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ABSTRACT

The Asymptotic Conical Dipolé (ACD) D-dot sensors have been developed
using the technique of an equivalent charge distribution. 1In this note we de-
scribe a more complicated equivalent charge distribution than has been hither-
to used. This distribution results in a new ACD shape which is better than
the old shape in that it is more asymptotic to the matched impedance cone at
the sensor apex and hence exhibits an improved pulse fidelity response. The
inherent accuracy of the produced sensors is also improved because extensive
and accurate testing has resulted in a determination of the enhancement due

to finite ground plate and sensor element support dimensions.
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I. INTRODUCTION

A technique for the design of electric dipole antennas and sensors
utilizing what 1s known as the equivalent-charge method has been developed
in Reference 1. The technique consists of defining a hypothetical static
charge distribution with total charge being equal to zero. We call this the
equivalent-charge distribution. This distribution is usually defined such
that it is rotationally symmetric about a particular axis (z-axis) with oppo-~
site charges reflected about the apex on the symmetry plane (x~y plane). The
next step is to calculate the potential distribution due to this equivalent-
charge distribution. Consider two of the equipotential surfaces thus gen-
erated of equal and opposite potential, which define two separate closed
volumes, one arcund each of the equivalent charge distributions on each side
of the symmetry plane. We may then make both of these surfaces into perfect
conductors with the appropriate total surface charge such that the potential
on the surfaces is the same as the equipotential values so that the potential
distribution external to the surfaces remains unchanged. We have now defined
an antenna geometry consisting of two equal symmetrical surfaces for which the
potential distribution is known. The total antenna charge and the antenna di~
pole moment can be found as integrals over the equivalent~charge distribution.
The antenna capacitance and mean charge separation are thus known, which aléo
gives us the antenna sensitivity, expressed as an equivalent area.

Because we have postulated symmetry in the equivalent-charge distribu~
tion about the symmetry plane, the potential on this plane 1s exactly zero.
We can therefore also make this a conducting surface of zero potential and
obtain an antenna above a grbund plane.

Any practical antenna must have some method for the introduction or
pickoff of electrical signals. The two conducting surfaces described above
must therefore approach each other at a common point. This point will nec-
essarily be a discontinuity in the potential distribution. By symmetry, it
will alsc lie on the zero potential plane and on the rotational axis. It
is therefore convenient to define it as the origin of our coordinate system.
In particular, we would like the shape of ﬁhe surfaces to be asymptotic at
the origin to some particular geometry which has a well~defined transmisslon

line impedance. Sueh a geometry is the infinite biconical antenna.':;2,? For
an included conical half~angle of eo we can define a va?iable eo’ which has

possible values ranging from Q0 to 1, as
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eo = tan <§—> (1)

for which the biconical surface potential is

A
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This can be related to the biconical antenna characteristic impedance Zc by

Z
7 =2 9.n(e "‘) (3)
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where Zo = /uo7eo is the free space wave impedance. This may also be writ-

ten in terms of the geometric factor of a transmission line impedance

fg = ;3 ()
@]
as
fg = 2(;—0——) (5)
1I. FIRST GENERATION ACD SENSORS

The first generation of ACD sensors were constructed using the particu-
lar equivalent-charge distribution discussed in Reference 1. This consists of

an equivalent line charge A(z) on the z-axis given by

A for 0<z<z
=0
~X for 0>z> -2
- o)
0 for z=0

9 for |z|>zO (6)

where zo>0 and Ao>0 is the uniform charge per unit length. The potential
distribution from this equivalent charge is given, in cylindrical coordinates

(r,y,z) (r as used here is the cylindrical radius), by

Yo g [z amor] ) (7
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where ¢ is the potential at the point (r,z). Notice that this potential
distribution is rotationally symmetric (no ¥ dependence), - .
We can now equate this potential with that for the infinite bicone, ¢s’

which forces the resulting equipotential shape to be asymptotic to the bicone
at the origin. The shape of the antenna sensing element is then given by

'[z + Vz2 + r’lf

[z+zo+ /(z+z Y7 + r‘][z-zo+ V(z=z )% * r?]
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where eo is a constant determined by the desired asymptotic impedance given by
(3). For each value of z between zero and the antenna height, h, there exists
a unique value for the element radius r. The antenna height is determined by
setting r=0 at z=h, which gives

how—20 (9)

Vi-e?

