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ABSTRACT

The Asymptotic Conical Dipole (ACD) D-dot sensors have been developed

using the technique of an equivalent charge distribution. In this note we de-

scribe a more complicated equivalent charge distribution than has been hither-

to used. This distribution results in a new ACD shape which is better than

the old shape in that it is more asymptotic to the matched impedance cone at

the sensor apex and hence exhibits an improved pulse fidelity response. The

inherent accuracy of the produced sensors is also improved because extensive

and accurate testing has resulted in a determination of the enhancement due

to finite ground plate and sensor element support dimensions.
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I. INTRODUCTION

A technique for the design of electric dipole antennas and sensors

utilizing what is known as the equivalent-chargemethod has been developed

in Reference 1. The technique consists of defining a hypothetical static

charge distribution with total charge being equal to zero. ‘decall this the

equivalent-charge distribution. This distribution 1s usually defined such

that it is rotationally symmetric about a particular axis (z-axis) with oppo-

site charges reflected about the apex on the symmetry plane (X-Y plane). The

next step is to calculate the potential distribution due to this equivalent-

charge distribution. Consider two of the equipotential surfaces thus gen-

erated of equal and opposite potential, which define two separate closed

volumes, one around each of the equivalent charge distributions on each side

of’the symmetry plane. We may then make both of these surfaces into perfect

conductors with the appropriate total surface charge such that the potential

on the surfaces is the same as the equipotential values so that the potential

distribution external to the surfaces

an antenna geometry consisting of’two

potential distribution is known. The

pole moment can be found as integrals

remains unchanged. We have now defined

equal symmetrical surfaces for which the

total antenna charge and the antenna di-
0

over the equivalent-charge distribution.

The antenna capacitance and mean charge separation are thus known, which al;o

gives us the antenna sensitivity, expressed as an equivalent area.

Because we have postulated symmetry in the equivalent-charge distribu-

tion about the symmetry plane, the potential on this plane is exactly zero.

We can therefore also make this a conducting surface of zero potential and

obtain an antenna above a ground pIane.

Any practical antenna must have some method for the introduction or

pickoff of electrical signals. The two conducting surfaces described above

must therefore approach each other at a common point. This point will nec-

essarily be a discontinuity in the potential distribution. By symmetry, i~

will also lie on the zero potential plane and on the rotational axis. It

is therefore convenient to define it as the origin of our coordinate system.

In particular, we would like the shape of’the surfaces to be asymptotic at

the origjn to some particular geometry which has a well-defined transmission

line impedance. Such a geometry is the infinite biconical antenna.l~Z~3 For

an included conical half-angle of 80 we can define a variable Go, which has

possible values ranging from O to 1, as
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()e00 = tan # (1’)

for which the biconical surface potential is

(2)

This can be related to the biconical antenna characteristic impedance Zc by

(3)

where Z. = ~ is the free space wave impedance. This may also be writ-

ten in terms of the geometric factor of a transmission line impedance

as

II. FIRST GENERATION ACD

The first generation

Zc
f .—
g Z.

tn(Go-’)
f =—
g Ti

SENSORS

of ACD sensors

(4)

(5)

were constructed using the particu-

lar equivalent-charge distribution discussed in Reference 1. This consists of

an equivalent line charge k(z) on the z-axis given by

[

10 for O<z$zo

-A. for O>z~ -Z.
A(z) =

o for 2=0

10 for ]z]>zo (6)

where ZO>O and ko>O is the uniform charge per unit length. The potential

distribution from this equivalent charge is given, in cylindrical coordinates

(r,y,z) (r as used here iS the cylindrical radius), by

[

—____.J + ~f 1
$ -k’”

o [Z+Z + Jmo)’ + r’][z-zo+ J(z-zO)2 + r’] ~
o

3
,.

(7)



where @ is the potential at the point (r,z). Notice that this potential

distribution is rotationally symmetric (no 4 dependence). o

We can now equate this potential with that for the infinite bicone, $3,

which forces the resulting equipotential shape to be asymptotic to the bicone

at the origin. The shape of the antenna sensing element is then given by

2

eo+ =
z + JZZ + rz

[2+2 + /(2+2 )2 + rr][z-z + /(2-2 )2 + rr]
(8)

o 0 0 0

where 0. i3 a constant determined by the desired asymptotic impedance given by
u

(3)* For each

a unique value

setting r=O at

value of z between zero and the antenna height, h, there exists

for the element radius r. The antenna height is determined by

z=h, which gives

‘o

‘=?=7
Other sensor parameters may be readily calculated in terms of the

antenna geometry. The charge on the positive surface is

z

J
o

Qa = A. dz = k. Z.
o

The dipole moment is given by

z

J
o

; = 2ZZ lozdz=loz::z
o

where ~z is the vertical unit vector.

