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Abstract

The possibility of usinga seriesof magneticdipoles to produce a composite m=getic

dipole moment has been established. A concept is proposed of exciting a set of mag-

netic dipoles, comprising loops with-prescribed electrical.properties, by me=s of = “

electricalnetwork which they form part. A network model ia developed for describing

such a series of loops that can exhibit desirable efficiency and impedance properties. A

cascaded low-pass constant-resistancenetworkin which each stage includes a magnetic

dipole is exmnined and an expression produced for the composite magnetic dipole as

a function of its network parameters. This gives rise to the possibility of producing

a controllable electromagnetic environmentrelatable over any frequency range to the

network’s input current and its electrical properties which in some c=es may approx-

imate a transmissionline.
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1 Introduction

One aspect of interest in producing various EM environments is &e dkrekprnenf of local

illuminator. As with any simulator, attention needs to be given $mpmwkiing appropriate

spatial and frequency characteristics. The PARTES concept [II ~. e#iMished the pos-

sibility of utilizing a set of magnetic &lpoles to approximate a free _ plane wave over

some limited volume of space. Each member of such a set of ma-dipoles might be

realized by a set of loops which would be selectively sized, located aizd &ken to e3icient ly

produce a single magnetic dipole moment over a broadband of kqqemrk

Implicit in the use of a combination. of dipoles (magnetic or e3e&k] to synthesize a

given field is the assumption of linearity. In this case, it is assumed.pm&bIe that a simple

add!tion of sources with appropriate coefficients can form a I.&-eaRmwnbimation which

results in some desired field. The vaiidlty of this assumption for ekxfromagnetic fields

is based loosely on the fact that M=well’s equations whkh desmifk %IM5rbehavior are

linear and the constitut ive relations are ofteh linear (approximakdy). Linear differential

equations of this type have the desirable property that the sum of individual solutions is

also a solution. The use of this property is commonly used in ekctin.ics applications.

In transient applications, it has been employed commonly as a means of synthesizing a

desired waveform from a linear combination of component frequencies This is a temporal

superposition. A spatial superposition, might be regarded as -one in which the incident

field is simulated by a number of discrete sources, in the case of cnrrent interest, by a

series of magnetic dipoles. The just ifkat ion for using magnetic dipok as the elementary

sources as a spatial superposition process has been

representation of the scattering process [1].

The feasibility is examined of using conducting

developed using an integral-equation

loops to emulate tbe efiective dipole

sources of this superposition theory. In *KISstudy, one effective dipck in a spatial sense,
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is synthesized by a series of loops each contributing to a specific frequency range. T’he

value of each magnetic-dipole contribution is the product of the equivalent area of the

loop and its circulating current. A desirable aspect of the frequency chax-acteristics of the

current in the loop is that its radian wavelength be much larger than the radius of the

loop. A scheme has been devised whereby the loops, with their inherent area-dependent

inductance, are included in a cascaded ladder network. The network is chosen to have a

constant input resistance, and relatedly, behavu as a series of low-pass filters. This gives

rise to a configuration of a combined electrical network-loop system in which the physical

dimensions of each loop can be matched to the frquency characteristics of its circulating

current. The loops close to the source of the system are made electrically small, for the

highest fr~uency components, while subsequent loops can incre=e in size appropriate to

the highest remaining frequency component.

The model proposed assumes that there is no interaction (mutual inducta~ce] between

the loops and ignores the production of higher moments. An associated paper will deal

with schemes for minimizing interaction by locating successive loops in a manner such that

the mutual inductance for loops is minimized.

2

A

Combining Magnetic-Dipole Moments from a l?Jum-

ber of Loops

field equivalence principle is a statement of the fact that an actual source of an

electromagnetic field can be replaced by some set of equivalent sources. Starting with

Maxwell’s equations for the case where electric and magnetic currents and charges are

present, an expression for Love’s field equivalence principle has been developed which

3



relates an incident field to electric and magnetic sheet current densities [3] as

where ~~ is the outward pointing normai on the closed surface S. In the combined field

form, the combined surface current density cn the surface, t78q is in this case related to its

components as

(2.2]

where q is a separation index (+1) and 20 is the characteristic !mpedance of free space.