Other sensor parameters may be readily calculated in terms of the

antenna geometry. The charge on the positive surface is

ZO
Qa-j; A 42 = Ay 7 (10)

The dipole moment is given by

z
> + 0 +>
P = 2e flzdz-l z% e (11)
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where gz is the vertical unit vector. B
The antenna voltage is
v, = o - (o) = 20 (12)




‘. The capacitance between the two surfaces is thus
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For one surface and a ground plane, the capacitance is

The mean charge separation distance is
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L or in terms of the magnitude
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We can thus choose a desired antenna sensitivity and impedance (the

(13)

(14)

(15)

(16)

(7))

(18)

impedance for a monopole over a ground plane is half that of the corresponding

.} dipole) and calculate the charge length z  from
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The element shape is then generated from (8) by choosing a value for z and
determining the correct value for r by successive iterations. The calcula-
tions and element shapes for this equivalent-charge distribution are given in
Reference 1 as a function of eo. A family of ACD sensors based on these re-
sulps has been manufactured in both dipole (free space) and monopole (ground
plane) versions®:%»7:%:%,19,11  yith sensitivities ranging from 1.00 square
meter down to 1.00 x 10~ m?. The characteristic impedance used is 50 ohms
for a monopole, 100 ohms for a dipole.

Figure 1 shows one of the production sensors of the monopole version,
the ACD-6A(A). The pulse response of this sensor has been tested In a conical
simulator with a total measurement system rise time of 0.2 nanoseconds (Appen-
dix A). Figure 2 shows this pulse response with the lower trace the actual
sensor derivative output and the upper trace the time integral of the lower
to show the sensor response to the step input electric field.

The ACD-6A(A) shows a rise time of 0.94 ns as measured between the 10
percent and 90 percent points of the final (settled) pulse height. It also
exhibits a 10 percent overshoof with an associated underdamped ringing. From
the standpoint of pulse fidelity, this Is not an optimum pulse response - the
overshoot and ringing are too large.

The pulse response of the ACD-6A(A) may be approximated to first order
by the simple equivalent circuit shown in Figure 3. The capacltance and in-
ductance are properties of the sensing element shape. Figure 3 alsc shows how
closely this equivalent circuit describes the sensor response.

Figure U4 shows the ACD-6A(A) frequency response as calculated from the
equivalent circuit model. Notice the peak in the spectrum which corresponds
to the ring frequency of the damped oscillation of the pulse response. The

transfer function is given in the frequency domain by

Vg(e) ] R
I(s) s?Z LC + sRC + 1

(20)



". In the time domain this has three distinct solutions depending upon
whether the oscillation is underdamped, critically damped, or overdamped:
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are the roots of 82 + 2 as + wé = 0.
For the special case of L = 0, this reduces to
v, (t)
R __-t/RC .
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When the sensor driving function, I(t) = Keq' 5, is a step function,
the above equations give the sensor output response. When the incident
field D is a step function, I(t) is the impulse function and the above
equations must be differentiated with respect to time to give the sensor

output response.

Desired Improvements

'.' The first generation of ACD sensors possess good puise and frequency

response characteristics. However, these characteristics are not optimized in



the sense that the fidel{ty of the pulse response could be better in terms of
less overshoot and ringing and thé frequency response transfer functlon could
be flatter at the higher frequencies.

In terms of the equivalent circult parameters, the optimum frequency
response is obtained when 2L = R2C. This Is known as the "maximally flat"
response which is shown in Figure 5. This occurs when L is twice that value
which gives a critically damped response, also shown. Figure 5 also includes
the ACD-6A(A) response and the response for the case L = 0. For a given value
of resistance and capacitance, the flattest transfer function and the highest
bandwidth (-3 dB point) ocecur for the maximally flat case.

This Is also the case which gives about the best pulse fldelity as can
be seen from Figure 6. It gives the fastest rise time with a slight overshoot
(4.3%) which is then rapidly damped out without ringing.

The ACD sensors may thus be improved by decreasing the inductance of
the sensing element to that required to give the maximally flat responss.

