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ABSTRACT

In this péper a lens is specified for transitioning plane waves between media of specified
permittivities. It is desired to have the plane wave in the second medium propagate
normal to the assumed plane boundary of that medium. The results for the case of normal
incidence are then generalized to the case of non-normal incidence. In particular, the
conditions of transit time conservatior and impedance matching are related to the Brewster
angle.
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1 Introduction

One of the possible approaches to lens design for transient or broadband electromagnetic
waves involves differential impedance matching and transit-time conservation. One seeks
to transition plane waves, ideally with no distortion or reflection, between two TEM trans-
mission lines. The design of such lenses is specified by giving the material properties and
shape of the lens. These properties;, given usually by the pernﬁttivity tensor, €, and the
permeability tensor, H, may vary from point to point within the lens, but are assumed
to be independent of frequéncy. (The conductivity is assumed to be zero.) In order to
specify the material properties and geometry of a lens one generally has to solve an ini-
tial value problem which arises from enforcing certain physical principles. That is, a;t‘ a
lens/transmission line boundary, impedances must be matched differentially and a wave in
the lens should go into an inhomogeneous TEM plane wave in the adjacent region. Thus
the travel time for waves following different paths should be equal. For example, a lens
may be specified to transition TEM waves between two cylindrical coaxial waveguides of
different size (seé [1]). Other exé.mples have appeared in the literature ([2], [3]).

In this paper we cbnsidgr a particularly simple geometry in which an anisotropic lens
is specified for the transitioning of plane waves between medix of different permittivities.
Unlike the lenses discussed in earlier results, the impedance mafching and transit f{ime
conservation requirements have not lead to the same system of differential equations. It i3
interesting to note that in the differential geometry examples to date, we have a plane or
spherical wave (incident on or leaving the lens) which is normally incident on the boundary
between regions of different permittivities and for permeabilities.

Of course, in the case of non-normal incidence we can have the situation where a TEM
wave propagates with a TM polarization, and the wave can pass through the boundary

with no reflection. That is, the angle of incidence is the Brewster angle, ¥5, which can




be calculated if the properties of the media are known. For a discussion of the Brewster
angle phenomenon, see [4]. In Section 2 of this paper we discuss briefly this situation, and
show that enforcing the requirements of differential impedance matching and transit-time
conservation at boundaries of regions of different permittivities leads to the Brewster angle
condition. |

In Section 3 of this paper the main results are presented for the case of a plane wave
propagating in region I, normally incident on a boundary between I and a lens region
L, through L and on into a second region II. The regions I, L, and II have respective
permittivities €, ¢, and €2. The permittivity and permeability of free space are denoted
'by € and po, respectively. All regions will be assumed to have the same permeability,
which we will take as u. The requirements of continuity of impedances and transit-time
conservation are to hold at all boundaries. The shape of the lens region and its permittivity
are the design objectives, and the results appear in Section 3. |

Finally, in Section 4 of this paper some further remarks are made on the case of non-
normal incidence.: 'The case of ﬁoi'mal incidence generalizes to the case of non-normal

incidence. This result then admits the possibility of constructing an array of lenses.

2 Differential Transit-Time and Impedance Matching
for Plane Wave Propagating From One Uniform
Isotropic Dielectric Medium into Another

Let us consider as in Figure 2.1 two regions, I and II, of permittivities ¢, and ;, respectively.
A plane boundary separates these regions. If a wave in region I is incident on this boundary

at the angle ¢p, and if this angle is the Brewster angle, then we have the well-known
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Figure 2.1l: Matching Differential Transit Times and Impedances at an
Interface Between Two Homogeneous Isotropic Dielectric Media




formula
tan(¢¥p) = \/E—‘— . (2.1)
. ez
The regions I and II are assumed to have the same permeability u. In region I we also
have

€3

cot(yy) = p” (2.2)

and consequently ¥p + 5 = 7/2. |

Now if the conditions of transit-time conservation and continuity of impedances are
enforced at the boundary, we will find that the Brewster angle conditions (2.1) and (2.2)
must hold as a consequence. The details are as follows.