In this interpretation of the field equivalence principle, a perfectly conducting enclosed

surface S~ inside the enclosed surface S supports the combined surface current J&. For

the perfectly conducting surface S near S3, the elect~c surface current 79 is equal and

opposite to J7) and the magnetic surface current @~) (rg, t) is the important part which

excites the scat terer resonances. The incident field, except for a quasi-static term, can ●

thus be duplicatd using ~sh alone on the surface S.

The area A of the surface Ss needs to be subdivided into a set of elementary zones of

area Ant i e.,

(2.3)

The magnetic dipole moment, with centers at Fsn,, associated with each element can be

shown to be

(2.4)

The tilde (N) indicates the (two-sided) LapIace transform, and s is the complex frequency.

The relation holds only for the situation where the radian wavelength is large compared

to each related elemental area Am.
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4 3 IIMediw

It has been shown

dipole moments by

Magnetic Dipole fkom an Array d hops

tlmt an effective field can be produced by a sum of elemental magnetic

using the principle of superposition. A means of implementing an

individual dipole moment in the imaginary surface is, conceivably, by a set of loops at the

location of the desired dipole moment. Each loop has dimensions which remain small with

respect to the radian wavelength for frequencies at which the loop significantly contributes

to the magnetic dipole moment. The equivalent are= of the individual loops are assumed

to be parallel, so that the resulting magnetic dipole moment has a constant direction. The

effect ive magnetic dipole moment i.& can thus be expressed as the sum of the individual

products of elemental loop area and elemental circulating loop currents, i.e.,

where

~z = unit vector for all the magnetic dipoles

In(s) G frequency-dependent current circulating in loop n

A 4. = equivalent area of loop n

N = total number of loops

(3.2)

?“n = elemental dipole moment from loop n

N = number of loops to produce one magnetic dipole

Higher order moments will be present in the loop implementation of the magnetic dipole

surface. The magnitudes of higher moment quasi-static fields fall off at rates that are

higher than the corresponding dipole fields. As a rule, quadruple and therefore higher

order moments can be ignored if the point of consideration is further than a wavelength

from the loop extiting it. For situations where space precludes the natural attenuation with

distance, a means of suppressing these higher order moments will need to be considered.
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4 Cascaded RLC Constant-Resistance Lmv-Pass lN’et-

Work

An array of current-carrying loops is proposed as a means of approximating the magnetic

dipole moment as described in the previous sections. The inductance inhenmt in the loops

can be included in an RLC network, shown in Figure 4.1. A constant resistance network of

this type is analyzed below to show its frequency-dependent current characteristics.

input admittance of a single stage can be written as,

Ybn=

2 = aZj.n+ls

This relation can be rearranged to

1 1
+

+i+~
sLn + ~

input impedance of the next stage.

Inspection of the expression for ~n in this form shows that if

3=lG

Then

The

(4.1)

(4.3)

[4.4)

If these two conditions are satisfied together with the load RL = 1?, then it can be

seen that the constant resistante network can be cascaded and maintain the same input

resistance for each stage. The transfer function for a given stage n, can be written in terms

of the voltage out, ~OUt.and the voltage ina ~h. ~using the currents ~b. and 12.
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V&tn
– = *L.L=[’2+-’Znn

R2=$
n

[4.5)

Thus each stage acts as a low pass filter.

The transfer function for the cascaded network can be written in terms of the stage

one input voltage ~hl and input current ~& as

Foutn= Znl ii[+-iz+1]-1 (4.6]
.!=1

A special case occurs if all the stages have equal values of d. = C and JZ.’= -Las well

as R then the transfer function becomes

and PO*. = Vj&[Sm + 1]-”

5 Cascaded Low-Pass

Filter

[4.7)

Symmetrical Const ant-Itesist ante

Another example of a low-pass filter with constant resistance can be regarded as a special

form of a two-terminal symmetrical lattice. A constiant-resist~ce symmetrical lattice can

8
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@
berealizd inthe~, Torbridged-T circuit with equiwient results. Thusinaddition to the

ladder network structure of the previous section$ the constant”resistance bridged-T circuit

(Figure 5.1) may be considered. In the form using impedances of Figure 5.1

Zm=k! (5.1)

if

21 = 23 =R, lP=2&Z4 (5.2)

The impedance 25 has been added to the circuit although it is redundant in some cases. It

is included in the circuit in practice at a value equal to R to add stability and symmetry

to the circuit. A more detailed analysis of filters based on the two terminal-symmetrical

- lattice can be found in a number of works on network synthesis [2,3,4].