The antenna voltage is

(9)

(lo)

(11)

(12)
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,~e capacitance between the two surfaces is thus

(13)

For one surface and a ground plane, the capacitance is

a. Z. 2C0 TrZ.

c~ . —=-~n(Oo-l)
$~

The mean charge separation distance is

z
2

\

o
;a =:

Zq,o
z~odz=zo~z

or in terms of the magnitude

ha-z
o

The antenna equivalent area is obtained from”

Ca
A ha
eq”~

which gives

(14)

(15)

(16)

(17)

(18)

We can thus choose a desired antenna sensitivity and impedance (the

impedance for a monopole over a ground plane is half that of the corresponding

dipole) and calculate the charge length z. fr~
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‘O-G (19) ●

The element shape is then generated from (8) by choosing a value for z and

determining the correct value for r by successive iterations. The calcula-

tions and element shapes for this equivalent-charge distribution are given in

Reference 1 as a function of Go. A family of ACD sensors based on these re-

sults has been manufactured in both dipole (free space) and monopole (ground

plane) versions5~6~7~”19f10~11 with sensitivities ranging from 1.00 square

meter down to 1

for a monopole,

Figure 1

the ACD-6A(A).

.00 x 10-4 mz. The characteristic impedance used is 50 ohms

100 ohms for a dipole.

shows one of the production sensors of the monopole version,

The pulse response of this sensor has been tested in a conical

simulator with a total measurement system rise time of 0.2 nanoseconds (Appen-

dix A). Figure 2 shows this pulse response with the lower trace the actual

sensor derivative output and the upper trace the time integral of the lower

to show the sensor response to the step input electric field.

The ACD-6A(A) shows a rise time of 0.94 ns as measured between the 10

percent and90 percent points of the final (settled) pulse height. It also ●
exhibits a 10 percent overshoot with an associated underdamped ringing. From

the standpoint of pulse fidelity, this is not an optimum pulse response - the

overshoot and ringing are too large.

The pulse response of the ACD-6A(A) may be approximated to first order

by the simple equivalent circoit shown in Figure 3. The capacitance and in-

ductance are properties of the sensing element shape. Figure 3 also shows how

closely this equivalent circuit describes the sensor response.

Figure 4 shows the ACD-6A(A) frequency response as calculated from the

equivalent circuit model. Notice the peak in the spectrum which corresponds

to the ring frequency of the damped oscillation or the pulse response. The

transfer function is given in the frequency domain by

VR(S)

~= S2 LC +RSfl~+ 1
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In the time domain this has three distinct solutions depending upon

whether the oscillation is underdamped, critically damped, or overdamped:

where

and

1
[1-

vR(t)

[
—-R 1-
I(t)

[
1-

e‘at (1 + at)1
.J

(J.)Zo ( -mt -nt
~e -~e

G )]

1 R
Q2 =— , a =— s U2
o LC 2L

= U2 -a*, tan $ = u/a,
o

““= a +-r
are the roots of S2 + 2 as,+ a: = 0.

For the special case of L = O, this reduces to

vR(t)

(
—=R 1 - e

-t/RC
I(t) )

(21)

●

When the sensor driving function, I(t) = I ● 6, is a step function,
eq

the above equations give the sensor cmtput response. When the incident

field ~ is a step function, I(t) is t,heimpulse function and the above

equations must be differentiated with respect to time to give the sensor

output response.

(22)

Desired Improvements

The first generation of ACD sensors possess good puise and frequency

response characteristics. However, these characteristics are not optimized in ‘

7



the sense that the fidelity of the pulse respanse could be better in terms of

less overshoot and ringing and the frequency response tran3fer function could ●
be flatter at the higher frequencies.