This should be accomplished with a minimum increase in the element capaci-
tance. Specifically, the sensing element shape should be made "flatter™ in
the region near to the biconical apex, that is, to be made "more asymptotic”
to the bicone.

A second desired improvement in the ACD sensor s In a more accurate
determination of the enhancement factors resulting from those parts of the
sensor other than the sensing element. In particular, the finite thickness of
the ground plate and the dielectric support for the sensing element both tend
to enhance the electric field as seen by the sensor. This effect results In a
larger sensor output than would occur without the ground plate or support. In
the past we have only been able to make an estimate of the worst-case enhance~
ments. For the ground plate enhancement, a reascnable upper bound has been
determined!? as

AE <

h
2 (23)

IV

where h is the plate thickness and a the plate radius. The lower bound has
been taken as zero enhancement. The enhancement has then been estimated as
the average of these upper and lower bounds with the corresponding error in

the estimate:



ki
AE :H' (21)

W
o)

£

Thus, if the plate radius is only, say, twenty times as much as its height, &
sensitivity uncertainty of about four percent results. Note also that the
above estimate does not include any effect of the sensing element dimensions
with respect to the plate dimensions.

The dielectric support structure used to physically support the ACD
sensing element also creates an enhancement in 3 as seen by the sensor. Two
types of supports have been used: a hemispherical dome for the smaller sen-
sors and a cylinder for the larger ones. Neither of these geometries lends
itself to an analytical solution for the ACD enhancement as a function of
dielectric thickness and dielectric constant. While the dome is located over
the entire sensing element where its effect is fully manifested, the cylindri-
cal support is located below the sensing element where the fields are minimum
and so its effect is minimized. Further, its surface is nearly normal to tne
electric fields in this region, so the distortion of these fields is also
minimized. The cylindrical support {5 thus to be preferred to the dome,

Any optimization of the ACD sensors should include a better determina-
tion of these enhancement factors. A computer model study of the rotationally
symmetric static potential distribution is possible and should result in an
accurate determination. It is also possible to make an experimental deter-
mination by comparing sensor outputs with various ground plate geometries and
dielectric cylinder thicknesses. Accuracies on the order of one percent are
obtainable with this method.

Once the enhancement factors for a certain ACD configuration are known,
the sensing element size is reduced by that amount necessary to maintain the

desired sensitivity.

III. MODIFICATION OF THE EQUIVALENT-CHARGE DISTRIBUTION

Consider now a modification to the equivalent-charge distribution
discussed in Section II and Reference 1 by the addition of a point charge of
magnitude iQo at the ends of the line charges at izo . We will proceed to
show that this equivalent-charge distribution, for a particular value of Qo’
gives an antenna shape which has a very nearly ideal pulse and bandwidth re-
sponse and is asymptotic to the biconical transmission line for a distance

much farther from the apex than previous shapes.



This equivalent-charge distribution is given by:

=2
Qo ! 0

~ zZ= ~Z
Qo ! o

Mz) = CAy o, 0<zz

*Ao , 0>2> "z,

0 , z=0, z>zo

QO>0, Ao>0, zo>o (25)

The potential distribution of this charge distribution is the super-
position of the potentials from the point charges and the distributed charges.
The potential function generated by the line charges is already given by equa-
tion (7). The potential at a point (z,r) due to the two point charges is
given by

b = % ! - ! } (26)

P hﬁeo /(z-zo)1 +r? /(z+zo)2 + r?

Let us now relate the magnitude of the point charges to that of the
line charges. The total charge on the positive line segment Is AO Zo’ We
define a dimensionless quantity a« as the ratio of the point charge to the line
charge, so that

Qo = q AO z, (27)
Note that a = O for the original ACD sensor shapes.

When we equate the total potential distribution to that for the Infi-
nite bicone, ¢s, the (z,r) coordinates for the antenna shape are now given in
terms of eo by

2

gn(e-z)-zn [z+ /27 % £7]
° [z+zo+ /f2+zo)2 + rzl[z~zo+ /(z~zo)2 +r?]

a z a z
+ ° - o (28)
/(z-zo)2 + r? /(z+zo)2'+ r?
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The antenna element height is again determined by setting r=0 at z=h,

. h2 2a z
Q:n eo = ln hr_ Z; + hZ —

' which gives

NiOo »

7 (29)

For any given eo, a, and h this equation must be solved for zO by iterative
techniques. Figure 7 shows the values of Zo' normalized to the antenna height
h, as a function of eo for various values of a.

