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1 Introduction

One aspect of interest in producing various EM environments iz the development of local
illuminators. As with any simulator, attention needs to be given {o prowiding appropriate
spatial and frequency characteristics. The PARTES concept {i] has established the pos-
sibility of utilizing a set of magnetic dipoles o approximate a free space plane wave over
some limited volume of space. Each member of such a set of magnetic dipoles might be
realized by a set of loops which would be selectively sized, located and diriwen to efficiently
produce a single magnetic dipole moment over a broadband of frequencies.

Implicit in the use of a combination of dipoles {magnetic or electric) to synthesize a
given field is the assumption of linearity. In this case, it is assumed possible that 2 simple
addition of sources with appropriate coefficients can form a linear combination which
results in some desired field. The validity of this assumption for electromagnetic fields
is based loosely on the fact that Maxwell’s equations which desczibe their behavior are
linear and the coﬁstituti\‘re relations are often linear (approximately}. Lmear differentiai
equations of this type have the desirable property that the sum of imdividual solutions is
also a solution. The use of this property is commonly used in electronics applications.
In transient applications, it has been employéd commonly as a means of synthesizing a
desired waveform from a linear combination of component frequencies.l This is a temporal
superposition. A spatial superposition might be regarded as ome im wkich the incident
field is simulated by a number of discrete sources, in the case of current interest, by a
series of magnetic dipoles. The justification for using magnetic dipoles as the elementary
gources as a épatial superposition process has been developed using an infegral-equation
representation of the scattering process [1].

The feasibility is examined of using conducting loops to emulate the effective dipole

sources of this superposition theory. In this study, one effective dipeole in a spatial sense,




‘

is synthesized by a series of loops each contributing to' a specific frequency range. The
value of each magnetic-dipole contribution is the product of the equivalent area of the
loop and its circulating current. A desirable aspect of the frequency characteristics of the
current in the lcop is that its radian wavelength be much larger than the radius of the
loop. A scheme has been devised whereby the loops, with their inherent area-dependent
inductance, are included in a cascaded ladder network. The network is chosen to have a
constant input resistance, and relatedly, behaves as a series of low-pass filters. This gives
rise to a configuration of a combined elecfrical nétwork-loop system in which the physical
dimensions of each loop can be matched to the frequency characteristics of its circulating
current. The loops close to the source of the system are made electrically small,— for the
highest vfre'quency components, while subsequent loops can increase in size appropriate to
the highest remaining frequency component.

The model proposed assumes that there is no interaction {(mutual inductance) between
the loops and ignores the production of higher moments. An associated paper will deal

with schemes for minimizing interaction by locating successive loops in a manner such that

the mutual inductance for loops is minimized.

2 Combining Magnetic-Dipole Moments from a Num-
ber of Loops

A field equivalence principle is a statement of the fact that an actual source of an
electromagnetic field can be replaced by some set of equivalent sources. Starting with
Maxwell’s equations for the case where electric and magnetic currents and charges are

present, an expression for Love’s field equivalence principle has been developed which -




relates an incident field to electric and magnetic sheet current densities {1] as

JEN 7 8) = —Ts(Fs) x =) (7, 1) -(2.1)

T (Fs,t) = Tsl(fs) x E(F,1)

where 1g is the outward pointing normal on the closed surface S. In the combined field
form, the combined surface current density on the surface, qu is in this case related to its
components as

'—l _ - gj -
J’q —J3+ Z‘Jsh (2-2)

where q is a separation index (£1) and Z, is the characteristic impedance of free space.
In this interpretation of the field equivalence principle, a perfectly conducting enclosed
surface Ss inside the enclosed surface S supports the combined surface current J-:gq. For
the perfectly conducting surface S near Sg, the electric surface current Js is equal and
opposite to JI* and the magnetic surface current .ﬂgizc)(rg, t) is the important part which
excites the scatierer resonances. The incident field, except for a quasi-static ferm, can
thus be duplicated using Js A alone on the surface S .

The area A of the surface Ss needs to be subdivided into a set of elementary zones of

area A, i.e.,
Ns
A= Z Ay . (2.3)
n'=1

The magnetic dipole moment, with centers at an,, associated with each element can be

shown to be

A, linc)

P Jsn (Tgn;, s) (2.4)

i (s) =

The tilde (~) indicates the (two-sided) Laplace {ransform, and s is the complex frequency.
The relation holds only for the situation where the radian wavelength is large compared

to each related elemental area A,..