In terms of the equivalent circuit parameters, the optimum frequency

response is obtained when 2L = R2C. This is known as the “maximally flat”

response which is shown ‘inFigure 5. This occurs when L is twice that value

which gives a critically damped response, also shown. Figure 5 also includes

the ACD-6A(A) response and the response for the case L = O. For a given value

of resistance and capacitance, the flattest transfer function and the highest

bandwidth (-3 dB point) occur for the maximally flat case.

This is also the case which gives about the best pulse fidelity as can

be seen from Figure 6. It gives the fastest rise time with a slight overshoot

(4.3%) which is then rapidly damped out without ringing.

The ACD sensors may thus be improved by decreasing the inductance of

the sensing element to that required to give the maximally flat response.

This should be accomplished with a minimum increase in the element capaci-

tance. Specifically, the sensing element shape should be made “flatter” in

the region near to the biconical apex, that i3, to be made “more asymptotic”

to the bicone. o

A second desired improvement in the ACD sensor is in a more accurate

determination of the enhancement factors resulting from those parts of’the

sensor other than the sensing element. In particular, the finite thickness of

the ground plate and the dielectric support for the sensing element both tend

to enhance the electric field as seen by the sensor. This effect results in a

larger sensor output than would occur without the ground plate or support. In

the past we have only been able to make an estimate of the worst-case enhance-

ments. For the ground plate enhancement, a reasonable upper bound has been

determined12 as

(23)

8

where h is the plate thickness and a the plate radius. The lower bound has

been taken as zero enhancement. The enhancement has then been estimated as

the average of these upper and lower bounds with,the corresponding error in

the estimate:



(24)

Thus, if the plate radius is only, say, twenty times as much as its height, a

sensitivity uncertainty of about four percent results. ?fotealso that the

above estimate does not include any effect of the sensing element dimensions

with respect to the plate dimensions.

The dielectric support structure used to physically support the ACD

sensing element also creates an enhancement in $ as seen by the sensor. Two

types of supports have been used: a hemispherical dome for the smaller sen-

sors and a cylinder for the larger ones. Neither of these geometries lends

itself to an analytical solution for the ACD enhancement as a function of

dielectric thickness and dielectric cc)nstant. While the dome is located over

the entire sensing element where its effect is fully manifested, the cylindri-

cal support is located below the sensing element where the fields are minimum

and so its effect is minimized. :urther, its surface is nearly normal to the

electric fields in this region, so the distortion of these fields is also

minimized. The cylindrical support is thus to be preferred to the dome.

Any optimization of the ACD sensors should include a better determinat-

ion of these enhancement factors. A computer model study of the rotationally

symmetric static potential distribution is possible and’should result in an

accurate determination. It is also possible to make an experimental deter-

mination by comparing sensor outputs with various ground plate gecxnetriesand

dielectric cylinder thicknesses. Accuracies on the order of one percent are

obtainable with this method.

Once the enhancement factors for a certain ACD configuration are known,

the sensing element size is reduced by that amount necessary to maintain the

desired sensitivity.

III. MODIFICATION OF THE EQUIVALENT-CHARGE DISTRIBUTION

Consider now a modification to the equivalent-charge distribution

discussed in Section II and Reference 1 by the addition of a point charge of

magnitude *QO at the ends of the line charges at *20 . We will proceed to

show that this equivalent-charge distribution, for a particular value of Qot

gives an antenna shape which has a very nearly ideal pulse and bandwidth re-

sponse and is asymptotic to the biconical transmission line for a distance

much farther from the apex than previous shapes.
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This equivalent-charge distribution is given by:

[

Q. , z=zo

-Q. , Z= ‘Z
o

A(z) = A. , O<z<zo

-A. , 0>2> -Z.

o , 2=0, 2>2 0

QO>O, 1.>O, Zo>~ (25)

The potential distribution of’this charge distribution is the super-

position of the potentials from the point charges and the distributed charges.

The potential function generated by the line charges is already given by equa-

tion (?). The potential at a point (z,r) due

given by

Q

$p=Q- lJ I_
41T&o (2-2.12 + rg

Let us now relate the magnitude of the

to the two point charges is

1 )

‘{

(26)

J(z+zO)2 + r o

point charges to that of the

line charges. The total charge on the positive line segment is ~. 2.. We

declne a dimensionless quantity a as the ratio of the point charge to the line

charge, so that

QO=CZAOZO

Note that a = O for the original ACD sensor shapes.

