fv(’rr- O.) = -1

the formulae are in terms of free-space parameters, but byHere

using more general (constant) e and u , the results apply to other media

as well. Note that V. is a convenient scaling voltage; 2V0 is

the voltage between the two cones, or V. is the voltage of one cone

(G=Oo) with respect to a ground plane (0 = 7r/2) if amonocone systfm

is being considered. Typically we can choose f(t -

form with a peak value of about one.

~) in a norms”

component ofAs discussed in [1] it is only required that the

the desired ~ (as in (2.2)) be enforced on a source surface Ss

for EM fields in the volume of interest (00 < 0 < T - e. and
+
r “outside” Ss) to be those originally desired (as the EM fields

described above). This is the fundamental concept of a distributed

ized
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source for launching a spherical TEM wave for this case of

rotation symmetry, or by extension for other kinds of spherical

TEM waves (other forms of fE(8,$)). In essence the idea is to

extrapolate the desired EM fields (of course assumed to satisfy

the Maxwell equations in the media of interest) back to appropriate

boundaries on which sources are provided to at least approximate

the tangential component of the desired electric field in both

space and time (or frequency) on Ss.

8



III. Typical Circular-Biconic (or Monotonic) Marx/Peaker Geometries.

Over the years there has been some evolution of the technology of

the design of pulse generators to drive EMP simulators. As discussed

in [10] one of the common configurations of pulsers to drive a circular

biconic system is that illustrated in fig. 3.1. Here the peaking

capacitors form part of the circular conical structure as a wave-

guiding structure (approximate conductor) for the high frequencies.

Note that there are many peaker arms (not shown) to approximate a body

of revolution.

The discussion here is not concerned with the theory of peaking

capacitors, but with distributed sources. Note that in the typical

pulser system in fig. 3.1 a gas enclosure is used to increase the

dielectric strength of the region near the switch with high electric

fields. The peak electric fields at the surface of the gas enclosure

are of the order of one MV/m (allowing for the dielectric strength

of air with some derating). As one approaches the switch region in

the high-dielectric-strength gas additional enclosures with higher

pressure high-dielectric-strength gas can also be used to accommodate

the higher electric fields. Eventually one encounters the switch(es)

proper from which the fast-rising EM wave is to be launched.

Arriving at the switch region, the physical size of the switch

can limit the rise characteristics of the EM wave due to transit-

time effects across the switch. One can try to reduce the size of

the switch to reduce such problems. Alternately (and complementarily)

one can attempt to design the switch to minimize such problems. One

approach to this is to segment the switch into a larger number of

smaller switches which synthesize the desired EM wave over the

switch region. Such is the subject of this paper.

Note that while fig. 3.1 shows the case of a symmetrical circular

bicone, by inserting a ground plane through the center of the switch

C of the pulser one has a circular monotonicregion and normal to the ~

geometry to which the current discussion equally applies. In the case

of a monotonic geometry one has the choice of placing the Marx and

9
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Figure 3.1. Divided Marx Generator in Circular-Biconic Geometry
with Peaking-Capacitor Arms as Part of Bicone Waveguide
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peaking capacitors in the cone as shown, or alternately in and below

the ground plane which has been introduced. However, these options

do not affect the essentials of the discussion here”

11



IV. The Distributed-Source Concept as a Distributed Switch

Beginning with the distributed source concept in section 2

let us suppose that there is some set of sources (say charged

capacitors) with switches on a source surface S (say a circular

cylinder) as illustrated in fig. 4.1A. Here thescylinder has

radius Y
1’ length hl , and typical tangential-electric-field

magnitude El (say near 6 = m/2 or the symmetry plane orthogonal

to the cylinder axis). Now Ss might be chosen so that outside

Ss might be air and
‘1

might be of the order of one MV/m. Of

course one could also move the distributed source farther back

toward the coordinate center (~=d) and this is

the distributed switch does.

