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AN ANISOTROPIC LENS FOR TRANSITIONING
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ABSTRACT

In this paper a lens is specified for transitioning plane waves between media of specified

permittivities. It is desired to have the plane wave in the second medium propagate

normal to the assumed plane boundary of that medium. The results for the case of normal

incidence are then genedized to the case of non-normal incidence. In particular, the

conditions oft-it time conservation and imped=ce matching are related to the Brewster

●
angle.
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Introduction

of the possible approaches to lens design for transient or broadband electromagnetic

waves involves differential impedaace matching and transit-time conservation. One seeks

to transition plane waves, ideally with no distortion or reflection, between two TEM hns-

mission lines. The design of such lenses is specified by giving the material properties and

shape of the lens. These properties, given usually by the permittivity tensor, %, and the

permeability tensor, ~, may vary from point to point within the lens, but are assumed

to be independent of frequency. (The conductivity is assumed to be zero.) In order to

specify the material properties and geometry of a lens one generally has to solve an ini-

tial value problem which arises from enforcing certain physical principles. That is, at a

lens/transmission line boundary, impedances must be matched differentially and a wave in

the lens should go into an inhomogeneous TEM plane wave in the adjacent region. Thus

the tmvel time for waves following cMTerexdpaths should be equal. For example, a lens
●

may be specified to transition TEM waves between two cylindrical coaxial waveguides of

different size (see [1]). Other examples have appeared h the literature ([2], [3]).

In this paper we consider a particularly simple geometry ‘in wKlch an anisotropic lens

is specified for the transitioning of plane waves between media of difiemnt permiit ivities.

Unlike the lenses discussed in earlier results, the impedance matching and transit time

conservation requirements have not lead to the same system of differential equations. It i3

interesting to note that in the differential geometry examples to date, we have a plane or

spherical wave, (incident on or leaving the lens) which is normally incident on the boundary

between regions of different permittivities and for permeabilities.

Of course, in the case of non-normal incidence we can have the situation where a TEM

wave propagates with a TM polarization, and the wave can pass through the boundary

with no reflection. That is, the angle of incidence is the Brewster angle, ~~, which can
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● be calculated if theproperties of themedia are known. Fora discussion of the Brewster

angle phenomenon, see [4]. In Section 2 of this paper we discuss briefly this situation, and

show that enforcing the requirements of differential impedance matching and transit-time

conservation at boundaries of regions of &lfferent permittivities leads to the 13rewster angle

condition.

In Section 3 of this paper the main results are presented for the case of a plane wave

propagating in region I, normally incident on a boundary between I ,and a lens region

L, through L and on into a second region IL The regions I, L, and II have respective

permittivities Cl,CL,and C2. The permittivity and permeability of free space are denoted

by COand ~0, respectively. All regions will be assumed to have the same permeability,

which we will take as go. The requirements of continuity of impedances and transit-time

conservation are to hold at all boundaries. The shape of the lens region and its permittivity

are the design objectives, and the results appear in Section 3.

Finally, in Section 4 of this paper #ome further rem~ks are made on the, case of non-

normal incidence. The case of normal incidence generalizes to the case of non-normal

incidence. This result then admits the possibility of constmcting an array of lenses.

2 Differential Transit-Time and Impedance Matching

for Plane Wave Propagating From One Uniform

Isotropic Dielectric Medium into Another

Let us consider as in Figure 2.1 two regions, I and II, of permittivities Cl and e2, respectively.

A plane boundary separates these regions. If a wave in region I is incident on this boundary

at, the angle *B, and if this angle is the Brewster angle, then we have the well-known

3
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e formula

(2.1)

The regions I and II are assumed to have the same permeability p. In region II we also

have

and consequently

(2.2)

Now if the conditions of transit-time consemation and continuity of impedances are

enforced at the boundaxy, we will find that the Brewster angle conditions (2.1) and (2.2)

must hold as a consequence. The details are as follows.

First, we investigate the condition that differential travel times for waves following

different paths must be equal. Thus in Figure 2.1 the travel times along the straight line

paths LMNP and QRST must be equal. Ikom the geometry it is clear that the time along

o

MN must equal the time along RS. Thus we have

t~ = fi(m) (2.3)

t~ = @(m) .

Now since,

MN = (Ay) COS(@~)

m = (Ay) Cos(#b) ,

the condition that tl = t~ impIies

(2.4)

(2.5)

Since we must also’have impedances matched differentially across the boundary, we

also have

(2.6)
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where

(2.7)

Impedance continuity across the boundary must then imply

[

sin(@~) = el—. [2.8)
sin(+~) z ●

Hence therequh-emeritso ftransit-timec oMervation(2 .5) andimpedance matching (2.8)

imply
cOs(?&) = sin(#E)

cos(#B) sin(?&) “
(2.9)

Since (2.9) implies

sin(2#&) = sin[2#~) , [2.10)

we find among the many solutions of [2.10] the following important cases. First, if VB = ●
$&j then cl = ez and we obtain the special case of uniform me~la. Second, if we have

#B+ $&= x/2, we have the Brewster angle condition with the usual formulae

(2.11)

resulting. Thus, if -El# e2, then the I%wster angle conditions (2.11) are a consequence of

the travel-time and impedance-matching conditions.