When we equate the total potential distribution

nite bicone, oS, the (z,r) coordinates for the antenna

terms of 60 by

(27)

to that for the infi-

shape are now given in

(){ [z+ 47=7]2
finco-z = tn

[z+zo+ 4(2+2 )2 + r’][z-z + /(2-2.)’ + r’]o 0 /

az az
o 0

+

4(2-2.)2 + r: 4(2+2.)2 +r2

(28)
o
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The antenna element height J3 again determined by setting r=O at z-h,

which gives

()
Ln 00-2 = .!n rrh’ 2,

2a z;

n -z + h’ - Z;
o

For any given O., a, and h this equation must be solved for

techniques. Figure 7 Zhows the values of Zo, normalized to

h, as a function of 00 for various values Of a.

Antenna shapes for various values of 00 are shown in

(29 )

Z. by iterative

the antenna height

Figures 8-16 for

different values of a from O (original.ACD) to 10. The point charge for small

values of a manifest itself first as small changes in the shape of the equipo-

tentials near the top of the sensor for small values of 60 (Figures 9 and 10).

For values of a near unity (Figure 12) the effect of the point charge becomes

❑ore visible, expanding the equipotent;ialcontours around it appreciably. For

large values of a (Figures 15 and 16), the fields from the point charge domi”-

nate the equipotential surfaces, except for the region very close to the line

charge.

For the limiting case of El = “1,the length of the line charge Z.
o

becomes zero and the equivalent charge distribution becanes.that of a point

dipole. The extra charge placed at Z(2by the point charge only serves to

change the magnitude of this dipole, .s0the potential distribution does not

depend upon the value of a. The dipole potential at a point (z,r) is given by

At the normalized height z=h, r is zero, so

The shape of an antenna for this particular potential is thus given by

(30)

(31)

(32)
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which can be solved for r in terms of z:

This contour is shown on all of the graphs for 00 = 1. The maximum radius

occurs when

(33)

(34)

This happens at z/h = (1/3)-7s = .438691, for ~hich r/h = .620403.

The shapes of the equipotential contours can be

Figures 17, 18, and 19 for va~ues of a of 0, 1, and 2,

these figures has an equivalent-charge height of unity

for various values of O..

seen more easily in

respectively. Each of

and shows the contours

Of special interest in the construction of ACD sensors are the antenna

contours for certain characteristic impedances common in electrical circuits.

Figures 20, 21, and 22 show contours for various values of a for bicone

antenna characteristic impedances of 50, 100, and 200 chins,respectively.

Of particular interest isFigure 21 which shows the contours for 100-ohm

differential or 50-ctunsingle-ended impedance. This is the impedance for

which ACD sensors have been built, and the a-O curve shows the old shape.

Also included in Figures 20-22 is the bicone angle for each charac-

teristic impedance, shown as the thin, straight line. Notice that for each

characteristic impedance, the value a=t appears to give the best asymptotic

fit of the ACD contour to the bicone. This will be discussed in detail in the

next section.

The other sensor parameters of interest can now be calculated in terms

of the antenna geometry. The charge on the positive surface is

Q = Aozo + alozo = (I+a) Aozo
a

(35)

The dipole moment is .

12



The antenna voltage is

Va = 2@~

The capacitance between the two surfaces is

Q (I+a) ~. z
Ca=+=

o =(l+a) ‘0 _O=~
+

(l+a) z
2$3 0

a o f3

Figure 23 shows values of

various values of a. The

(37)

(38)

c
cat normalized to ~ , as a function of e. for

o
capacitance for one surface over a ground plane is

Q 2E0 r 20 2E0
Cs=~= (I+a) =—(l+a) z = 2C

Ln(Oo–’) fg o a
s

The mean charge separation distance is

or in terms of the magnitude

ha =
1+2:2
I+ao

The antenna equivalent area is thus

Ca
A h=
eq=~a

Figures 24 and 25 show values

for various values

equivalent area

of a. The

c
a

(l+2a) “ ‘0
In(eO-’)

= (l+2a)*

g

(3s)

(40)

(4”1)

of A normalized to mh2, as a function of 00
ea

(47)

capacitance can then be written in terms of the

l+a co A
eq (43)= —.