First, we investigate the condition that differential travel times for waves following
different paths must be equal. Thus in Figure 2.1 the travel times along the straight line
paths LMNP and QRST must be equal. From the geometry it is clear that the time along
MN must equal the time along RS. Thus we have

h o= VEE(MN)  (23)

ty = B&(ES).
Now since,
MN = (Ay)cos(ys) | (2.4)
ES = (Ay)cos(¥h), |

the condition that ¢, = ¢, implies

cos(¥p) _ /e
— == 2.5
cos(yp) €2 (2.5)
Since we must also have impedances matched differentially across the boundary, we
also have
AZI = A1 52 (2.6)
1




AZ, = Al
€2
where

Ay = (Ay)(sin(¥s)) (2.7)
A, = (Ay)(sin(¥p)) -

Impedance continuity across the boundary must then imply

sin(¢s) _ [a '
stn(¥5) "\/_ - @8

Hence the requirements of transit-time conservation (2.5) and impedance matching (2.8)

imply
cos( ) - sin(ys)
cos(yp)  sin(yp)

(2.9)
Since {2.9) implies

| sin(295) = sin(2¢3) , (2.10)
we find among the many solutions of (2.10) the following important cases. Fifst, if Yy =

5, then € = ¢; and we obtain the special case of uniform media. Second, if we have

¥p + 5 = 7/2, we have the Brewster angle condition with the usual formulae

tan(ys) F (2.11)
cot(p) = \[2 |

resulting. Thus, if ¢, # €,, then the Brewster angle conditions (2.11) are a consequence of

the travel-time and impedance-matching conditions.

3 Statement of the Problem and Its Solution

Let us consider the gecmetry as indicated in Figure 3.1. Consider a line located at P,

which can be taken as the z axis in a rectangular coordinate system (z, y, z). The positive
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Figure 3.1: Transit Time and Differential Impedance Matching from Lens to
Homogeneous Isotropic Dielectric Medium at Normal Incidence




direction of the z-axis is downward, and the positive direction of the y-axis is to the right.
The line z = z, (to be discussed latter) forms the upper boundary of the lens region L while
the line z = z, forms the lower boundary of the lens and is the boundary between regions L
and T, whose respective permittivities are ¢; and ¢;. At any point on the boundary line

T = z, we can express the coordinates (z,y,) in terms of polar coordinates (¥,, ¢;) as

2, = U,cos(¢s) (3.1)

y2 = ,sin(¢d,).

A plane wave (as shown later) is to propagate inl a normal direction in region I and on
into region L and then into II. We wishl to specify the permittivity of region L as well as
the shape of the lens region.

We assume that the permeability, 4 = g9, is the same in all regions and try a solution

- of the form :
¢ | .

2 = f(9)4(9) - (32)
where f(¥) and g{¢) are functions which are to be determined. Now since we require

continuity of impedances across the boundary z = z, between the lens region Z and

region II, we compute changes in impedances as follows. First, for the lens region we have

(AZ), = \/gqr(zm) . | (3.3)

In the lens region L surfaces of constant ¢ are perfect conductors (with only E; # 0).

Hence as ¥ varies, (AZ), should be a constant for constant ¢, and so the substitution of

' _ Ho
(BB)e=\ G Fwyad) A9 (3-4)

Thus, since (AZ), is not a function of ¥ in the (dispersionless) lens region L, we must

(3.2) into (3.3) yields

have

F(®) = (¥/%,) (25)




for some constant ¥,. Thus {3.4) becomes

(AZ), = \/:;5‘(2;)‘1’0“ : (3.6)

Next, in region II the change in impedance is given by

(AZ): = \/‘:LEA.% (3.7)

and since we must have continuity of differential impedances across the boundary we obtain

from (3.6) and (3.7) (using ¢ = ¢, on the boundary)

By g 1
Ads V 9(#2)

However on the boundary z, is a constant and so y, is a function only of ¢,, since

(3.8)

Y2 = T, - tan{¢,). Hence we must also have

gg—z = z,sec(4,) . (3.9)

Thus a comparis’on'of (3.8) and (3.9) yields the result

o(82) = (22) cost(s) (3.10)
If we now choose the arbitrary coﬁsta;nt ¥, as z, then we have
: g(-¢2) = cos'(4,) . | (3.11)
Thig r&ult then requires that the form of the function g be

9($) = cos'(4) . | | (3.12)

Hence the functions f and g appearing in (3.2) have been determined, with

f(¥) = (¥/z,)? (3.13)




and
g(¢) = cos'(¢) . (3.14)

Thus equation (3.2) assumes the form

€@ =6 (%)2 cos(p) = €, (%)2&32(95) . (3.15)

Equation (3.15) and its various alternative forms will be uged to specify the lens design.