The purpose of the circuit is to drive a loop. YVith

i?l=55=R (symmetry)

e is=l? (to be input to next filter) (5.3)

and with the loops of successive filters to be in series at low frequencies [to increase the

low-frequency magnetic dipole moment9 this leaves ~4 for the loop, so we take

24= SL (5.4)

which from (5.2) gives

R2
iz = ~=$ (5.5)

c=+

The equivalence of this circuit to the earlier constant-resistance low-pass filter is noted

with

(5.6)
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e The transfer characteristics for a symmetrical constant-resistance filter

RLCconstzmt-impedance network. Thetransfer function reduces to

hence

g= [“’m-’

are identical to the

(5.8)

(5.9)

This is the result for a single section of a constant-resistance filter. The symmetrical

constant-resistance low-pass filter can be cascaded, with each new section replacing 23, in

an analogous way to the previous section. The results for the cascaded case are identical

to the cascaded RLC constant-resist ante low-pass network.

m
6 Dipole Moments

Resistance RLC

Wxn Loops in

Networks and

Cascaded Constant-

I?ilixx.w

The model for producing dipole moments from an array of loops provides an expression

for the effect ive magnetic dipole moment, fi.ff as

The current ~. through each loop expressed in terms of the input current z. for a cascaded

constant-resistance RLC network or filter is

●



The effective magnetic dipole moment, f%,~, can be expressed in terms of the input current

(6.3)= ]-1}:4.,,1+,(1+s)L{fi[1+ 3JZZ
kl = =

6.1 A Special Case With Identical Sections

A variety of loop-constant-resist ante cascaded-lUA7 networks or filters can be made with

various relationships between the loop areas and the reactive components. One such scheme

is for the simplest case of identical loops in which all loop areas are equal and all the L

and C components are equal, then

A ego = Aw.

C(j= C.

A normalized magnetic dipole

gression

.

for all n

for all n {consequently LO= Ln) (6.4)

@

moment can be written as the sum of a geometric pro-

For low frequencies

(6.6)

For high frequencies

?&

&Aem = s&{’+ ”((s4G)-’)}

1
4 as l/-s Let% 40

s/--
(6.7)

m
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●
The case for a large number of loops then reduces to

??Jeff 1

j.A.qO = w’m

The normalized magnetic dipole moment

for lV=cO

plotted against u~m

100 cascaded loops is shown in Figure 6.1. For circuits with five or less loops, the low-

frequency asymptotic magnitude, N, is maintained to a breakpoint where it decreases and

eventually falls off in proportion to the reciprocal of w{=. If there are more than

five loops, notches become incre~ingly apparent, with pronounced minima occurring at

points where w~~ = tan (~), ~ being any integer, P >1. An alternate form of the

expression can be written to illustrate the phenomenon, -i.e.,

l% I 1 {1 -2(1 +w2L3C,) cos(iVarctan(w~~) )+(l+w2L,C,)-N}’/2 (6.9)
A,qOfm = wd~

6.2 A Case With ~ommon Proportional I?actor for Area and

Inductance

A case of combined loop cascaded constant-resistance networks of symmetrical filters wor- .

thy of investigation is one in which the loop areas and loop inductances vary according to

a geometrical scaling so that the geometrical scale factor ~ is used to multiply the loop

dimensions. The area and inductance for succeeding loop areas and inductances are related

for this case by

A f%l+l = /32Awn

L.+l = ~L. (6.10)

The general expression for a normalized magnetic dipole then can be written as



.

x
L1

= w—
R

= wc~lt [6.11)

s = jw

The low-frequency and high-frequency behavior of this expression can be obtained by

manipulation of X = w~~. At low frequencies

(6.12)

At high frequencies

The normalized magnetic moment is plotted against w~~ for various numbers of

cascaded sections with a common proportional factor and shown in F@r= 6.2 and 6.3, for

~ = W and @ = 2, respectively. The incre%ing efficiency as ~ is made larger is obvious

in the three graphs. The case for equal se~ents (Fig. 6.1) can be viewed as equivalent to

the one for a common proportional factor of unity. Note that as N is increased in Figs. 6.2

and 6.3 there is not a pronounced set of notches as in Fig. 6.1. Apparently, the geometric

progression for ~ >1 results in a smoother performance as a function of frequency.
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7 Dipole Moxnents Produced

Transmission-Line Model

Relationships have been derived for an array of loops included h cascaded networks.