1 + 2U 20

13



The equivalent charge height Z. can be eliminated using 37 to give

(44)

Iv. OPTIMIZATION OF THE MAGNITUDE OF THE POINT CHARGE

We want the shape of the ACD sensing element to closely approximate the

conical geometry for as far’from the apex as possible. (An ideal ACD shape

would perhaps be that of a cone with a spherical cap; an ‘ice cream cone”.)

An examination of Figures 8-22 shows that the geometry of the base of the

element is highly dependent upon the point charge magnitude, represented by

the dimensionless parameter a. We must therefore determine what value of a

gives a shape which closely approximates that of a cone; that is, is “most

asymptotic to the biconical antenna.

We first need to determine what we mean by “most asymptotic”. Obvi-

ously we want the radius of the shape, r(z), to be as similar as wssib~e to

the radius of the cone, z tan O.. Thus, one definition of ‘~mostasymptotic”

-is to minimize the magnitude of the term o

r(z)
()

- z tan G (50)
o

for as large a value of z as possible. Certainly we can set this expression

equal to zero at the apex and be very close to zero for small values of z.

Another definition arises from taking the derivative of (50) with

respect to z to obtain the slope of the shape, and to then minimize the

resulting expression:

r’(z) -
()

taneo=o

Again, we can set this identically equal to zero

Higher order derivatlve3 gives us further

r“(z) =0

r///(2) = O, etc.

(51)

at the apex.

possibilities:

(52)

(53)

The best definition of most asymptotic ❑ay therefore be the one which is to
o

have as many derivatives as possible to be zero at the apex.

14



The shape of the ACD element is given by the cylindrical coordinates
(i (z,r) where r(z,a, ~o)is the radius at height z for given values of a and

Go. The value of r is defined by the transcendental equation

(54}ln(Oo-2)= F(r,z,a)

which is a constant for any given value of O.. There are several equivalent

expressions which may be used to represent F. Near the origin F is best de-

(1 r
J

az
+ 0

J(zo- z)’ + r2

fined by

F=in 1Z+ Y’7-=72

[

z-z+ 4(z- 2)2 +r
o 0

Zo+ z + /(zo+ z) + r
; j

a 20

g’(z.o+ Z)2 + p2
(55)

We find the first derivative of the implicit function r(z,a) with

(01
respect to z at constant a by the partial differentiation of F(r,z,a):

i

(56)

This expression must be identically zero because F is a constant. Therefore,

for constant a,

Using logarithmic differentiation, we

a 20 (20- Z)
‘+
L(z - 2)2 + r21J/T

o

(57)

obtain from (55)

1

4(2.+ 2)2 + r’

.

20 (Zo+ z)a
+

[(2-+ 2)2t r2]3/2
u

(58)

-- 15



3F 2Z
T“-rdz=+rr+ 4( z - Z)z + rr[z:-z +J(zo- z)’ + r’]

o

?-l

/(2. + z)‘+rr[z+ z+i(z+z)z+rT]
o 0

azr azr
o

I.(
+ o

z - z)= + r21a/z L(zo+ Z)z + r2j’/=
o

(59)

Near the apex

retaining only terms

we have z<<zo and r<<zo so we may expand (58) and (59)

to the first order in ~ and ~ :
0 0

aF 2 ~ 2(a-1) (60)

‘=~ ‘o

Therefore, using (57), (6o), and (61) we obtain the v=~ue for the 910Pe of the

element near the apex:

dr

[

~
r’(z) =—=; 1 + (a-l)

dz z
o 1

This reduces to

(62)

(63)

at the apex, as expected. This value is independent of the value of a. Note

that the slope near the apex as given by (62) reduces to the value at the apex

if a=l. We therefore expect that this value of a 1s the optimum value. This

is confirmed by calculation of the rate-of-change of the slope near the apex.

Near the apex we may find the value of the second derivative of the

shape of the ACIlcurve, r“(z), by taking the total derivative of the implicit

function r’(z) given by (62) with respect to Z“ Thus

16



from which we obtain the expression near the apex.

[ ( )1

P(ci-l) ~+ (a-l)z ‘2 ‘2r2 +o~, rr“(z) .: — (65),
z z Z2 z z <
0 0

At the apex this reduces to

r“(o) =~-, ~-
2(a-1) r
z

(66)

where the value of r/z is the slope at the origin given by (63). This

expression is zero only if a is identically equal to unityt which must

therefore be its optimum value. This requirement is true for all values of

00. Numerical calculations agree with this value to the limit of round-off

errors.