Antenna shapes for various values of eo are shown in Figures 8-16 for
different values of a from 0 (original ACD) to 10. The point charge for small
values of o manifest itself first as small changes in the shape of the equipo-
tentials near the top of the sensor for small values of eo (Figures 9 and 10).
For values of a near unity (Figure 12} the effect of the point charge becomes
more visible, expanding the equipotential contours around it apprecladbly. For
large values of o (Figures 15 and 16), the fields from the point charge domi-
nate the equipotential surfaces, except for the region very close to the line
charge.

For the limiting case of eo = |, the length of the line charge z,
becomes zero and the equivalent charge distribution becomes that of a point
dipole. The extra charge placed at zo by the point charge only serves to
change the magnitude of this dipole, 30 the potential distribution does not
depend upon the value of «. The dipole potential at a point (z,r) is given by

bz (30)

¢d T Tz7 + p2]e/2
At the normalized height z=h, r is zero, so
bg = Bz (31)

The shape of an antenna for this particular potential is thus given by
2 2 32
LA T I (32)
h h _\h
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which can be solved for r in terms of z:

o)

This contour is shown on all of the graphs for eo = 1, The maximum radius

=3
i

la g i}

-occurs when
dr

= "0 (3)
This happens at z/h = (1/3) 7% = .438691, for which r/h = .620403.

The shapes of the equipotential contours can be seen more easily in
Figures 17, 18, and 19 for values of a of 0, 1, and 2, respectively. Each of
these figures has an equivalent-charge height of unity and shows the contours
for various values of eo.

of specia% interest in the construction of ACD sensors are the antenna
contours for certain characteristic impedances common in electrical circuits.
Figures 20, 21, and 22 show contours for various values of a for blcone
antenna characteristic impedances of 50, 100, and 200 ohms, respectively.

Of particular interest is Figure 21 which shows phe contours for 100~-ohm
differential or 50-ohm single-ended impedance. This is the impedance for
which ACD sensors have been built, and the a=0 curve shows the old shape.

Also included in Figures 20~22 is the bicone angle for each charac-
teristic impedance, shown as the thin, straight line. Notice that for each
characteristic impedance, the value a=! appears to give the best asymptotic
£it of the ACD contour to the bicone. This will be discussed in detail in the
next section.

The other sensor parameters of interest can now be calculated in terms
of the antenna geometry. The charge on the positive surface is

Qa =i 2, to Ay Zg ™ (1+a) Ao z, (35)

The dipole moment is

> 2 2, 2 2 2
p=e A 2>+e 2a A 22 (1+2a) A 22 e, (36)
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The antenna voltage is
Vo= 2¢ (37)

The capacitance between the two surfaces 1s

Qa (1+a) Ao z €, T 2, €4
C =2a—— 9% %o (1+q) = = — (1+a) 2z (38)
a Va 2¢s Qnieo I) fg o)

C
Figure 23 shows values of C_, normalized to —éﬁ , as a function of 6_ for
a €s 0

various values of a. The capacitance for one surface over a ground plane is

Qa 250 T2z 250

The mean charge separation distance is

<&
> p 1 + 2a ¢
ha Qa 1 +a ?o ez (50)

or in terms of the magnitude

1+2cz_

b, " T 5 % (41)
The antenna equivalent area is thus
Ca LA zg
= — = - = -— 2
Aeq . ha (1+2a) Q.TI_(G_T-) (1+2a) 7 (42)
o] o g

Figures 24 and 25 show values of Aeq normalized to xh?%, as a function of eo
for various values of a. The capacitance can then be written in terms of the

equivalent area

° €4 (43)
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The equivalent charge height zo can be eliminated using 37 to give

A
c, = A ra €, ?EQ (44)
v1 + 2a g
IvV. OPTIMIZATION OF THE MAGNITUDE OF THE POINT CHARGE

We want the shape of the ACD sensing element to closely approximate the
conical geometry for as far from the apex as possible. (An ideal ACD shape
would perhaps be that of a cone with a spherical cap; an "ice cream cone'.)
An examination of Figures 8~22 shows that the geometry of the base of the
element is highly dependent upon the point charge magnitude, represented by
the dimensionless parameter a. We must therefore determine what value of «
gives a shape which closely approximates that of a cone; that is, is '"most
asymptotice® to the blconical antenna.