Note that the distributed source with a set of

near Ss also launches an inward propagating wave

in effect what

sources distributed

with a line focus

on the z axis. This field on the z axis can be transiently

●
larger in magnitude than

‘1
and prudent design precautions may

be needed to minimize this potential problem.

Let the sources on Ss be spaced a distance Al in the z

direction and 61 in the $ direction, with these spacings being

sufficiently small to maintain a sufficiently small rise time (or

sufficiently large high-frequency performance) of the desired spherical

TEM wave in section 2. Then the number of sources (including switches)

for this distributed source is given by

‘1
2TrY1

‘1 = q 61 (4.1)

Contrast the previous distributed source with the distributed

switch illustrated in fig. 4.lB. In this case the distributed switch

is in general of much smaller size. Let the switches on the new Ss

of length h2 and radius Y2 be spaced a distance AZ in the z

direction and 62 in the $ direction, again with these spacings

small enough to maintain the requisite early-time (or high-frequency)

performance. Then the number of switches for this distributed switch

is given by

12
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N2=5(S2
(4.2)

Comparing these two cases the distributed switch can have

fewer switches than the distributed source by the ratio

(4.3)

Now for simplicity let us assume that the requisite switch spacings

for EM performance be the same, i.e.

(4.4)

(4.5)

Next let the cone angle 00 be the same in both cases so that

giving

()
2

‘2 ‘2
~’q

(4.6)

(4.7)

This reduces the question to the relative size of ‘2
and hl.

Roughly speaking, as one reduces radius from YI to Y2 the magnitude

of the peak electric field increases proportionately from ‘1 ‘0

‘2 as

(4.8)

14.



This gives

()
2

‘2 ‘1
q=q

(4.9)

Suppose now that in reducing Y1 to Y2 with the attendant use

of higher-dielectric-strength media (special gases, including

pressurization) the peak electric field to be produced (or collapsed)

by the distributed source (switch) is increased by say, one order

magnitude. Then per (4.9) the requisite number of switches is

decreased by a corresponding two orders of magnitude.

Consider now more features of the distributed switch as shown

in fig. 4.2. The source surface Ss, while a body of revolution

in this analysis, is not necessarily a cylinder (a point to be

considered later). This source surface is divided into various

smaller portions containing elementary switches and associated

devices. As in fig. 4.2A conducting structures such as grading

rings (and perhaps associated disks) can be incorporated in the

switch structure as long as they do not short out the electric

fields between one 0 value on Ss and another such o value.

These conductors can be used to separate Ss into bands (see [1])

which are in effect bodies of revolution which contain some number

of switches in parallel which are all triggered to close at the

same time.

Fig. 4.26 shows a blowup of portions of these bands, schematically

illustrating how a switch and grading resistors (plus various other

equipment) forms a unit cell, 2TY2’62
of which form one band. Note

that separate bands are in general triggered at separate times to

meet the requirements of the TEN wave in section 2.

The distributed switch differs from the earlier-considered

distributed source in an interesting respect. The distributed source

involves construction of a tangential electric field on Ss from a

condition of a previously (approximately) null field on Ss. The

15
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distributed switch operates under a condition of a previously con-

structed quasi-static electric field in the switch region from the

erection of the Marx generator into the peaking capacitors. Triggering

the various switches in the distributed switch array brings about

the collapse of the electric field in the switch region which has

been established by the Marx generator in conjunction with elements

such as the grading resistors. In effect Ss is transformed on

triggering the switches into a highly conducting (shorted) sheet.

The wave propagation into the interior of S~ is of a polarity to

reduce the electric field there (with perhaps some overshoot). This

feature might be useful in reducing high-voltage breakdown problems.