The solution for r“(o) = O, which determines the value of a to be

unity, yields the antenna shape for which is the most asymptotic to the bicc)ne

for the longest distance from the origin, as observed in Figures 20, 21, and

22, For some values of Clo,however, it does not yield what may be considered

the best antenna shape. Figure 12 shows that the shape determined by a=l

becomes concave for small values of Go. That 1s, the value for r“(z) be-

comes positive and r(z) becomes greater than z tan ~. - most ‘f ‘he antenna

is larger in radius than the bicone.

The exact value of 00 below which this effect occurs appears to be

about Cl.= .3564, which corresponds t,otan 00 = ~. Proof that this result

is exact remains elusive.

v. PERFORMANCE OF NEW ACD SENSORS

A new generation of ACD sensor’shas been developed based upon the

shapes with a-l . The ACD-6B(A) is shown in Figure 26.

It is interesting to compare the sensor parameters for the new shape

to those of the prior ACD sensing element for the case where the two elements



have the same equivalent area. For both elements, the values of A. and $~ are

the same. Figure 27 shows the two shapes. The comparisons give, for a=l:

Aeq(new) = Aeq(old)

zo(new) - ~ zo(old)
6

p(rtew)= p(old)

C(new) = ~ C(old) (67)
6

The sensor capacitance has thus been increased by 15 percent. The inductance

of the sensing element has at the same time been decreased due to the shorter

and wider shape or the new sensing element, however, no convenient analytical

expression is available for making this calculation.

This sensor was tested for pulse response in the Conical Elliptical
o

Simulator as discussed in Appendix A. A reproduction of the actual data trace

is shown in Figure 28. The bottom trace is the actual sensor output, showing

the sensor derivative response to the step-function incident field. The top

trace is the integrated response.

This response is noticeably better than that of the ACD-6A(A). This

can be better seen in Figure 29, where the two responses are shown together.

The new shape gives less than half the overshoot and ringing of the old shape.

The 10- to 90-percent rise time is slightly slower for the new shape, due to

the increased capacitance of the element, 1.02 ns as compared to 0.94 ns for

the ACD-6A(A). The overall gain in pulse fidelity, however, 13 significant.

The new ACD can be modeled by the equivalent circuit shown in Figure

30, which gives the shown pulse response. The capacitance has increased by 13

percent, very close to the 15 percent predicted. The inductance has decreased

by 29 percent, twice as much as the increase in capacitance.

The calculated bandwidth of this new ACD-6 sensor is shown in Figure

31, along with that of the ACD-6A(A). Both are obtained from their equivalent

circuits, and are represented by @

18



vout 1

R ~eq ●
j “ ~1-u2 LC) + juRC

(68)

in the complex frequency domain. Only the amplitude variation with frequency

u is shown here. The new ACD is very close to a maximally flat response. In

fact, for the values of R and C given in the equivalent circuit model, the

maximally flat response results in a value,~or the inductance of 16.9 nH. The

-3 dB point for the new ACD-6 is slightly less (7.5 percent) than that for the

ACD-6A(A). However, its response is better up to about 200 MHz.

Time Domain Reflectometer (TDR) responses of both the old and new ACL~-6

sensors are shown in Figure 32. This is a

pedance of the sensor at various points on

step waveform driven onto its aPex (CtutPut

the 50 ohm characteristic impedance almost

measure of the characteristic im-

its surface as seen by an input

connector). The new shape shows

all the distance up the sensor to

the point where the dielectric support is fastened. The ACD-6A(A) shows a

significantly larger deviation frouithe 50 ohm input impedance.

We may define a figure of merit A for the ACD sensorsS,12 as

(69)

where R is the output load resistance, zo = ~ is the wave impedance of

free space, and Lc is a characteristic length related to the sensor rise time

or bandwidth as

&c = ct or 1 =$ (’70)c c c

In common usage, tc is defined as the 10- to 90-percent rise time and Uc - 2nfc

where fc is the upper 3-dB point of the frequency response.