3 Effective Magnetic Dipole from an Array of Locops

It has been shown that an effective field can be produced by a sum of elementzal magnetic
dipole moments by using the principle of superposition. A means of implementing an
individual dipole moment in the imaginary surface is, conceivably, by a set of looi)s at the
location of the desired dipole moment. Each loop has dimensions which remain small with
respect to the radian wavelength for frequencies at which the loop significantly contributes
to the magnetic dipole moment. The equivalent areas of the individual loops are assumed
to be parallel, so that the resulting magnetic dipole moment has a constant direction. The

effective magnetic dipole moment 1,#. can thus be expressed as the sum of the individual

products of elemental loop area and elemental circulating loop currents, i.e.,

g = L;Meg = fj LA, =1, i I.(s)A.,, (3.1)
n=1 n=1 ,
where
1, = unit vector for all the magnetic dipoles
f,,(s) = {frequency-dependent current circulating in loop n
A., = equivalent area of loop n (3.2)
N = total number of loops
My = elemen’tal dipole moment from loop n
N = number of loops to produce one magnetic dipole

Higher order moments will be present in the locp implementation of the magnetic dipole
surface. The magnitudes of higher moment quasi-static fields fall off at rates that are
higher than the corresponding dipole fields. As a rule, quadrupole and therefore higher
order moments can be ignored if the poirt of consideration is further than a wavelength
from the loop exciting it. For situations where space preciudes the natural attenuation wifah

distance, a means of suppressing these higher order moments will need to be considered.




4 Cascaded RLC Constant-Resistance Low-Passz WNet-
work

An array of current-carrying loops is proposed as a means of approximating the magnetic
dipole moment as described in the previous sections. The inductance inherent in the loops
can be included in an RLC network, shown in Figure 4.1~. A constant resistance network of
this type is analyzed below to show its frequency-dependent current characteristics. The

input admittance of a single stage can be written as,

-~ 1 1 -
Vi, = + = 4.1
" s—é: +R, sLo+Z (4.1)
Z= Zmn+l = inI;ut impedance of the next stage.

This relation can be rearranged to

_ 32"'3(12:;%?)“"1;%;

Yo, = 7 1 7 (4.2)
2
R, [S +8(K+m)+mn n}
‘Inspection of the expression for Via in this form shows that if
Z = R,

R, 1 . _ [In

I = EcC. (1.e., R, = Cn) (4.3)
Then
17'-——1—-——1— foralln (4.4)
m R" - R .

If these two conditions are satisfied together with the load R; = R, then it can be
seen that the constant resistance network can be cascaded and maintain the same inpuf
resistance for each stage. The transfer function for a given stage n, can be writ{en in terms

of the voltage out, ﬁoutn and the voltage in, ?mn, using the currents jin,, and jzﬂ




Stage 1 Stage 2 Stage n Stage N

R=/1/C_

Figure 4.1: Cascaded RLC Constant-Resistance Network



Vown R _ [s—L—" + 1]-1
Vi, sLa+R LU R
= [sy/L,Cp+1]!
L
R? = 2 )
= (45)
VE’“‘" = {2" —1 for s—0
an ng
v}“t" = {2" —0 for s — oo
an Iin '

Thus each stage acts as a low pass filter.

The transfer function for the cascaded network can be written in terms of the stage

one input voltage f"'inl and input current finl as
~ - n
L, = Iy, H[SVL¢C¢+ 1]—1
=1
n
Vouta, = Vin, [[[8\/LeCo+ 1] (4.6)
=1 ,

A special case occurs if all the stages have equal values of C, =C and L, =L as well

as R then the transfer function becomes

jgn = imIISVLC+1]_n

~

and  Vow, = Vi,[sVIC+1]™ (4.7)

5 Cascaded Low-Pass Symmetrical Constant-Resistance

Filter

Another example of a low-pass filter with constant resistance can be regarded as a special

form of a two-terminal symmetrical lattice. A constant-resistance symmetrical lattice can
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be realized in the I, T or bridged-T circuit with equivalent results. Thus in addition to the
ladder network structure of the previous section, the consiant-resistance bridged-T circuit

(Figure 5.1) may be considered. In the form using impedances of Figure 5.1

Zn=R (5.1)

if
Zy=Z =R, R*=12,7, (5.2)
The impedance Z5 has been added to the circuit although it is redundant in some cases. It
is included in the circuit in practice at a value equal to R to add stability and symmetry
to the circuit. A more detailed analysis of filters based on the two terminal-symmetrical

“lattice can be found in a number of works on network synthesis [2,3,4].

