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ABSTRACT

A vertically-polarized dipole antenna is used as a wideband radiator
of special waveforms for EMP simulation. The antenna consists of a large

right-circular cone with its apex located on the ground. Special resistive

apex decreases linearly with height and becomes zero at the top, maintaining
a constant waveform as it travels upward. This particular resisfive loading
results in an antenna equivalent circuit consisting of the total antenna ca-
pacitance in series with its characteristic impedance. The radiation fields
are calculated from the antenna current and the total fields are then calcu-
lated from the radiation fields. The input current to the antenna is derived
from the equivalent circuit of an ideal pulse ggnerator, including the output
switch inductance and generator shunt resistance, which give the pulse rise
time and late time decay, respectively. The particular modei discussed also

inecludes a resistive lcad in parallel across the antenna input which can be

.varied to change the late~time waveforms. -
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I. Introduction

Previous notes!'? describe a method of cobtaining the fields far away
from a resistively-loaded biconical antenna. The calculations are based on a
transmission-line model for the antenna, and the antenna itself is approxi-
mated by an equivalent dipole antenna. An actual antenna can then be con-
structed as a suspended biconical structure or as an inverted monocone on a
ground plane. A special nonuniform resistive loading was developed which
linearly decreases the amplitude of the current with distance along the trans-
mission line, starting with the pulser output current at the antenna apex and
becoming identically zero at the top of the cone. This amplitude decrease
occurs without change of the wave shape or spectral content as the current
propagates. This specific resistive loading also results in a simple antenna
equivalent circuit which consists of the total antenna capacitance in serles
with the characteristic impedance of the transmission line.

An ideal step generator, modeled as a step voltage in series with a
generator capacitance (equivalent to a charged capacitor discharging into the
antenna through a switch) was used to give the current on the antenna and
hence the radiated fields. This simple pulss generator model proved adequate
to give reasonable predicgions for the measured fields from’actual antennas,?
at least for.distances away from the antenna apex greater than 1lts height.

A more realistic model for a pulse generator has been used to give
the input voltage to the resistively~loaded antenna.* The fields radiated by
the resultant current waveform from this model are now derived. 1In addition,
the effect of placing a shunt resistance across the antenna is shown. This
resistance can be used to reduce the late~time voltage on the antenna (with a
resultant decrease in the late~time electric field) to reduce the possibility
of high-voltage breakdown across the pulse generator.

. All figures are contained at the end of this report.

iI. Summary of Previous Results

The axially symmetric biconical antenna is shown in Figure 1 with the
spherical coordinate system used. The characteristic impedance of the bicone
- i3 given by

yA

Z, -‘EQ &n [cot(eo/Z)] (1




where
Z = uo/eO = 1207 (2)

is the impedance of free space. A dimensionless geometric factor fg is

defined as

Zc
f = —

1
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The antenna behaves as an ideal transmission line for spherical elec-
tromagnetic waves and can be modeled as shown in Figures 2 and 3. Parameters
of the transmission line (antenna slant height) are given in terms of the

distance ¢ alcng it by

L'(2) = uf, (1)
Cre) = e /1, | (5)
2'(g) = 2A(2) (6)

A(z) 1is the special nonuniform resistive loading!, and is given by
Zc .
A(g) = _th—C—l_- (7
This results in a frequency-domain current I(z) on the antenna

-Y z

I(g) = T(o) [1- 2] e ° (8)
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A tilde ~ over a quantity indicates the Laplace transform with the variable s.
The current starts with amplitude IO at the antenna apex and decreases lin-
early with height to zero at the top, maintaining the same waveshape all the

way up.




For convenience a normalized retarded time is defined as

R, (9)

where
1

Hoko

= free-space propagation velocity (10)

£t = time in seconds

A corresponding normalized (dimensionless) Laplace transform variable is

8, = 8t = 38

h h (1)
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is the time required for a signal to propagate from the apex to the top of the
‘antenna. The propagation constant on the corresponding lossless transmission
line is then

Y = VATLT -
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I{o) is the current from the generator into the transmission line and
is independent of r., The voltage along the transmission line is given from

the transmission-line equation as
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The input voltage to the line is then
~ 1 = 1 =
V(o) = oz (Y op + 1) I(o) = ey (vgh + 1) I(o) (15)

where C, Is the antenna capacitance.




The antenna input impedance i{s defined by the ratio of the input

voltage to input currenf and is given by
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This impedance is the lumped series combination of the lossless biconical
antenna characteristic impedance and the total antenna capacitance.