We actually wish to utilize a figure of merit which includes both the

sensor rise time and bandwidth. Let us therefore use

C2 tc
t;=_. u

c
(71)
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as our defining relationship. For the ACD-6A(A) sensor we have a rise time of
o

0.94 ns and a bandwidth of 360 MHz which gives a value for h
avg

of 0.974. The

new ACD-6 prototype has a rise time of 1.02 ns and a bandwidth of 335 MHz for

ah
avg

of 0.835. This lower value of A for the new ACD-6 reflects the
avg

slightly lower bandwidth and slower rise time due to the increase in sensor

capacitance.

VI. PULSE FIDELITY Definition

The figure of merit as defined above includes no mention of the pulse

fidelity, or how well the sensor output approximates the shape of the incident

field. Let us therefore define a pulsefidelity factor, n, which is a measure

of how well the sensor reproduces the incident field.

The figure of merit A includes a measure of the 10- to 90-percent
avg

rise time of the sensor. Let us therefore define an “ideal” sensor response

to a step input as a straight line ramp joining the 10 percent and 90 percent

points of the sensor output as shown in Figure 33. Before the intersection

of this line with the O percent point and after the intersection with the 100

percent point, the curve will be a f~at line with no slope. By defining the o
ideal waveform in this manner we allow for the finite seqsor rise time and say

that the incident step field -shouldbe slewed over into a ramp by the rise

time.

Now, how can we estimate how well the actual sensor response follows

this ramp? One way would be to find the total area difference between Lhe two

curves in Figure 33 (normalized to the step height and rise time). We would

want ~ to become unity as this area goes to zero, and rlto go to zero as this

area becomes large. This is an aesthetic way of defining q, but unfortunately

a very difficult way of calculating it. Another method could utilize the

principle of least squares whereby the Integral (or sum if digitized data

traces are employed) of the square of the instantaneous deviations between the

two lines is calculated. Again, as this value goes to zero, n goes to unity.

This is also a difficult calculation to perform.

A much easier way to estimate v is to simply measure the largest

deviation between the two curves. Let c be this deviation, normalized to the

pulse height. c should never be greater than unity: at unity the senzor re-

sponse is totally undamped and rings.forever as 1 + cosut. In this case rj o
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should be zero. A L of 0.5 is a very large overshoot, so we

corresponding value of tlto be small. Therefore n should be

function of L, perhaps like

or

would like the

a nonlinear

(72)

(73)

More work needs to be done on defining q, but we can use the estimation

given by (73) to evaluate the ACDsensors. For the ACD-6A(A) we get a value

of n = 0.627 and for the new ACD-6 we get n = 0.839. This gives us a numer-

ical estimate of how much better pulse fidelity the new ACD shape gives.

If we now combine the figure o:fmerit and the pulse fidelity used

above, we obtain an overall measure of the sensor performance. For the ACD-

6A(A) this is An = 0.611. For the new ACD-6 it is ArI= 0.700. This’indicates

that the new shape is scxnewhatbetter than the old ACD shape.

VII. ENHANC~ENT FACTOR DETERMINATION

A prototype ACD-6 sensor was made with a minimum thickness dielectric

support cylinder and with a ground plate which mwnts flush with the test

simulator ground plane so that the enhancement factors were essentially zercl.

Conducting spacers of varying thickness and radii were made to go under the

sensor, as were dielectric sleeves to go around the support cylinder. In this

manner the enhancement factors were measured by a comparison to the sensor

response without enhancement of one percent.

The experimental s-etupused was that described in Appendix A. The rms

error on any measurement was about one percent, so this is the accuracy of the

enhancement factor determination.

A dielectric sleeve of thickness 0.125 inch was used to measure the

enhancement from the cylindrical support. The enhancement from this sleeve

could not be measured as it was less than one percent. Thicker sleeves need

to be used, but this has not

bound on this enhancement of

Cylindrical plates of

increments of 0.25 inch were

yet been,done. We do at least now have an upper

one percent.

radius 7.00 and 14.00 inches and thickness

used to measure the ground plate enhancement
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factor. A typical data record for one of these spacers is shown in Figure

34. Five sweeps of the sensor output, both with the spacer plate and without

it, were recorded so as to give a measure of the system noise (one percent).

The enhancement for this spacer is equal to the percentage difference between

the means of the two runs. In this case, for a plate of 0.50 inch thickness

and 7.00 inch radius, the enhancement was 8.2 percent (tl percent).

The enhancement is also a tunction of the size of the sensing element.