The purpose of the circuit is to drive a locop. With
Zy,=2,=R (symmetry)
Z;=R  (to be input to next filter) {5.3)

and with the loops of successive filters to be in series at low frequencies {to increase the

low-frequency magnetic dipole moment) this leaves Z, for the lcop, so we take

Zy = sL (5.4)
which from (5.2) gives
' . R* _ 1
Z, = sI=30 (5.5)
L
C=r
The equivalence of this circuit to the earlier constant-resistance low-pass filter is noted
with |
Zi+7, = R+ L (5.6)
1 2 = <C o

Zg+24 = R“I‘SL
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Figure 5.1: Equivalent lattice and bridged-T filters
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The transfer characteristics for a symmetrical constant-resistance filter are identical to the
RLC constant-impedance network. The transfer function reduces fo

~ = = - | -1
Vout — Igutﬁ _ Igut = {1 + é) (5.7
\

Vo L. R I, Z,

But
Z3=R,Zg=_ (5.8)

hence

‘:;“‘ = [1+sVIC]™ (5.9)

in
This is the result for a single section of a constant-resistance filter. The symmetrical
constant-resistance low-pass filter can be cascaded, with each new section replacing Zs, in

an analogous way to the previous section. The results for the cascaded case are identical

to the cascaded RLC constant-resistance low-pass network.

6 Dipole Moments From Loops in Cascaded Constant-
Resistance RLC Networks and Filters

The model for producing dipole moments from an array of lcops provides an expression
for the effective magnetic dipole moment, m.q¢ 2s
N -~
Meg = Z InAeq,, ‘ (6.1)
n=1
The current I, through each loop expressed in terms of the input current L, for a cascaded

constant-resistance RLC network or filter is

. . N -1
L=ETI [1 + 3\/0,,L,,] (6.2)
n=1
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The effective magnetic dipole moment, fi s, can be expressed in terms of the input current

and the equivalent loop area of each section as

Mer = I Z:A,q,,l'[[ws\/@j

-1

= m{H [1 + 3\/—07171] } Z A, I N (1 + s\/Cach) (6.3)
t=1 n=l  ¢=nt1

6.1 A Special Case With Identical Sections

A variety of loop-constant-resistance cascaded-RLC networks or filters can be made with
various relationships between the loop areas and the reactive components. One such scheme
is for the simplest case of identical loops in which all loop areas are equal and all the L

and C components are equal, then

Ay = Ay, forall n

C, = C, forall n (consequently Lo = L,) (6.4)

A normalized magnetic dipole moment can be written as the sum of a geometric pro- |

gression

et N — 1
Z [1 +s LGCO] 8 LoCo

{1 - [1 + 3\/;4;27_0] _N} (6.5)

7

I Aeqo n=1

For low frequencies

—+ N as 8/ LoCo — O (6.6)
For high frequencies

ﬁ'leﬂ' 1 -1
_ = 1+0 (\/L c) )}
InAeg, SVLoco{ * ( oY St

1

8/ LoCﬁ

as L Lg Cg — 0 (6.7)
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The case for a large number of loops then reduces to

Mo 1

jinAqu - Sy Ly Cy

The normalized magnetic dipole moment plotted against w\/LyCy (s = jw) for 1 to

forr N=oo (6.8)

100 cascaded loops is shown in Figure 6.1. For circuits with five or less loops, the low-
frequency asymptotic magnitude, N, is maintained to a breakpoint where it decreases and
eventually falls off in proportion to the reciprocal of wy/LyCy. If there are more than
five loops, notches become increasingly apparent, with pronounced minima occurring at
points where wv/L;Cp = tan (%), P being any integer, P > 1. An alternate form of the

expression can be written to illustrate the phenomenon,-i.e.,

] 1

Aqufin B wy/ LGy

{1 —2(1+w2LQCo) cos(N arctan(wy/LoCo)) + (1 +w? LeCo) "V }? (6.9)

6.2 A Case With Common Proportional Factor for Area and

Inductance

A case of combined loop cascaded constant-resistance networks of symmetrical filters wor-
thy of investigation is one in which the loop areas and loop inductances vary according to
a geometrical scaling so that the geometrical scale factor § is used to muitiply the loop

dimensions. The area and inductance for succeeding loop areas and inductances are related

for this case by

ACQn+l = ﬁzACQn
Lo = PLn (6.10)