Note that the only condition that has been imposed up to this point is the differential
impedance-matching condition. We now consider the transit-iime requirement. If we
consider some z; such that |

0< 2 <2 < 22 (3.16)

where the lines z = z, and z = z, define the boundary lines for our lens (region L), then
the point (Zo, ¥o) is within the lens. We seek the wave velocity relative to the z-coordinate

(i.e., the reciprocal of local differential transit time). In the ¥ direction the velocity v is

l ) =% (3.17)

B ]
= = ——, €, =
v/ Hoée € VEr, T e €

However, the wave is slower in terms of z by a factor of cos(¢) and so

Y=

v, = vcos(g) = _cc_o:(_gi;) (3.18)
re
or
=& (= _1_
Ve = Ve (‘If) cos(g) (3.19)
Now on a surface of constant z = z,, we have ¥ cos(¢) = z, and so
c 2
Y, = —. 3.20
70 (3.20)

Hence the velocity is proportional to 1/z and hence is a function only of z. Thus any
surface of constant z is a wavefront or surface of constant phase. Note z can be chosen

arbitrarily in z; < z < 7z, including both upper and lower boundaries.
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Let us next consider the upper boundary z = 2, of the lens. Clearly (see Figure 3.1)
Ay, - cos(@,) = V1A ¢y, while the change in impedance, AZ, in the lens is proportional to
(Y. Ade)/ /€. But

Tt o ()i 95 =
1 1
T\ Ay
= (Z)Vé | (3.22)

At normal incidence (i.e., y; = 0 and ¢; = 0) we must have

L (ﬂ)z | (3.23)

€ 2
and hence AZ is proportional to (Ay;)/./€ as required. The form of the equations for
the upper boundary is the same as the form for the lower boundary.
We now turn to the problem of dete@ﬂng'the spatial limits of our lens. The notation
remains as before and the geometry is as in Figure 3.1. The permittivity in the lems, ¢,
is given as in Equation (3.15) in various forms. Thus we have, from the conditions on the

lower boundary,

€ (2)2 cos?(4)

Z2

= & (;’;)2 cos*(¢) (3.24)

.(z)2 z?
= € |—
2 z3 32+y2

while from the conditions on the upper boundary

€

& = & (%>2cos‘(¢) (3.25)
= g (f;)zcoszw) .

Thus we have the same form for both boundaries (z1 and ¢; versus z; and €2).
Now we must have ¢, > ¢; everywhere. Clearly ¢, is minimized in the lens region for

minimum z and maximum y. Hence we may put z = z;, ¢ = @n.. and obtain from (3.24)

11




and (3.25)

€lon = €2 (i:_:,)zc082(¢m“) (3.26)
= €;c08%(Pmaz) -
Hence we need
?‘ 2 secz(‘?smax) 21 (3.27)
0

and so we may want to keep $n.. small if we want to have ¢; near €. Note alzo that

e _ Tt (3.28)

Y2aax T2
which shows that for given y, . that y,__ can be no less than (z,/z;)y,_, . Hence the
upper boundary, z = z,, of the lens cannot be extended upward to the line z =0 (i.e., to
the z-axis). '
Finally, to obtain contours of constant e?, consider Equations (3.24). If we normalize

¢; by dividing by €3, then

€ = &=} cos'(y) (3.29)
‘I’n = ‘I'/Z'g.

If values of ¢, are chosen, contour plots ina.y be obtained. These are shown in Figure 3.2
for values of ¢, = 0.25, 0.50, 1.0, 2.0, and 4.0. It should be noted that at any point on a
contour of constant e, the slope is

dy z*+2y°
iz~ zy (3.30)
This result is obtained by differentiation of €, in (3.29) with the substitution of rectangular

coordinates from (3.24). Moreover, differentiation of (3.30) yields

Py _ 2(24* - 2) (=% +v7)
dz? (zy)®

(2.31)

and hence we have inflection points on the contours of constant ¢, at those points where

the contours intersect the line whose equation is y = z/v/2 (i.e., the ray ¢ = 35.3°).

12




v

e—— e— ——: denotes perfectly conducting sheets (typical)
y/x,y
0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
0 T T T

0.25

0.

. x/x2 1.0
1.25

1.5

1.75

2.0

2 4
en Wn cos (o)

lower
boundary ‘\\
of lens

Figure 3.2:
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In Figure 3.3 the shape of such a lens is shown. Equal ¢, contours are superimposed on
the lens diagram. The lens may or may not be symmetrical about the z-axis, and perfectly
conducting sheets are inserted on some set of surfaces of constant ¢ sufficiently close to

make their spacing electrically small.