This can be normalized out by basing the enhancement calculation on the ratio

of the spacer plate dimensions to the height of the ACD sensing element. This

height is 6.o4 inches for the ACD-6 prototype. The normalized data are shown

in Figure 35 as a function of the ratio of the plabe thickness to sensor

height for the two plate radii. A fit to these data gives an expression for

the enhancement factor, E.F., expressed as a percentage as

00T R ‘0”7
.E.F.

‘72RZ
percent (74)

By using the above data for enhancement f’actors,we may now build ACD

sensors which are accurate in their sensitivity to within one percent.

VIII. SUMMARY

A new equivalent charge distribution has been used to generate a new

shape for the Asymptotic Conical Dipole sensors. The addition of a point

charge to the end of the linear charge distribution, with a value exactly

equal to the total charge of the linear charge yields a shape which maximizes

the asymptoticness to a bicone. This new shape gives a more optimized pulse

response and a flatter frequency response over the sensor bandwidth. The

sensor enhancement factors, which previously had only been estimated from

crude models, have now been determined to an accuracy of one percent. ThiS

allows for the production of more accurate sensors than in the past.
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APP’EU4DIXA

.-

DATA MEASURE24ENTSYSTEM

The measurement system used to make measurements on the ACD sensors is

shown in Figure A-1. The electromagnetic fields are generated on a Conical

Elliptical Simulator. This consists of an elliptical ground plane with the

drive cone apex at one focus and the sensor port at the other focus. The

semi-major axis is 6.OO feet and the distance between the foci is 4.00 feet.

It thus takes 4 ns for the signal from the cone to reach the sensor port while

the first reflection frcxnthe simulator edge takes 12 ns. The simulator thus

has 8 ns of clear time before any reflections reach the sensor.

The cone forms a 180-ohm transmission line above the ground plane. It

is charged to some potential, nominally a few hundred volts, and then shorted

to the ground plane at its apex through a very fast, mercury-wetted switch.

This generates a step waveform which propagates spherically outward from the

apex with an electric field given by

v
E. =Yo.

60
Zc sin 8

(A-1)

where V is the charge voltage, r is the radial distance from the apex, Z
o c

is the simulator characteristic impedance (180 chins)and 0 is the spherical

coordinate measured from the center line of the cone. The cone is discharged

to ground about 400 times per second :50that repetitive pulse signals are mea-

sured by the sensor.

A screen room is located behind the ground plane of the simulator.

The signal from the sensor is carried over high quality, solid jacket coaxial

cable and enters the screen room via abulkhead coaxial feedthrough. It L3

fed into the sampling oscilloscope at as high a level as can be obtained

without saturating the sampling scope. A delay line is necessary in the

present setup so as to delay the signal with respect to a trigger signal so

that it can be displayed: A Tektronix 7M11 delay line is used, inserted in

one of the slots in a Tektronix 7904 mainframe which is used for the Oscillo-

scope. The 7M11 provides the needed ’75ns delay time, but has the undesirable

property of adding a 175 ps rise time to the sensor data. From the 7M~~) the
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—
signal, now attenuated W a factor Of ~WO, goes to the S-2 samPliW head in

the 7S11 sampling unit, which generates the sampling display. The S-2 has a

rise time of 75 ps which, taken in quadrature with 175 psfrom the 7M11, gives

a rise time of 190 P9.

The sampling oscilloscope sweep is driven by a 7T11 time base, which is

triggered by an external signal from a trigger probe near the cone on the

simulator.

the 7T11.

The

tor. This

The actual time base is generated by a very slow ramp external tcl

external sweep is generated in the EG&G STI-3 Sample Time Integra-

unit also takes the vertical output of the 7S11 and generates the

two signals for the X-YY plotter. One of these signals is just the 7S11 out-’

put, buffered and amplified to drive the plotter. The other signal is the

time-integral of the 7S11 output. This integration is performed in the slow

sample-time of the sampling oscilloscope output, hence the name of the unit.

Errors in the integration of the sensor data occur because of noise

generated by the sampling process. The noise output of the sampling oscillo-

scope is a constant level, so the signal input and output of the 7S11 are made

as large as possible to maximize the signal-to-noise ratio. Special proce-

dures are used in the STI-3 to minimize the effects of the residual noise,

but it still creates about a one percent error in the final position of the

integrated data trace.
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