We first need to determine what we mean by "most asymptotic". Obvi-
ously we want the radius of the shape, r{z), to be as similar as possible to
.the radius of the cone, z tan eo. Thus, one definition of "most asymptotich

1s to minimize the magnitude of the term
r(z) ~ z tan(eo) (50)

for as large a value of z as possible. Certainly we can set this expression
equal to zero at the apex and be very close to zero for small values of z.
Another definition arises from taking the derivative of (50) with
respect to z to obtain the slope of the shape, and to then minimize the
resulting expression: ,
r’(z) ~ tan{g )~ 0 (51)

Again, we can set this identically equal to zero at the apex.

Higher order derivatives gives us further possibilities:
r’’(z) =0 (52)
r’°°(z) = 0, ete. (53)

The best definition of most asymptotic may therefore be the one which is to

have as many derivatives as posaible to be zero at the apex.

14



The shape of the ACD element is given by the cylindrical coordinates
‘. (z,r) where r(z,qa, @O)is the radius at height z for given values of a and

eo. The value of r is defined by the transcendental equation
—2 =
ln(eo ) F(r,z,a) (54)

which is a constant for any given value of eo. There are several equivalent

expressions which may be used to represent F. Near the origin F is best de-

fined by
2
z + Jz° +r 2~ 2 % /(zo- z)% + r?
F = &n -
r z +2z +/{z +z)? +r°
o) 0o
a2z a zZ
+ - (55)

/(zo~ z)? + r? /(zo+ z)2 + r?

We find the first derivative of the implicit function r(z,a) with

1.’ respect to z at constant a by the partial differentiation of F(r,z,a):
;
dF  3F oF dr(z)
dz = 3z or |, dz . (56)

This expression must be identically zero because F is a constant. Therefore,

&
dr 9z
Iz - T TRV (57)

(5

- Using logarithmetic differentiation, we obtain from (55)

for constant «a,

oF 2 1 1

—~ -

vz? + r* /(zo- zZ)¢ + pr* /(zo+ Z)% + r*

.

az (z-~- 2) az_ (z + 2) '
- °o__© °o__ 0o 8
. * E(zo- z)2 + rt]3/*° * [(zo+ Z)2 + p2]3/* (58)




aF 2z r

—- +

rvz% + r* /Izo~ z)* +rf [zo- z + /(zo~ ZYZ + r?)

r

Yz + )2 +pre jz+2z +/(z+z)* +r°
(z v 2)7 *+ v° [z 2+ 2) ]

azZ U az T
0 )

- £<zo_ 2% + r2]3/¢% + r(’zo+ Z2yZ + r21%/% (59)

Near the apex we have 2z{<z, and r<<{z, so we may expand (58) and (59)

retaining only terms to the first order in %—- and %— :
o o]

— = (60)
8z T 2 zO
oF .22 (61)
ar

r/z? + r

Therefore, using (57), (60), and (61) we obtain the value for the slope of the

element near the apex:

, dr r a Yz? + r?
T‘(Z)‘d—z"'-z—[‘i +(01)———z—————] (62)
0
This reduces to
r(o) = = (63)

A

at the apex, as expected. This value is independent of the value of a. Note
that the slope near the apex as given by {62) reduces to the value at the apex
{f a=1. We therefore expect that this value of a 1s the optimum value. This
is confirmed by calculation of the rate-of-change of the slope near the apex.

Near the apex we may find the value of the second derivative of the
shape of the ACD curve, r”“(z), by taking the total derivative of the impliclt
function r {z) given by (62) with respect to z. Thus

16
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At the apex this reduces to

r‘’ (o) = gi%:ll— % 1+ (%) (66)
o

where the value of r/z is the slope at the origin given by (63). This
expression is zero only if a is identically equal to unity, which must
therefore be its optimum value. This requirement is true for all values of
eo. Numerical calculations agree wfth this value to the limit of round-off
errors.