The general expression for a normalized magnetic dipole then can be written as

Mg z - T . epal— -
_ — ZﬂZ(n 1)H(1+Jﬁt ix) 1

IinAcql n=} £=1
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X = w% = L\JG;R =W L1Cl (6.11)

s = jw

The low-frequency and high-frequency behavior of this expression can be obtained by

manipulation of X = w/L;C;. At low frequencies

———iﬁf = Z_Zﬂz‘““"II 1+0(3X)]—{X_:1ﬁ2"'“’} [1+0(X)]
= ﬁ;:r:l [1+0(jX)] as X =0 (6.12)

At high frequencies

M _ 2(n-1) 1
A e Hﬁ‘ =573 [”O(:'X)]

S gheolal] = oxee e

The normalized magnetic moment is plotted against w+/L;C; for various numbers of

cascaded sections with a common proportional factor a.l;d shown in Figures 6.2 and 6.3, for

= /2 and B = 2, respectively. The increasing efficiency as £ is made larger is obvious
in the three graphs. The case for equal seginents (Fig. 6.1) can be viewed as equivalent to
the one for a common proportional factor of unity. Note that as /¥ is increased in Figs. 6.2
and 6.3 there is not a pronounced set of notches as in Fig. 6.1. Apparently, the geometric

progression for 8 > 1 results in a smoother performance as a function of frequency.

4
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7 Dipole Moments Produced in a Continuous Loop-
Transmission-Line Model

Relationships have been derived for an array of loops included in cascaded networks.
The behavior of a cascaded constant-resistance network and a cascaded symmetrical filter
are essentially identical, and also bear a close relationship tc a transmission-line. It is
therefore of interest to examine a model for producing \ma.g'netic dipole moments using a
transmission-line approach. -~

In this model the radiating loops are considered to form an integral part of 2 transmission-
line. The effective area of the loop is continuously increasing at a rate with respect o dis-
tance z, expressed by %%/, where z, is an arbitrary constant. The associated inductance
per unit length, L', varies at a rate with respect to z, expressed by S*/e, In this respect,
the transmission-line model is similar to the general cascaded lumped-element case, but
substitutes discrete sections with continuously varying functions related to transmission-
line analysis. |

Assuming that the radiating loop area can be included in a transmission line that has

. no geries loss term the transmission-line equations can be written as

av -

- —_ !
daz_ sL'I
i N
8l = @ +sCW (7.1)

The transmission-line is given an added characteristic that the inductance per unit

length L' varies proportionate to B%/#0, thus an added relation is
z z T
L= L% = [LeTr , Tt = (7.2)

Assuming that the impedance of this particular type of transmission-line is independent

18




of z, as per the usual case, then

=7#f(z) ' (7.3)

~|

This enables the first transmission-line equation tc be expressed in terms of V as

dv i =

""{5 = —SLIZ {7.4)
The solution for V then is
- - -"—sébﬁleg‘f
= Vole Z ’
- - sLoz: 7}
!
.7 Loz A
= % - ZZB—'e z (7.5)
On substituting for V and I in the second form of the original transmission-line equa-
tion,
dI -
i = —[@ + sC'lV . (7.6)
we obtain
? x .
| _8lyz g . _skyz &
VB e 2 (—i{J—oe?ﬁ) = —(G'+3Che¥Wype Z
'z z
sl di = G+ sCyets (7.7)
i.e., a condition for this equation is that
L; ~o
G =0, EZ=Z~ (7.8)

Thus the assumption that the impedance be independent of z is valid so long as these
conditions are satisfied.
The accumulated effective magnetic dipole over a length of such a radiating loop-

transmission-line extending from 0 to = can be written as
-~ z >
P = / fads (7.)
0
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where I' is a current per unit length, and A’ is an effective area per unit length.
From an examination of the properties of the proposed transmission-line, the relation

for current as a function of £ has been derived as

I 7, -—§—L—2§le%
I=%e Z (7.10)

The relationship of effective area A, as a function of z, is defined as
2z
A = Aje®r (7.11)

To approximate the proportional section case, we can look at the effect of a number,
n, of sections each with an equal length. For convenience, the length can be taken to be
. Thus, the upper limit of integration becomes nzy. On substituting for I and A4 in the
original equation for ., and taking the upper limit of integration as nz,, the integral
becomes