3 Statement of the Problem and Its Solution

Let us consider the geometry as indicated in Figure 3.1. Consider a line located at P,

which can be taken as the z axis in a rectangular coordhate system (z, y, z). The positive

6 ●
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direction of the z-axis is downward, and the positive direction of the y-axis is to the right.

The line z =
e

q (to be discussed latter) forms the upper boundary of the lens region L while

the line z = S2 forms the lower boundary of the lens and is the boundary between regions L

and II, whose respective perrdtivities are Q and e2. At any point on the boundary line

z = Z2 we can express the coordinates (ZZ,y2) in terms of polar coordinates (!l?2,42) as

A plane

into region .

Z2 = W2 COS(42) (3.1)

Y2 ,= w~Sin(#z] .

wave (as shown later) is to propagai e in a normal diiection in region I and on

L and then into II. We wish to specify the perrnittivity of region L as well as

the shape of the lens region.

We assume that the permeability, v = K, is the same in all regions and try a solution

of the form

where ~(!li) and g(qt) are functions which are to be

continuity of impedances across the boundary z =

., (3.2)

determined. Now since we require

Z2 between the lens region L and

region II, we compute changes in impedances as follows. Fh-d, for the lens

In the lens region L surfaces of constant # are perfect conductors [with

Hence as W varies, (A~)~ should be a constant for constant 4, and so the

(3.2) into (3.3) yields

[AZ)! =
M’A’)

region we have

(3.3)

only E+ # 0).

substitution of

(3.4)

Thus, since (AZ)l is not a function of W in the (dispersionless) lens region L, we must

have

f(w) = (w/%)2 (3.5)

●
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for some constant I&O.Thus [3.4) becomes

{
(AZ)4 = &~OAqt . (3.6)

Next, in region II the change in impedance is given by

(3.7)

and since we must have continuity of differential impedanc= across the boundary we obtain

from (3.6) and (3.7) (using # = #2 on the boundary)

However on the boundary Zz

!42* Z2 otan(@2). Hence we must

isa constant and m

also have

Thus a comparison’ of ‘(3.8) and (3.9) yields the result

9(42) = (:)2Cos’(fj,) .

(3.8)

yg is a function only of +2, since

If we now choose the arbitrary constant ~. as 22 then we have

9(42) = cos4(#2) ●

This result then requires that the form of the function g be

g(~) = Cos’(f#) .

Hence the functions ~ and g appearing in (3.2) have been determined, with

(3.9)

(3.10)

(3.11)

(3.12)

fpxf) = (Q/z2)2 (3.13)
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.

(3.14)
●

Thus equation [3.2) assumes the form

W2() ()
2

‘Q=’S2 —=2 cos4(#) = e~ : Cosy+) .

Equation (3.15) and its various alternative forms will be used to specify the lens design.

Note that the only condition that has been imposed up to this point is the differential

impedance-matching condition. We now consider the transit-time requirement. If we

consider some Z. such that

O<zl<zo<q [3.16)

where the lines z = q and Z = X2 define the boundary lines for our lens (region L), then

the point (zo, yo) is within the lens. We seek the wave velocity relative to the m-coordinate

(i.e., the reciprocal of local differential transit time). In the W direction the velocity v is

However, the wave is slower in terms of z by a factor of cos(#J) and so

or

()v==— “ —& : ..;+]“
Now on a surface of constant x = XO,we have ~ COS(+)=

c S2
v= = ——

fi~o “

[3.17)
o

(3.18)

(3.19)

X. and so

(3.20)

Hence the velocity is proportional to l/z and hence is a function only of z. Thus any

surface of constant z is a wavefront or surface of constant phase. Note x can be chosen

arbitrarily in ZI < z < X2 inch.dng both upper and lower boundaries.

10
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● Let us next consider the upper boundary z = SI of the lens. Clearly (see Figure 3.1)

Ayl” Cos(g!l) = VIA#l, while the change in impedance, AZ, in the lens is proportional to

(Il?tA#4)/@. But

At normal incidence (i.e., yl = O and & = O) we must have

Q ()21 2—=—
El 22

(3.21)

(3.22)

(3.23)

and hence AZ is proportional to (Ayl )/@ as required. The form of the equations for

the upper boundary is the same as the form for the lower boundary.

We now turn to the problem of determining the spatial limits of our lens. The notation

remains as before and the geometry is as in Figure 3.1. The permittivity in the lens, Cc,

● is given as in Equation (3.15) in various forms. Thus we have, from the conditions on the

lower boundary,,

!l?2
et

()
=e2— =2 COS4(~)

()’
=e25 Z* 2cos2(@

‘( )

2 X2
=625

Z2 X2+ y2

while from the conditions on the upper boundary

~2
()

E~=e~— =1 cos4(#)

()
= Cl —;1 2COS2(+).