The radiated fields are calculated by assuming that the antenna is
very thin, extending from -h to h in Figure 1 as 60 goes to zero. This ap-
proximation can be considered valid in the sense that the spherical fields
for 92 4 generated by a current on an infinite bicone are the same as those
generated by the same current on an infinite linear dipole. The fact that the
current decreases to zero at ¢ = h allows this approximation in the case of
the finite bicone., A normalized radiated waveform from this antenna approxi-

mation with the current concentrated on the z-axis is calculated as!

- u, f_s h Y _ Z cosBg
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The far-field (radiated) components are given by
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The near-field components can be calculated? from the far-field components to

give the total fields as
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The total-field components can be rewritten as
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The field components are found in the time domain by obtaining the
expression for E' in the Laplace domain and transforming it to the time domain

1
via the inverse transformation:
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The other normalized field components are obtained by
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The total field components are then
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III. Pulser Equivalent Circuit

The simplified pulser equivalent circuit, together with that of the
antenna, is shown in Figure 4. Also included is a possible shunt resistance
Ra across the antenna apex.

The generator capacitance C_, for a typical pulser is the erected

capacitance of the Marx generator ingparallel with the peaking capacitance.
The charging, balancing, and trigger resistors form a finite shunt resistance
Rg across the capacitance. The pulser output rise time is usually determined
by by the inductance of the output switch Lg. Higher order terms in the
source generator are neglected in this analysis. Such terms include the ca-
pacitance across the output switch which causes the prepulse and deviations
from the ideal switch firing angle which add reactive terms to the pulser
equivalent circuit.

For a source voltage of Vo (erected Marx voltage), the input voltage

to the antenna terminals is given by




[RgCgRal*s[RgCaR4CAZ,]
[Ra*Rgl+s[RgCRL*RC (R 20 ) +R CaZ 4L ] (34)

+sz[Rgcgﬁacazc+Ls(Rgég+aaca+cazc)]+s=[Lsagcgca(Ra+zc)]

V{o) = Vo

Without Ra, this reduces to

[Rgcg]+3[RgCgCazc]

1+8{RgCo*RCa*CaZo 1+82[RCCoZ +LCo 1482 [LgR,C,C, ]

V(o) = V (35)

The current intc the antenna is given by

sC

= V{0) +——sor
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[Ra+Rg]+s[Rgcha+Rgca[Ra+zc)+Racazc+Ls]

{36)
+s2[Rgcgaacazc+Ls(Rgcg+aaca+cazc)]+s3[Lngcgca(Ra+zc)]

The coefficients of the Laplace variable in these equations can be represented

as
= A + sB A + 8B
V(o) = Vo C+sSD+s?E~+38’F Vca F(s+a)(s+B)(8+7Y) (37
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The coefficients are

A = RgCo (39)
B = RgCeCalo (40)
R, + R R
c-—2_£€.4.+.8 [, 1 without R } (41)
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Also note that the product of the antenna capacitance times its characteristic
impedance is the propagation time ty = CaZo'
The frequency coefficients a, 8 and Y are the three roots of the

equation
a®F ~ a?D + aD ~ C =0 (45)

The first root a can be found by successive approximations: start with a first
approximation of a = 0, find the next approximation from

C

D~ qE + a* F (46)

a.

and repeat until a is constant. The other two coefficients are found from




B : 2
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Note that o and Y as used here are not the same terms used in the references,
Figures 5, 6 and 7 show the resulting waveforms intc the antenna as
given by the above equations. The three figures show the same waveform on
different time scales to emphasize different parts of the waveform. Also
shown on these three figures is the double-exponential waveform - which would
occur for both the voltage and current waveform 1f the antenna equivalent cir-
cult consisted only of its characteristic impedance, i.e., an infinitely long

cone without resistive loading.

Iv. Normalized Far-Field Waveform

The normalized far-field waveform can now be determined from

equations 8 and 17. I(o) is independent of z and can be removed from the

integration:
- ufs h =Y _|z| ¥ z coss
E' - sing 5289 I(o) (1- lil) e ° e ° dz (48)
L v el h
-h

The integration is detailed in Reference 1, with the result

L £ hs ( —sh(1-cose)
£ = sing —£" T(0) /& o+ 1
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o'h h h
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Some of the trigonometric functions can be ccmbined to give
uf h ; 2
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With I(o) given by equation 38, 7' becomes
1

: s, (1~cos8) - s, (1+cose)
z, _ 8ing by B/F 2y, -, ltcos?s _ e n , & n
El 2 Téh+ah)(sh+8h)(sh+Yh) sin%g sin“e (1~cos8)? (1+cos8)*

(51)

with ah- ath, Bh- Bth and Yh = Yth.