17
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v. Cylindrical and Spherical Shapes for a Distributed Source/Switch

Nhile the concept of a distributed source relies on closed

boundary surfaces (including infinity) on which the tangential

electric field is specified, there may be reasons why some parti-

cular shape of all or part of such a surface may be desirable for

some purpose. In the context of high electric fields, electrical

breakdown can be a problem, particular near the source surface in

the case of an expanding wave as in section 2. Furthermore, on

(or near) Ss there is various equipment including switches,

grading rings which perhaps are the “edges” of conducting disks

(inside Ss) on which triggering equipment

One might then try to minimize the maximum

near Ss in some sense.

might be mounted, etc.

electric fields on and

A. Cylindrical

If as in [1] one sets the peak electric field magnitude to

be uniform over Ss, then from (2.2) we have

I 1{
-1

[ ( )1}

e
= o r sin(e) in cotf

= jolf ‘n[cot(>)]}’

=Eo= constant

which implies

Y s constant ❑ y
o

(5.1)

(5.2)

Ss ~ right circular cylinder of radius Y.

18



Now on S~ the tangential electric field is just Ez which

takes the form (at time of local peak)

IIEz = -— ~.lz

1. ,J~Ot&:)]j’sin(,)
=E. sin(0) = Eo>

= ‘0 [y’ +%’2
(5.3)

Thus the maximum tangential electric field on Ss is just Eo,

but away from 6 = m/2 the tangential electric field is less.

As discussed in [1] if one takes equal voltage decrements on Ss

for sources (or switches), then the widths of the associated bands

(or the spacing between grading rings is nonuniform on Ss, increasing

as

B.

In

one goes away from O = n/2.

Spherical

Another shape one might investigate for Ss is the sphere.

this case the magnitude of the electric field and of its tangential

component just outside Ss is

]E[ Ivol
= lE~lmax = ~fE(e)max

t t (5.4)

Y. ~ radius of sphere Ss

Note how this field is proportional to I/sin(e) on Ss> increasin9

as one goes away from 6 = m/2 toward the circular conical conductors.

If one looks at the potential function (voltage) along S~ and

requires equal voltage change between adjacent grading rings (as in

fig. 4.2), then the grading rings space closer together as one approaches

the circular conducting cones. This could be inconvenient for the o
design of switches, etc. Inside Ss there may be various equipment

19
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(such as for triggering) required. If the grading rings are the

outer “edges” of conducting disks then the disks near the circular

conducting cones (away from 0 < 7r/2)will be considerably closer

together and the electric fields (now z directed) inside Ss will

be much higher in these extremities (near the conducting cones).

20
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VI. Shape for Distributed Source/Switch with a Uniform Quasi-Static
z-Directed Electric Field Inside Ss

One possible design consideration for a distributed source/switch

is to maintain a uniform quasi-static electric field in the z

direction inside Ss. Except for certain phenomena associated with

fast transients, this could be important in designing the switches

and triggering equipment associated with each band. If there are

metallic circular disks whose “edges” are the grading rings, then

these disks being perpendicular to the z axis, the electric field

inside Ss is constrained to be approximately parallel to the

z axis. Spacing these disks equally with equal voltages per band

leads to this particular design.

Letting (in a peak sense between adjacent disks)

V = Azc , A = constant (6.1)

o on Ss (and inside Ss in a quasi-static sense), we have from

section 2 the corresponding voltage for our desired wave on S~

WC) = V. fv(ec)

fv(e) =
l.m[cot(~)]

Qm[cot(>)]

(6.2)

where a subscript c denotes values on the contour in the (Y,z)

plane corresponding to Ss.

Noting that

fE(e) =-J-fde V(o)

. {sin(,) ,n[cot($.)]j’(6.3)

21



let us make S~ be perpendicular to the (x,y) plane (or z = O

plane) at the intersection with this plane. At z = O then let us

constrain that the electric field tangential to S~ be the same

from both (6.1) and (6.2) giving

dV
—=Adzc

1 dV= .——.
Y. dec

6C’;
(6.4)

= +- V. fE(;)
o

Y. ~ radius of S~ on (x,y) plane

Equating the voltages in (6.1) and (6.2) on S~ we have

, .n[mt(>)l.> v

0!Ln[cot(>)] 0
o+n~ot(>)]j’

(6.5)

z
c

~ = +49]

In spherical coordinates we have on S~

zc
= rc COS(6C)

giving rc/Yo as a function of ec.