. gLz, E
nz _§—Q—18 1 22
= A '[0 Vo2 eZtdz (7.12)

The solution for this equation can be written as

!
A _3LQ$1 6%6 z ~ - 27 |12=n2Zp
el = AV e Z —~eZo Z__|_Z {7.13)
7 sliz, sLiyz, —

Substituting for 17'0’ this equation reduces to

- ~ ~ Lz, n - ~
ﬁ‘gff:'AB‘fozl{l: Z +( Z )2]—68—3—@—(1“3)[’9!124-( 7 >2

sLyz, sLyz, slyzy slyz,

} (7.14)

The coefficients for equivalent area per unit length, A}, and for inductance per unit
length, Ly, can be replaced by new values A; and L, to scale the expression to the cascaded
model. Thus, for the first section of the transmission-line model (from n = 0 to n = 1) the

effective area and inductance is made equal to A; and L,. For equivalent area firss

2 2z 2z, r
A= A;,f e T gz = "i"zﬁ(ﬂf1 - = i“éﬂ(,ﬁ" ~1) (7.15)
0
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This gives a scaling relation :
24,

A= — " 7.16
T (- 1) (7.16)
A similar relationship can be obtained for L, by
z T '
L, =L, / *eFids = Lyz, (8 — 1) (7.17)
0
This gives a scaling relation for Lj
L,
Ly=———7—— 7.18
T (B - 1) (7.18)

Substituting for A} and Lj into the equation for the magnetic dipole moment gives
7 > 2 SL ~ 27
g 024 1 Z(ﬂ—l) ZB-V\|_. % (7;—1> Zﬁ"(ﬂ-—l) Z(8 -1\
T Z 1 p2-1)|s L s L sLy sLy j
(7.19)

The impedance term can be written in terms of L; and C; as Z = \/5’; Further, if
8 = jw, then the ferm % L can be substituted by - ﬂ—c‘ For simplification wy/L,C; has

been replaced by k. The equation for the magnetic dipole moment can be written as

. S 1-p" ng
ne = B[ ]S |

Z k2 B+1 B—1
Vo 24,8-1 1-p" n k. 1-p"
3 B e (4 (5T)) rra e (¢ (52))

o g (f(52)) -rati ( (GR))]} o

Plots of the magnitude of the normalized magnetic dipole moment %ﬁf{% versus wy/ L; C; are

shown in Fig. 7.1 for three values of n, the number of transmission-line sections. Figure 7.1
shows l’%‘;%? relating to n = 1,2, and 5, for 8 = /2 and Figure 7.2 that for B =2.

Inspection of the equation indicates that a new constant kg = 5% can be substituted.
This gives

Vo 24, 1

P = =2 ot oy U1 = coxlbua(l - 7)) + Bk sin kg (1 - )]

+ j[keg - Sin(keg(l - ﬁn)) - ,Bnkeg' COS(keE(l — ﬁn))]} (7.21)

21




Tegg?

10

10

10

10

107t

I

O | I|

2%10°

Magnetic Dipole Moment for Transmission-Line-Model with.an

Figure 7.1:
Effective Proportional Factor B = V2




] T T T T T i T R ! R

]
]
|

102 |

ol
meffz L
o

10°

S N
| \/-.\v'\ qY
RN

-1 ‘ .
10 vyl | Lol 1:1\/111
o 2x1072 107t 10° v ‘ 10

valCl

Figure 7.2: Magnetic Dipole Moment for Transmission-Line Model with an
Effective Proportional Factor B = 2

23




»

The low-frequency behavior of this expression can be obtained by examining it for k.z at
" a very small value. The real part of the expression can be expanded for the cosine and

sine terms, excluding the multiplying factor

{Real Part} = 1—cos keg(1 — ") + B ke sin kg(1 — ")
2 - An\2
114 Bl =P 5 B+ o(kty)

n L4 — Ary3
i1 - pr) - TEAC =P 4 o0

= (UL w - ) + okt

= Ky (3—pr+ 367 = 7+ ") + Olkle)

1- ﬁZn
2

{Ima,g Part} = keﬂ' —_ Sin(keg(l - ﬁ")) - ﬁnkeg COS(keﬂ'(l — ﬁ"))

— b~ k(1= 8 + 5 EE L — O((ha®)
3 (1 - :Bn)g

= Bkea + kg~ O{((k.r)°) ()

— Ams nf1 _ Any2
= kfg((l 3;6) +ﬁ(12!ﬁ))+0((kes)5) as kg—0

= k2 +O(k%) as kg —0 7.22
off 13 4

i.e., for k.g small, the imaginary part may be ignored.