The inverse Laplace transform to the time domain gives

sing th B/F % 1+c0s26 Ty
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.-.Y T' _.Y T" -
h'h h'n

1 p 1 "

. iy Y , lrcos®s) , T Th o) - e Uley) e Uley)
“n"n sin®g sin“s Th (1-cos8)? (1+cos8)?* |
(52)

where U(rh) is the unit step function and
L - - = -~

T T, (1~-cose), Ty (1+cose). (53)

This expression contains three terms (in the square brackets) which are iden-
tical ‘except for the cyclic permutation of Q. Bh and Yh' The only time

dependence is contained within these terms, so equation 52 can be rewritten as

g - K[Ga(rh).+ Golry) + GY(th)] (54)
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where

sine t, B/F

K = -
2 (ah‘Bh)(Bh-Yh)(Yh ah)

- (55)

and
- T
%huug

2e
1+cos?s
Ga(Th) = (Bh Yh)[cﬁf' 3in@ ) 3in<e

— T' — T"

e *n'n U(rﬁ) e *n'h U(Tg)}

- (56)
(1-cosg)?2 (1+cos9) 2

V. Normallzed Near—-Field Waveforms

The normalized near-field terms can now be derived from equations 26

and 27 in the Laplace domain:

i sing B/F 2 _ 2(1+cos?s)
= F) Y
2 2 h (sh+ah)(sh+8h)(sh+7h) sin®*s Sy sin®“e
e—sh(l-cosa) e—sh(1+cose)
s, {1-cos8)? ¥ 5 (1+c0s8)?2 (57)
h h
£ sing . B/F 2 2(1+cos?s)
= Pl z
3 2 h (Sh+ah)(sh+8h)(sh+7h) shsin B sh sing
e—sh(1—cose) e-sh(1+cose)
" 5I(T=cos8)? " 52(i+6086)” (58)

The corresponding terms can be derived in the time domain from

equations 29 and 39
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T
- h '
«* . Kj; [6,r) + Galry) + Gylr)] ey = K[H (1) + Hy(e,) + H (1)) (59)
“n
g = xj; (B (r) + HpCop) + HyGepd] dry = k[0 () + 9,(x) + 3, (r)] (60)

where Th
H (%) -j; 6, (x,) dt,

and T

h
Ja(th) -.}; Ha(rh) dr,, ete.

The calculations need only be done for the ay term and then applied to the
other terms by the cyclic permutation.

The results of the integrations give
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VI. Normalized Field Components
N The normalized field components in the frequency domain are given by
—kd) - equation 51, 57 and 58. These components are shown in Figure 7 for a baseline
13




set of pulser and antenna component values. The first break frequency corre-
sponds to the value of o the second break frequency to Bho and the third

to Y,. In reference 1, the lowest break frequency, which is due to the pulser
shunt resistance, does not exist. Neither does the highest break frequency,
which is due to the switch inductance. Figure 8 shows the effect of removing
these pulser elements from the model; only E; is shown since the other field
components can be obtained from it simply by dividing by the frequency,

A very interesting result of this figure is that the effect of the
antenna shunt resistor R, is nearly identical to that which would occur if it
were combined with the pulser shunt Rg, at least for values of Ry equal to or
higher than Rg. This is because the effect of the output switch inductance Lg
occurs at far higher frequencies than that of the shunt resistances for prac-
tical pulser component values, so that it is immaterial on which side of the
switech the pulser shunt 1s located. For values of Ra much smaller than Rg,
the high frequencies are decreased in addition to the low frequencies, as seen
in Figure 9. This is an undesirable effect (increase in rise time) so such
low values of an antenna shunt should not be considered. Of course, if Ra is
located on the pulser side, then it cannot be distinguished from a change in
value of Rg, and hence it is not a distinet circuit paramgfer. The antenna
shunt is thus not an interesting circuit parameter and will be disregarded in
all subsequent discussions.

The time domain waveforms of the normalized field components are
shown in Figure 10 for 8 = w/2 (fields on the ground plane). Figure 11 shows
the field components at a point above the ground plane. These compare favor-
ably with the general nature of the waveforms of Reference 1, exceﬁt that the
finite rise time due to the output switch inductance is now included, and
that E; will now eventually return to zero at very late times due to the

pulser shunt resistance.