Thus we have the same form for both boundaries (zl and

Now we

minimum z

●

(3.24)

(3.25)

Cl versus Z2 and C2).

must have ECz Coeverywhere. Clearly cc is minimized in

and maximum y. Hence we may put a = Zl, # = ~- and

the lens region for

obtain from (3.24) “

11



and [3.25]

*

●
(3.2i3)

Hence we need

: ~ =%4-) 21
— (3.27)

and so we may ward to keep #~= small if we ward to have c1 near %. Note also that

~.~i (3.28)
Y2.U 32

which shows that for given 92.U that yl=u can be no iess than (Z1/ZJy2mU. Henc5 the

Upper boundary, z =

the z-axis).

Fbmlly, to obtain

S1, of the lens cannot be extended upward to the line z = O (Le.j to

contoum of constant EC,consider Equations (3.24). If we norm#~ze

Etby dividhg by E2,then

(3.29)

If values of e. are chosen, contour plots may be obtained. These are shown in Figure 3.2

for values of ~. = 0.25, 0.50, 1.0, 2.0, and 4.0. It should be noted that at any point on a

contour of crest ant en the slope is

[3.30) .

Tlnis result is obt ained by differentiation of ~. in (3.29) with the substitution of rectangular

coordinates from (3.24). Moreover, differentiation of (3.30) yields

and hence we have inflection points on the contours of constant en at those points where

the contours intersect the line whose equation is y = z/fi (i.e., the ray # = 35.30).

●
12
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Jn Figure 3.3 the shape of such a lens is shown. Equal G contours are superimposed on ●
the lens diagram. The lens may or may not be symmetrical about the z-axis, and perfectly

conducting sheets are inserted on some set of surfaces of constant # suiEcientIy close to

make their spacing electrically small.

4 Non-Normal Incidence Revisited

Let us consider further the case of non-nomml incidence. We ~sume, as in Figure 4.1,

that a plane boundary z = X2 separata regions I and II of permittivities El ad e2. We

assume further that both regions have the s-e permeability M. For a wave specified to

have a velocity vi (phase velocity)

~2], W2will make an angle *2 with

along the boundary of the lower region (of permittivity

the boundary, and we must have

Now in the upper

and hence

< v;. Hence if v; and Czare spedfied, both V2and +2 are determined.

region 1, whose permittivity is q, we must have

q
— = COS(?)J <1
v;

(4.2)

(4.3)

Thus specifying vi and C2determines V2 and #2, and if #2 b a Brewster angle [which is

implied by impedance continuity and transit-time consemation as shown in Section 2),

then +1 and hence VI and .E1are determined. Equation (4.3) then becomes

—

(4.4]

as expected.

14
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Let us consider some numerical exunples. For example, ifa relative value of .s2 is

specified, say C2= 10cO,and if v; = c, then

(4.5)

and hence @l = 71.6°, *2 = 18.4°, and Cl = +G. On the other hand, if we choose c2 = 4E0,

with vi = c, then

(4.6)

* The examples are incIuded in Table 4.1 which,and hence @l = 30°, +2 = 60°, and q = ~ .

shows that a rtxluction in the chos& value of ez, with vi = c, will yield a slight increase in

the value of Cl, with Cl > CO.Thus in the Brewster angle case, a reduction in the chosen

value of 62, with v; = c, results in a slightincrease in the value of Cl, with Cl ~ eo.

Let us now mnnmarize the implications of the above analysis. Fmt of all, if we assume

that our wave in the lower region is to have certain prescribed properties (i.e., non-normal

propagation) so that its direction iz governed by a known phase velocity v; along the

interface between the regions I and H, and that the permittivity of the lower region is

specified, then the velocity V2and angle +2 are determined. Secondly, if the upper region

is a uniform medium, then (as discussed in Section 2) the impedance and transit-time

requirements will lead to the Brewster angle condition in which the permittivity El of

the upper region emerges as part of our solution. Thus the previous solution (Section 3)

generalizes to the case of non-normal incidence through a simple rotation of coordinates

17
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Table 4.1: Permittivities and Brewster Angles for the Case of vi = c



>

●
by the Brewster angle. In this event we can now assume we have a plane wave in the upper

region, and this wave is launched so that it is normally incident on an interface.

Thus we can construct, as shown in Figure 4.2, an array of lenses. The solid lines

shown correspond to metal sheets, and common boundaries (indicated by solid lines with

cross-hatching) can be dispensed with. The angles displayed correspond to a value of

E2= 46).

5 SKmmuLry

For the case of a pkne wave propagating in the z-direction and normally incident on a

boundary z = Z2 between media of different permittivities we have the lens geomet~~ and

medium specified by Equations (3.24) through (3.25). Note that as one goes away from

the symmetry plane (Figure 3.2), the values of G decrease. The contour plots of Figure 3.3

●
indicate the lens shape for various c~. Moreover, we cannot bring the lens down to a line

source (see (3.28)). The case of normal incidence is then shown to be applicable, at least

for a certain range of parameters, to the case of non-normal incidence.

19
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