(6.6)

) 22
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An alternate representation in cylindrical coordinates uses

~

Oc =
()

2 -arccot e ‘o

Y
c = tan((3c)q

!&. tan[2arccot(fi)j

This is simplified by use of the trigonometric formula [12]

giving

Thus we have

-tan[arccot(

giving Yc/zo as an explicit function of zc/Yo.

Note that

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)
Yc

=
~

1

z =0
c

23
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o
Expanding (6.10) for small zc/’i’ogives [12]

(6.12)

The constraint in this section produces a barrel shape for Ss.

The maximum cylindrical radius is ‘4 = Y. on the (x,Y) plane

with Y decreasing as Zc goes away from zero toward either of

the circular conducting cones (Y = Y. and e = i-r- 6.).

24



VII. Shape for a Distributed Source/Switch with a Uniform Peak
Tangential Electric Field on S~

Another consideration might be that the spacing between the

grading rings as in fig. 4.2Abe uniform a~on9 Ss so that switches

and grading resistors as in fig. 4.2B be all identical and tangential

to Ss. Mith equal peak voltages between adjacent grading rings,

or equivalently (to a good approximation) a uniform peak tangential

component of 1! on Ss, one can determine a corresponding shape

for Ss. Note of course that rotation symmetry ($ independence)

of the field expressed in cylindrical coordinates implies that Ss

is a body of revolution and that we need only specify a curve in

the (Y,z) plane to specify Ss, as indicated in fig. 7.1.

Again the desired potential distribution on Ss (peak, neglecting

retarded-time effects) is

V(ec) = V. fv(ec)

The corresponding electric field is

fE(e) = -~fv(e)

-{sin(@) Ln[cot(>)l’j’

(7.1)

(7.2)

The unit tangent vector on Ss is

25
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Figure 7,1. Coordinates for Distributed Source/Switch with Uniform
Tangential Electric Field on Ss
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The tangential electric field on S~ (peak) is then

(~s, r: jl’2= V. ‘E(ec) de (7.4)

=Eo= constant

At 6C = m/2 set rc = Y. and set Ee = E. (making the contour

(and thus S~) parallel to ~ here) giving

‘O = ‘O {n[cot(>)]}%$+%}”2(7.5)
r
c = Y.

Using the symmetry of Ss with respect to the (x,y) plane so that

drc

d(3c
=0 (7.6)

ec=~

gives

‘O= ~@cOt(>)]j’ (7.7)

27



Setting

then (7.4) becomes

{
‘@c) (~)z+~,j’”.[n[cot(%)lj’

c

or

{

1/2
1 = sin(ec) (~)’ + R’

c }

(7.8)

(7.9)

(7.10)

with the initial conditions

R = 1
Oc=;

(7.11)

dR
dec =0”

ec=f

Defining

(7.12)

then ~ represents the angle on Ss with respect to the symmetry

plane 2=0. Then (7.10) becomes

1 = CO,($){(’)’+ ,’~” (7.13)

28
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or

()dR2+R2G
= secz(~) (7.14)

This first order nonlinear differential equation together with

R ~=o=l

(7.15)

gives R as a function of O,

Now to better understand the functional form of R(v) let

us make series expansions as

R(o) = ~ an~n = ao+a2~2+O(~4)

n=O

(7.16)

Note that R($) has only even terms in the expansion due tothe

synnnetryenforced with respect to o = O (or Zc = O). Similarly

in (7.14) we expand

{ }

2
secz(v) = 1 +$+0($4)

= 1 ++2 +0(+4)

R2($)= a:+ 2aoa2 7)2+ 0(1)4)

()(y 2 = 4a~$2+O(~4)

(7.17)