The behavior of a cascaded constant-resist ante network and a cascaded symmetrical filter

are essentially identical, and also bear a close relationship to a ~lon-line. It is ~

therefore of interest to examine a model for producing magnetic dipole moments using a

transmission-line approach.

In this model the radiating loops are considered to form an integral part of a transmission-

Line. The eflective area of the loop is continuously increasing at a rate with respect to dis-

iance z, expressed by ~2’/’o, where zo is an arbitrary constant. TIM associated induct ante

per unit length, L’, varies at a rate with respect to z, expressed by #’/=O. In this respect,

the transmission-line model is similar to the general cascaded lumped-element case, but

substitutes discrete sections with continuously varying functions related to transmission-

line analysis.

Assuming that the radiating loop area can be included in a tramhission line that has

no series loss term the transmission-line equations can be written as

dz

–sL’f

-[G’ + Sc’p

The transmission-line is”given an added characteristic

[7.1)

that the inductance per unit

length Lt varies proportionate to @’o, thus an added relation is

L’ = L~~* E L~e~ , e% = ~ (7.2)

Assuming that the impedauce of this particular type of transmission-line is independent



*

of z, as per the usual case, then

;=z#f(z) -

This enables the first transmission-line equation to be expressed in terms of ~ ~

Thesolutionfor~ then is

On substituting for ~ and ~ in the second form of the original transmission-line

tion,

df
– = -[0+ SC’]7
dx

we obtain -

i.e., a condition for this equation is that

G’=o, $=%
o

Thus the assumption that the impedance be independent of z is valid so long as

conditions are satisfied.

The accumulated efiective maognetic dipole over a length of such a radiating

transmission-line extending from O to z can be written as
.

%e&=
/

‘ ilt’dz
o

(7.39

{7.4)

(7.5)

equa-

(7.6)

(7.7)

(7.8)

these

loop-

(7.9]

19



.

.

where ~ is a current per unit length, and At is an effective area per tit length.
e

From an examination of the properties of the ~roposed hnsmimbn-line, the relation

for current as a function of z has been derived as

The relationship of effective area A, as a function of z, is defined as

To approximate the proportional section case, we can look at the

n, of sections each with an equal length. For convenience, the length

[7.10)

[7.11)

efiect of a number,

can be taken to be

Zo. Thus, the upper limit of integration becomes nxo. On substituting for ~ and Al !n the

original equation for fi,&, and taking the upper limit of integration as rmo, the integral

The solution for this equation can be written as

sL&l ~$
A~~otxl ~

?%eff=
2e [-’%W+JIE’”

[7.12)

[7.13)

Substituting for ~( this equation reduces to

The coefficients for equivalent area per unit length, AL, and for inductance per unit

length, L~, can be replaced by new values Al and L1 to scale the expression to the cascaded

model. Thus, for the first section of the transmission-line model (from n = Oto n = 1] the

effect ive area and induct ante is made equal to Al and L1. For equivalent area first

/

s. 2Z J%XI ~ _ ~ol = A%I[ 2Al =A: ~e idz= ~[e ~,p -1)
o

[7.15)

●
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a

This gives a scaling relation

~: =“ 2AI

z~(pn – 1]

Asimilar relationship can beobtainedfor Ll by

(’?.16)

This gives a scaling relation for L~

(7.18)

Substituting for Al and L! into the equation for the magnetic dipole moment gives

(7.19) “

The impedance term can be written in terms of L1 and Cl as ~ = r $-. Further, if
.

s = ju, then the term A can be substituted by ~U&. For simplification w<= has

been replaced by k. The equation for the magnetic dipole moment can be written as

.Fm{[l+*]-J’=[l+&%]]
~02A1&–1

fieff = —=

z “w={’-cos(k(;~’o)+’nhsinw-oPO 2A1/3-l
=—v

“[3+sin(k(22)-’n&c0sm’:’J)l} ‘7020)
Plots of the magnitude of the normalized magnetic_dipole moment ~ versus w{= are

shown in Fig. 7.1 for three values of n, the number of transmission-line sect ions. Figure 7.1
.

shows ~ relating to n = 1, 2, and 5, for @ = ~ and Figure 7.2 that for @ = 2.