VIII. Normalized Radlated Fields

The current waveform into the antenna, equation 36, can be rewritten

in normalized form as

N v, b Sy ' ‘ 6
1(o) = zZ, T+, 1 +b(i+a)] + sl[b + d] + s[b d] o3
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where normalized, dimensionless variables are defined as:

= ratio of antenna capacitance to generator capacitance,

OIO
| i

= ratio of pulser time constant to antenna

o
[]
:nlmd
[
(¢.0]
0Q

. propagation time,

£2 L C
d = E% = TZ"%‘%T = square of the ratio of output switch time
h ca

constant to antenna propagation time.

All antenna and pulser components are thus redefined in terms of the propaga-

tion time up the antenna and the capacitance ratio.
Equation 38 remains the same, Wwith the coefficients redefined
according to equation 63:
o«
= b
=1
1+b (1+a)
b+d
deb

1}

L3 BN < N & SR v B 0 o
n

The rest of the equations which determine the radiated fields remain in

original form. The total normalized radiated fields in the frequency domain

are given by equations 23, 24 and 25 with the normalized field components

given by equations 49, 57 and 58. In the time domain they are given by equa-
tions 31, 32 and 33 with the field components of equations 54, 56, 61 and 62.

These fields are all normalized in amplitude by unitizing the common term

Vo

formrr, T V0
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Studies can now be performed to show the effect of the normalized
parameters on the fields in the simulation at normalized distances and eleva-

tions. A baseline set of parameters was chosen for an example consisting of

Ca
a-E—=0.3
g

t
b:{_’—g--so
h
tz
3
da——I'.03
h
% = 2 = normalized range

E = 25 = height/range

* Figure 12 shows the'spectra of the fields for these parameters and Figure 13
shows the waveforms.

Some comments are in order concerning the general nature of these
waveforms and spectra. Of foremost importance is the fact that the radiated
fields do not have a double-exponential waveshape. The initial rise time is
very nearly that of the double exponential, but the principal field components
then decay very raplidly and,iin fact, become negative at some time less than
the propagation time up the antenna. This "zero crossing time" is primarily a
function of the antenna height and is relatively insensitive to all other
antenna or pulser parameters, including the resistive loading of the antenna.
It is inherent in the far-field componeﬁts of all radiating antennas, includ-
ing vertically polarized dipoles. The zero crossing time is often used as a
specification for the procureﬁent of suéh antennas for EMP simulation.

The two discontinuities in the slopes of the fields are due to the
antenna current becoming zero at the top (first discontinuity) and in the
ground plane image {(second discontinuity), and occur at the respective

propagation times,
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The magnetic field becomes zero at a few time constants, consistent
with the fact that it does not contain a static field compeonent. The electric
field, however, crosses zero again to become positive and then maintains a
moderate static level for a very long time. If there were no shunt resis-
tance, this field would exist forever due to the voltage put onto the capac-
itance of the antenna.

The slight oscillation of the polar electric field due to the two
zero crossings becomes a dip in its spectrum at a value of w % = 0.5 as seen
in Figure 12.

Figures 14 and 15 show the variation of the fields as a function of
the angle from the horizon, represented here as the measurement point eleva-
tion. As the elevation is increased, the radiated fields become more sharply
peaked as a symmetrical high frequency spike with a loss of late-time, low-
frequency content. The raaial electric field grows correspondingly.

Figures 16 and 17 show how the fields vary with distance from the
antenna. As the distance increases the near field terms decrease which re-
duces the low-frequency, late-time components. At distances closer to the
antenna than one antenna height, the results presented here become Iincreas-
ingly inaccurate due to the assumptions on which the calculations are based.

Figures 18.and 15 show the effort of the antenna/pulse generator
capacitance on the fields. Larger pulser capacitances are seen to give more
mid-frequency components, with less undershoot and a larger zero-crossing
time. Both very-high and very-low frequencies do not change with the
capacitance ratio.

Figures 20 and 21 show the effect of the pulser shunt resistance,
represented here as the Rgcg/zcca time constant. Low values of this shunt
resistance decrease the low-frequency content and reduce the time that the
electric field tail stays high.

Figures 22 and 23 show the effect of the inductance of the output
switech, Large inductances are seen to significantly decrease the rise time

of the radiated fields and the high-frequency content.
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