4 Non-Normal Incidence Revisited

Let us consider further the case of non-normal incidence. We assume, as m Figure 4.1,
that a plane boundary z = z, separates regions I and II of permittivities ¢; and ¢;,. We
assume further that both regions have the same permeabiﬁty po- For a wave specified to
have a velocity v; {phase velocity) along the boundary of the lower region (of permittivity

€2), v will make an angle ¥, with the boundary, and we must have

? =cos(y;) L1 . (41)

where v, = (poez)‘lﬁ < v;. Hence if v; and ¢, are specified, both v, and 4, are determined.

Now in the upper region I, whose permittivity is ¢;, we must have

% =cos(¥y) S 1 (4.2)
and hence
cos(42) _ vz _ [a
cos()  u Ve : (4.3)

Thus specifying v; and €; determines v, and 1,, and if ¢, is 2 Brewster angle (which is
implied by impedance continuity and transit-time conservation as shown in Section 2),

then 9, and hence v; and ¢, are determined. Equation (4.3) then becozﬁes

tan(yy) = E ) (4.4)

14

as expected.
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Figure 4.1: Use of Lens to Launch Wave for Non Normal Incidence at
Interface Between Two Homogeneous Isotropic Dielectric Media
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. Let us consider some numerical examples. For example, if a relative value of ¢, is

specified, say €; = 10¢, and if ¥; = ¢, then

cos(ds) = %___(_eg)‘ﬁ:

2l
o

€2
sin() = —= (4.5)
tan(¢;) = %

and hence ¢, = 71.6°, . = 18.4°, and ¢ = Y¢. On the other hand, if we choose ¢, = 4,

with v; = ¢, then

cos(s) = 3
sin(¢,) = % (4.6)
taalp) = =

‘ and hence ¢, = 30°, ), = 60°, and ¢; = 2. The examples are included in Table 4.1 which
shows that a reduction in the chosen value of €, with v; = ¢, will yield a slight increase in
the value of €, with €; > €;,. Thus in the Brewster angle case, a reduction in the chosen
value of €, with v; = ¢, results in a slight increase in the value of ¢, with ¢; > ¢.

Let us now summarize the implications of the above analysis. First of all, if we assume
that our wave in the lower region is to have certain prescribed properties (i.e., non-normal
propagation) so that its- direction is governed by a known phase velocity v; along the
interface between the regions I and II, and that the permittivity of the lower region is
specified, then the velocity v; and angle ¥, are determined. Secondly, if the upper region
is 2 uniform medium, then (as discussed in Section 2) the impedance and transit-time
requirements will lead to the Brewster angle condition in which the permittivity ¢, of
the upper region emerges as part of our solution. Thus tke previous solution (Section 3)

generalizes to the case of non-normal incidence through a simple rotation of coordinates
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€2 |cos(yz) | ¥ |=in(¥h) | % g
1 1 6° ) . 10¢
Oco | A= 7067 Lo | 184 1%
9¢, I jrs| 1} |15 9
5 1 o e 6

©| J= |659 55 24.1 =
4 3 60° 3 30° o

Table 4.1: Permittivities and Brewster Angles for the Case of w,
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by the Brewster angle. In this event we can now assume we have a plane wave in the upper
region, and this wave is launched so that it is normally incident on an interface.

Thus we can construct, as shown in Figure 4.2, an array of lenses. The solid lines
shown correspond to metal sheets, and common boundaries (indicated by solid lines with
cross-hatching) can be dispensed with. The angles displayed correspond to a value of

€ = 4¢,.

§ Summary

For the case of a plane wave propagating in vthe z-direction and normally incident on a
boundary z = z; between media of different permitiivities we have the lens geometry and
medium specified by Equations (3.24) through (3.25). Note that as one goes away from
the symmetry plane (Figure 3.2), the values of €n decrease. The contour plots of Figure 3.3
indicate the lens shape for various ¢,. Morecver, we cannot bring the iens down to 2 line
source (see (3.28)). The case of normal incidence is then shown to be applicable, at least

for a certain range of parameters, to the case of non-normal incidence.
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et ¢ boundaries that can be removed without disturbing the wave

=& = 30°
£1 3 Eo (/3] 30
€y = 4s° ¥, = pQ°

€1

b,

€2

I

Figure 4.2: Lens Array for Launching Wave in One Uniform Isotropic Dielectric
Medium for Propagation into Second Such Medium
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