Inspection of the equation indicates that a new constant k,K = & can be substituted.

This “gives
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The low-frequency behavior of this expression can be obtained by examinhg it for ke~ at

- a very small value. The real part of the expression can be expanded for the cosine and

sine terms, excluding the mulf@Yng fa~t~r

(7.22)

i.e., for k,s small, the imaginary part may be ignored.

The magnetic dipole moment for low frequencies can thus be written as

‘17hemagnitude of magnetic dipole for the low-frequency case for the transmission-line

. is identical to the cascaded constant-resist ante RLC network and symmetrical filter cams.

The magnitude of the magnetic dipole moment for large values of k can be evaluated

24
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a from the expression for fief in the form

For k large, this equation can be simplified to

/+%,[ = !!**[l + /9’” - 2p” COs(ke,(l - /j”))+ O(k”’)]’/’

v~ 24 1__-[l+p’” -
= zk&/3’-l

2/3” cos(ka~(l – 9“)]]1/’ + O[k-z) (7.2.5)

Thus the relationship for high-frequency conditions differs from the cascaded high-

frequency case by being dependent upon~ as well asthe inverse of k. The relationship

shows a strongly oscillating nature for@ approximately equal to (but greater than) one, but

this can be ignored if n is sufficiently large so that P“ >>2, in which case the high-frequency

behavior of the transmission-line model can be written as

as /?n-+ca and k~ca (7.26)

Thus the high frequencies behavior of the transmission-line model is simkr to the

cascaded constant-resistance network and cascaded symmetrical constant-resistance filter

in its dependence on the reciprocal of k,ff, but differs in its dependence on ~ and n. The

transmission-line model introduces a factor 2/3”/(~2 – 1) in the relationship for large k,ff.

8 Summary

The feasibility is established in this paper cf using a combined array of parallel loops

and an effective low-pass network to produce controlled accumulative magnetic dipole mo-

ments. Models for describing the ‘effective ma~-etic dipole moment have been developed

*
25



as a function of frequency and circuit parameters for cascaded cotiamthnsistance ladder

networks, symmetrical constant-resistance filters and for a contimmm case b=ed on a

lossless transmission line. The models for cascaded constd-resistamm ladder networks

and symmetrical constant resistance tiltem produce identiczd resdta Rx this case, con-

figurations with a common proportional constant for loop area and im%dance variation

between sequential cascaded sections produce magnetic dipole momerda with fiat charac-

teristics up to a predictable break frequency. At this point the beham&mis proportional to

(frequency) -l. This gives rise to the possibility of providing magnetic dipole moments over

a frequency range determined by network parameters and input current characteristics.

A model developed for the coritinuous iossless transmission line case wish an equivalent

proportional constant produces identical results to the cascaded cotiantaesistmce circuits

for low-frequency con~ltions. The general nature of the interme&ate and high-frequency

behavior is similar in nature but exhibits an extra factor in its asymptotes and further

cent ains a significant oscillatory component. The significance of the osciHating component

diminishes as the equivalent proportional constant and the number of equivalent sections

are increased. The oscillations are likely to be further diminished if some loss is added to

the transmission line in the ‘model, but that has not been considered here.

The models relate a composite magnetic dipole moment over the complete frequency

range for a given input current and circuit configuration. TKIS can satisfy the frequency

aspect of approximate ing an electromagnetic field by an array of magnetic dipoles. To syn-

thesize an electromagnetic field over an extended volume of space, a number of such arrays

(or one array used at successive locations) need to be located such that they are effectively “

radiating as dipoles from a surface. Implementing *he field equivalence principle by an

array of loops is then feasible in both the frequency and spatial sense. The current paper

has addressed the” relationship of the electrical parameters of a combkd driver-radiating ,“”

configuration to the frequency coniponents of a condined electromagnetic field. The inter-

0
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action between loops is an essential aspect not conside~d here. A number of approaches

are available for addressing this problem, such as locating loops where interaction is absent

or a~ternatively adding the mutual interaction component to the model. The interaction

of loops are to be studied in an associated note.
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