The magnetic dipole moment for low frequencies can thus be written as

Vo 24, 1 k2 (1 — 8?™)

Mg = _?.kfgﬂz—lx 5 as kg —0
¥ __ fan
— _V{]Zfil(])'62 fl) as keﬂ —0
(7 2n __
= %;1 .ﬂﬁz—-ll as kg —0 (7.23)

The magnitude of magnetic dipole for the low-frequency case for the transmission-line
_ is identical to the cascaded constant-resistance RLC network and symmetrical filter cages.

The magnitude of the magnetic dipole moment for large values of k can be evzluated

24 ’ @




from the expression for m.g in the form

Vo24, 1 n n n
EOkT;(,Bz——Ij{z + kezg +.52 k?{f —-2(1+4 kfg)cos(keg(}. - £"))

+ 2keg(B" — 1) sin(keg(1 — g"))]*/2 (7.24)

lﬁ?eﬁl =

For k large, this equation can be simplified to

gl = 2R+ 57 = 26 cos(hua(1 ~ 67)) + O™
- %%ﬁzl_ T[1+ 87 = 26" cos(ker(1 — B™)]*/* + O(K%)  (7.25)

Thus the relationship for high-frequency conditions differs from the cascaded high-
frequency case by being dependent upon 8 a.s well as the inverse of k. The relationship
shows a strongly oscillating nature for § approximately equal to (but greater than) one, but
this can be ignored if n is sufficiently large so that " > 2, in which case the high-frequency

behavior of the transmission-line model can be written as

Vo24s p"
Z~ keE ﬁZ -1
as f" — o0 and k — oo (7.26)

[1+0(6™) + O(k™)]

Iﬁ"eﬁ'l =

Thus the high frequencies behavior of the transmission-line model is similar to the
cascaded constant-resistance network and cascaded symmetrical constant-resistance filter
in its dependence on the reciprocal of k.g, but differs in its dependence on 8 and n. The

transmission-line model introduces a factor 23” /(5% — 1) in the relationship for large k.g.

8 Summary

The feasibility is established in this paper of using a combined array of parallel loops
and an effective low-pass network to produce controlled accumulative magnetic dipole mo-

ments. Models for describing the effective magnetic dipole.moment have been developed
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as a function of frequency and circuit parameters for cascaded constanmt-resistance ladder
networks, symmetrical constant-resistance filters and ;or a contirueus case based on a
lossless transmission line. The models for cascaded constant-resistamce ladder networks
and symmetrical constant resistance filters produce identical results. ¥or this case, con-
figurations with a common proportional constant for loop area and imductance variation
between sequential cascaded sections produce magnetic dipole momeats with flat charac-
teristics up to a predictable break frequency. At this point the behawior is proportional to
(frequency)~!. This gives rise to the possibility of providing magnetic dipole moments over
a frequency range determined by network parameters and input current characteristics.

A model developed for the continuous lossless transmission line case with an equivalent
proportional constant produces identical results to the cascaded constant-resistance circuits
for low-frequency conditions. The general nature of the intermediate and high-frequency
behavior is similar in nature but exhibits an extra factor in its asympfotes and further
contains a significant oscillatory component. The significance of the oscillating component
diminishes as the equivalent proportional constant and the number of equivalent sections
are increased. The oscillations are likely to be further diminished i some loss is added to
the transmission line in the model, but that has not been considered here.

The models relate 2 composite magnetic dipole moment over the complete frequency
range for a given input current and circuit configuration. This can satisfy the frequency
aspect of approximating an electromagnetic field by an array of magnetic dipoles. To syn-
thesize an electromagnetic field over an extended volume of space, a number of such arrays
(or one array used at successive locations) need to be located such that they are effectively
radiating as dipoles from a surface. Implementing the field equivalence principle by an
array of loops is then feasible in both the frequency and spatial sense. The current paper
has addressed the relationship of the electrical parameters of a combined driver-radiating

configuration to the frequency components of a combined electromagnetic field. The inter-
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action between loops is an essential aspect not considered hers. A number of approaches
are available for addressing this problem, such as locating loops where interaction is absent
or alternatively adding the mutual interaction component tc the model. The interaction

of loops are to be studied in an associated note.
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