The solution for r”“(o) = 0, which détermines the value of a to be
unity, yields the antenna shape for which is the most asymptotic to the bicone
for the longest distance from the origin, as observed in Figures 20, 21, and
22, For some values of eo’ nowever, it does not yield what may be considered
the best antenna shape. Figure 12 shows that the shape determined by a=1
becomes concave for amall values of eo. That is, the value for r”’(z) be-
comes positive and r(z) becomes greater than z tan eo - most of the antenna
is larger in radius than the bicone.

The exact value of eo below which this effect occurs appears to be
about eo = .3564, which corresponds to tan 6, = v273. Proof that this result

is exact remains elusive.

V. 7 PERFORMANCE OF NEW ACD SENSORS

A new generation of ACD sensors has been developed based upon the
shapes with a=1. The ACD-6B(A) is shown in Figure 26.

It is interesting to compare the sensor parameters for the new shape

to those of the prior ACD sensing element for the case where the two elements

17



have the same equivalent area. For both elements, the values of ko and ¢s are

the same. Figure 27 shows the two shapes. The comparisons glve, for a=1:
Aeq(new) = Aeq(old)

1
zo(new) = ;%f zo(old)

Y3
ha(new) -5 ha(old)

p(new} = p(old)

C(new) = 2. ¢(old) (67)
3
The sensor capacitance has thus been {ncreased by 15 percent. The Inductance
of the sensing element has at the same time been decreased due to the shorter
and wider shape of the new sensing element, however, no convenient analytical
expression is available for making this calculation.

This sensor was tested for pulse response in the Conical Elliptical
Simulator as discussed Iin Appendix A. A rebroduction of the actual data trace
is shown in Figure 28.' The bottom trace 1s the actual sensor output, showing
the sensor derivative response to the step-function incident field. The top
trace is the integrated response.

This response 1s noticeably better than that of the ACD-6A(A). This
can be better seen in Figure 29, where the two responses are shown together.
The new shape gives less than half the overshoot and ringing of the old shape.
The 10~ to 90-percent rise time is slightly slower for the new shape, due to
the increased capacitance of the element, 1.02 ns as compared to 0.94 ns for
the ACD~6A(A). The overall gain in pulse fidelity, however, is significant.

The new ACD can be modeled by the equivalent circuit shown in Figure
30, which gives the shown pulse response. The capacitance has Iincreased by 13
percent, very close to the 15 percent predicted. The inductance has decreased
by 29 percent, twice as much as the increase in capacitance.

The calculated bandwidth of this new ACD-6 sensor is shown in Figure
31, along with that of the ACD-6A(A). Both are obtained from thelr equivalent

circuits, and are represented by

18



ot : (68)
REgq * 0 (1-0® LC) + JuRC

in the complex frequency domain. Only the amplitude variation with frequency
w is shown here. The new ACD is very close to a maximally flat response. In
fact, for the values of R and C given in the equivalent circuit model, the
maximally flat response results in a value, for the inductance of 16.9 nH. The
-3 dB point for the new ACD-6 is slightly less (7.5 percent) than that for the
ACD-6A(A). However, its response is better up to about 200 MHz.

Time Domain Reflectometer (TDR) responses of both the old and new ACD-6
sensors are shown in Figure 32. This is a measure of the characteristic im-
pedance of the sensor at various points on its surface as seen by an input
step waveform driven onto its apex (output connector). The new shape shows
the 50 ohm characteristic impedance almost all the distance up the sensor to
the point where the dielectric support is fastened. The ACD-6A(A) shows a
significantly larger deviation from the 50 ohm input impedance.

We may define a figure of merit A for the ACD sensors®,!? as

b=
(0]
O

(69)

P
&

where R is the output load resistance, zo = /uo/eo is the wave impedance of
free space, and 20 is a characteristic length related to the sensor rise time
or bandwidth as

C L}
Zc - ct, or lc = G;' ('10)

In common usage, t. is defined as the 10- to 90-percent rise time and W = Enfc

!
where f, is the upper 3~dB point of the frequency response.
We actually wish to utilize a figure of merit which includes both the

sensor rise time and bandwidth. Let us therefore use

22 = c (71)
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as our defining relationship. For the ACD~6A(A) sensor we have a rise time of .
0.94 ns and a bandwidth of 360 MHz which gives a value for Aavg of 0.974. The

new ACD-6 prototype has a rise time of 1.02 ns and a bandwidth of 335 MHz for

a Aavg of 0.835. This lower value of Aavg for the new ACD-6 reflects the

slightly lower bandwidth and slower rise time due to the increase in sensor

capacitance.