29



Substituting these expansions in (7.14) we have for the constant

term

azo
=1

(7.18)

a. = 1

where the positive square root assures R = 1 at v = O as in

(7.15). The V2 term has

4a~+-2?i32.1 =0 (7.19)

az =
-2?y4+16 .- 1 *%

8 .4

Choosing the positive square root so that R increases with V2

gives

a2 =
-1 +fi
-— = .3094

In cylindrical coordinates we have

R=

42 =

=

17.20)

{(+)’+(>)’j’z=: ~‘w +4$)}
{arctan($f={$ +O(($)j’(7.21)

($ + o((:f)

30
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u)
Then (7.20) becomes

On the right side substituting for Yc gives

-3 +~5
4 = -0.191

(7.22)

(7.23)

Yc
1- o.191(>f

z
~= for small

o f

A numerical solution of (7.14) with the conditions of (7.15) is

easily effected by rewriting (7.14) as

1/2
dR
q= [

sec2(+) -
‘21 (7.24)

beginning at $ = O, R = 1 and incrementing through increasing ~

as IJ+A$ with the next R as R+ (dR/d~)A~. If AW is taken

sufficiently small the function R(w) converges to the desired accuracy,

o
as can be determined by varying AIJJand noting an insignificant change
in R($).

31



The function R(4) is tabulated in tables 7.1 and 7.2 for the

bicone impedance Zc = 120Q and Zc = 150L? respectively. Here

the corresponding cone angles are determined through the formulae

of section 2 together with

Zc =Zf
09

f=
9 ; +’491

. IJo s 4Tr x 10-7 H/m

1
E=-

0
lJoc2

c = 2.99793 (f10-5) x l!38m/s (measured speed of light)

Then we have

Zc ‘ 120Q > 00 = 0.7045 radians

= 40.37 degrees

Zc = 1500 * El. = 0.5576 radians

60 = 31.95 degrees

(7.26)

In these tables the independent variable is taken as ‘v for

60 < 0 < IT/2or O < $:n/2 - (3.. Uniform decrements of fv—— -
are taken since one may typically use uniform voltages for the

distributed source/switch under consideration.

Figure 7.2 summarizes the shape of this and other choices for

s~, plotting Yc/’Yo versus zc/zo for cylindrical and spherical

shapes (section 5) as well as the shapes discussed in section 6

and the present section.
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Table 7.1 Distributed Source/Switch with Uniform Tangential Electric Field
on s~ : Zc = 120 0.
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I

~=; .fJ

radians

!3.617
@. 625

I
0

radians

1. 1!3499
1. 1s9s4
1.19413
i. 39a78
1. 2?fZ347
1. 2!%321
1.213QX3
1.217.94
1.22272
1. ~~7&5
1. 2%7!63
1 ● 2z7&5
1. 2?4272
i.24783
1. X53Q~iJ
1.25020
1. 2634?5
1. 2!(5675
1. 274G9
3.27947
~ .2E14913
1.29037
1. 295E19

,r

D

Table 7.1 Continued and Concluded.
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Table 7.2 Continued and Concluded.
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Figure 7.2 Various Shapes for Distributed Source/Switch
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VIII. Smmary

This paper has first extended the concept of a distributed

source to that of a distributed switch. This has the potential

benefit of greatly reducing the required number of switches by

reducing the required size of the distributed source. In this

scheme one may still use distributed peaking capacitors as is

typically done in biconic pulser geometries. While this paper

has addressed itself to the case of pulsers intended to drive biconic

(or monotonic) antennas (at least near the pulser), the concept

is not limited to this case and other types of distributed switches

can be envisioned for other types of EMP simulator geometries.

In realizing a distributed source or switch for use in a

biconic (or monotonic) geometry there are a variety of shapes which

one can use to realize this. Here we have considered several shapes

based on uniformity of various electric-field components near Ss.

Depending on the relative practical importance of various design

e problems a particular shape can be selected.
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