VI. PULSE FIDELITY DEFINITION

The figure of merit as defined above includes no mention of the pulse
fidelity, or how well the sensor output approximates the shape of the incident
field. Let us therefore deflne a pulse-fidelity factor, n, which is a measure
of how well the sensor reproduces the incident field.

The figure of merit Aavg includes a measure of the 10~ to 90-percent
rise time of the sensor. Let us therefore define an "ideal'™ sensor response
to a step input as a straight line ramp joining the 10 percent and 90 percent
points of the sensor output as shown in Figure 33. Before the intersection
of this line with the Q percent point and after the intersection with the 100
percent point, the curve will be a flat line with no slope. By defining the .
ideal waveform in this manner we allo@ for the finite sensor rise time and say
. that the incident step field should be slewed over into a ramp by the rise
time.

Now, how can we estimate how well the actual sensor response follows
this ramp? One way would be to find the total area difference between the two
curves in_Figure 33 (normalized to the step height and rise time}. We would
want n to become unity as this area goes to zero, and n to go to zeroc as this
area becomes large. This is an aesthetic way of defining n, but unfortunately
a very difficult way of calculating it. Another method could utilize the
principle of least squares whereby the integral (or sum if digitized data
traces are employed) of the square of the instantaneous deviations between the
two lines is calculated. Again, as this value goes to zero, n goes to unity.
This is alsc a difficult calculation to perform.

A much easier way to estimate n is to simply measure the largest
deviation between the two curves. Let r be this deviation, normalized to the
pulse height. ¢ should never be greater than unity: at unity the sensor re-

sponse is totally undamped and rings forever as 1 + coswt. 1In this case n .
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should be zero. A r of 0.5 is a very large overshoot, so we would like the
corresponding value of n to be small. Therefore n should be a nonlinear

function of ¢, perhaps llke

n=(1~v7)2 (72)
or

n={1-2z)" (73)

More work needs to be done on defining n; but we can use the estimation
given by (73) to evaluate the ACD sensors. For the ACD-6A(A) we get a value
of n = 0.627 and for the new ACD-6 we get n = 0.839. This gives us a numer-
ical estimate of how much better pulse fidelity the new ACD shape gives.

If we now combine the figure of merit and the pulse fidelity used
above, we obtain an overall measure of the sensor performance. For the ACD-
6A(A) this is An = 0.611. For the new ACD-6 it is An = 0.700. This indicates
that the new shape is somewhat better than the old ACD shape.

VII. ENHANCEMENT FACTOR DETERMINATION

A prototype ACD~6 sensor was made with a minimum thickness dielectric
support cylinder and with a ground plate which mounts flush with the test
simulator ground plane so that the enhancement factors were essentially zerc.
Conducting spacers of varying thickness and radii were made to go under the
sensor, as were dielectric sleeves to go around the support cylinder. In this
manner the enhancement factors were measured by a comparison to the sensor
response without enhancement of one percent.

The experimental setup used was that described in Appendix A. The rms
error on any measurement was about one percent, so this is the accuracy of the
enhancement factor determination.

A dielectric sleeve of thickness 0.125 inch was used to measure the
enhancement from the cylindrical support. The enhancement from this sleeve
could not be measured as it was less than one percent. Thicker sleeves need
to be used, but this has not yet been done. We do at least now have an upper
bound on this enhancement of one percent. .

Cylindrical plates of radius 7.00 and 14.00 inches and thickness

increments of 0.25 inch were used to measure the ground plate enhancement
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factor. A typlcal data record for one of these spacers is shown in Flgure
34, Five sweeps of the sensor output, both with the spacer plate and without
it, were recorded so as to give a measure of the system noise (one percent}.
The enhancement for this spacer is equal to the percentage difference between
the means of the two runs. In this case, for a plate of 0.50 inch thickness
and 7.00 inch radius, the enhancement was 8.2 percent (i1 percent).

The enhancement is also a function of the size of the sensing element.
This can be normalized out by basing the enhancement calculation on the ratio
of the spacer plate dimensions to the height of the ACD sensing element. This
height is 6.04 inches for the ACD-6 prototype. The normalized data are shown
in Figure 35 as a function of the ratio of the plate thickness to sensor
helght for the two plate radil{. A fit to these data gives an expression for

the enhancement factor, E.F., expressed as a percentage as

-0,7
E.F. = 72 (%)(g) ° percent (74)

By using the above data for enhancement factors, we may now build ACD

 sensors which are accurate in thelir sensitivity to within one percent.

 VIII. SUMMARY

A new equivalent charge distribution has been used to generate a new
shape for the Asymptotic Conical Dipole sensors. The addition of a point
charge to the end of the linear charge distribution, with a value exactly
equal to the total charge of the linear charge yields a shape which maximizes
the asymptoticness to a bicone. This new shape gives a more optimized pulse
response and a flatter frequency response over the sensor bandwidth. The
sensor enhancement factors, which previously had only been estimated from
crude models, have now been determined to an accuracy of one percent. This

allows for the production of more accurate sensors than in the past.
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APPENDIX A
DATA MEASUREMENT SYSTEM

The measurement system used to make measurements on the ACD sensors s
shown in Figure A~1. The electromagnetic fields are generated on a Conical
Elliptical Simulator. This consists of an elliptical ground plane with the
drive cone apex at one focus and the sensor port at the other focus. The
semi-major axis is 6.00 feet and the distance between the foci is 4.00 feet.
It thus takes 4 ns for the signal from the cone to reach the sensor port while
the first reflection from the simulator edge takes 12 ns. The simulator thus
nas 8 ns of clear time before any reflections reach the sensor.

The cone forms a 180-ohm transmission line above the ground plane. It
is charged to some potential, nominally a few huﬁdred volts, and then shorted
to the ground plane at its apex through a very fgst, mercury-wetted switch.
This generates a step waveform which propagates spherically outward from the

apex with an electric field given by

v

¢}
Eg = 7

60

Zc sin 8

(A-1)

where Vo is the charge voltage, r is the radial distance from the apex, Zc
is the simulator characteristic impedance (180 ohms) and & is the spherical
coordinate measured from the center line of the Eone. The cone is discharged
to ground about 400 times per second so that repetitive pulse signals are mea-
sured by the sensor.

A screen room i{s located behind the ground plane of the simulator.
The signal from the sensor is carried over high quality, solid jacket coaxial
cable and enters the screen room via a bulkhead coaxial feedthrough. It is
fed into the sampling oscilloscope at as high a level as can be obtained
without saturating the sampling scope. A delay line is necessary in the
present setup so as to delay the signal with respect to a trigger signal so
that it can be displayed:. A Tektronix TM11 delay line is used, inserted in
one of the slots in a Tektronix 7904 maihframe which is used for the oscillo-
scope. The TM11 provides the needed 75 ns delay time, but has the undesirable
property of adding a 175 ps rise time to the sensor data. From the TM11, the

N
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signal, now attenuated by a factor of two, goes to the S-2 sampling head in
the 7S11 sampling unit, which generates the sampling display. The S-2 has a
rise time of 75 ps which, taken in quadrature with 175 ps from the TM11, gives
a rise time of 190 ps.

The sampling oscilloscope sweep is driven by a 7T11 time base, which is
triggered by an external signal from a trigger probe near the cone on the
simulator. The actual time base is generated by a very slow ramp external to
the 7T11.

The external sweep is generated in the EG&G STI-3 Sample Time Integra-
tor. This unit also takes the vertical output of the 7811 and generates the
two signals for the X-YY plotter. One of these signals is just the 7511 out-~
put, buffered and amplified to drive the plotter. The other signal is the
time~integral of the 7S11 output. This integration is performed in the slow
sample~time of the sampling oscilloscope output, hence the name of the unit.

Errors in the integration of the sensor data occur because of noise
generated by the sampling process. The noise output of the sampling oscillo-~
scope is a constant level, so the signal input and output of the 7811 are made
as large as possible to maximize the signal-to-noise ratio. Special proce-
dures are used in the STI-3 to minimize the effects of the residual noise,
but it still creates about a one percent error in the final position of the

integrated data trace.



