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THE SIHGLE-GAP CYLINDRICAL LOOQP IN
NON-CONDUCTING AND CONDUCTING MEDIA

ABSTRACT

The frequency response characteristics of the cylindrical loop
are calculated for both non-conducting and conducting media for two
tvpes of cviindrical loop design. 'n the case of conducting media.
the freguency response ciaaracteristics are considerabply improved
by adding insulating regions poth inside and outside the loop.

FOREYORD

Due to the length of this note and the large number of figures, the
figures are grouped together after the text. The overall division of
this note is therefore the text followed by the figures and then an appen-
dix. This appendix was written by Mr. D.E., Brannon of the Dike-
wood Corporation and A2C F. Brewster, Jr., of the Air Force Weapons
LLaboratory. [t contains a discussion of the numerical techniques used
to calculate the various quantities concerning the cylindrical loop
response from the expressions developed in the text,

We would particularly like to thank Ann Brewster for preparing all
the figures.
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ABSTRACT

The frequency response characteristics of the cylindrical loop
are calculated for both non-conducting and conducting media for two
tvpes of cylindrical loop design. [n the case of conducting media,
the frequency response characteristics are considerably improved
by adding insulating regions both inside and outside the loop.

FOREWORD

Due to the length of this note and the-large number of figures, the
figures are grouped together after the text., The overall division of
this note is therefore the text followed by the figures and then an appen-
dix. This appendix was written by Mr. D, E, Brannon of the Dike-
wood Corporation and A2C F. Brewster, Jr., of the Air Force Weapons
Laboratory. [t contains a discussion of the numerical techniques used
to calculate the various quantities concerning the cylindrical loop
response from the expressions developed in the text.

We would particularly like to thank Ann Brewster for preparing all
the figures.,
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I. Introduction

Two previous notes have discussed the response of the cyiiEdrical B
loop using rough approximations for the loop characteristics.™’ The
first of these notes considered the case of negligible air conductivity
and pointed out that for the proper amount of loading (from the associated
signal cable) the frequency response is limited by the radian wavelength, %X,
being of the order of, or greater than the loop radius. In the second note
this was generalized to include the case of the nonlinear, time varying air
conductivity in which the conduction currents dominate the displacement
currents (0>>we). In this latter case the frequency response is limited
in that the skin depth, &, must be of the order of, or greater than the
loop radius. If a skin depth is defined by taking the maximum air conduc-
tivity (for times of interest) in the vicinity of the loop and the maximum
frequency of interest, then for lower frequencies the loop response is
approximately independent of the air conductivity even though this conduc-
tivity is nonlinear and time varying. Thus, an analysis of the response
of a B loop which assumes a linear, time independent air conductivity, even
though it does not accurately describe this response, is still useful in
determining the upper frequency response and in comparing the performance
of different loop designs. The purpgse of this note is to perform just
such an analysis on the cylindrical B loop. This analysis starts with
the case of negligible air conductivity and then goes to the case of ¢>”uwe.
In the latter case, modifications in the design consisting of the addition
of insulation inside and outside the loop structure are considered, showing
the resulting improvement in the upper frequency response for a given loop

sensitivity.

In this note we consider two genmeral kinds of cylindrical loops as *
illustrated in figures 1 and 2. To distinguish the two cases, the first
(in figure 1) is referred to as a cylindrical loop below a ground plane
and the second (in figure 2) is referred to as an exposed cylindrical
loop. These two cases are treated together in this note because of the
similarities in the mathematical forms of their response characteristics.
For the cylindrical loop below a ground plane the ground plan: (as well
as the loop structure) is assumed perfectly conducting for simplicity.

It is also assumed that &>>a and that the ends of the cylindrical
structure -are smoothly transitioned through the ground plane as indicated
in figure lA. These restrictions are necessary if the magnetic field in
the direction of the loop axis is to have the same value inside the loop
(over the whole cross section area, naz) as outside the loop (above the
conducting ground plane).

Consider a case in which the external or incident magnetic. field
is in the z direction and independent of z (the coordinate in the direction
of the loop axis). -Then, from previous analysis, this component of the
magnetic field should be approximately uniform inside and outside the loop
structure when the radian wavelength, X, or skin depth, 8, (as appropriate)
is'significantly larger than the loop radius and when the signal cable
impedance loading the loop gap is sufficiently large. If the magnetic field

1., Lt Carl E. Baum, Sensor and Simulation Note VIII, Maximizing Frequency

Response of a B Loop, Dec. 1964.
2. Lt Carl E. Baum, Sensor and Simulation Note XXIX, The Influence of

Radiation and Conductivity on B Loop Design, Oct. 1966,
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is not in the z direction and the field arrives at different positions along
the length of the loop at different times, then X or § will have to be even
larger for the measurement of a component of this magnetic field parallel to
the loop axis. As indicated in figure 1B, two coordinate systems are used

for this case. One of these, the (r,¢,z) or (x,y,z) system is used to analyze
the loop interior. The other, the (r',¢',z') or &',y',z') system with the z'
axis in the middle of the loop gap is used to analyze the loop exterior above
the conducting ground plane. In this note, as the various parameters, response
characteristics, etc., are considered, we first consider the cylindrical loop
below a ground plane because, in some cases, the mathematics are a little
simpler. We sometimes identify certain parameters which pertain to the
response of the loop below the ground plane, but not the exposed loop, by

the addition of a prime to the symbol.

The exposed cylindrical loop is also assumed to have 2>>a so that end
effects can be ignored. In a typical application, as in figure 2A, this type
of loop might be at some height, h, above a conducting or not-so~conducting
(e.g.,» soil or water) ground plane with the loop gap on top and a signal cable
extending from the loop (vertically) to beneath the ground plane. In this
configuration the fields scatter from the vertical cable and interact with
the loop, and the field scattering from the loop interacts, because of the
ground plane, back on the loop. In some cases, these problems can be
minimized by symmetrically placing the loop structure with respect to the
cable structure and by having the loop relatively far from the ground plane.
This may not be sufficient in all cases, however,particularly for a nomlinear
air conductivity at frequencies for which h is greater than an approximate
skin depth, é. In any event such problems are not considered in this note.
The loop is considered as if there were no connecting signal cable to inter-
act with the fields, and the ground plane is considered to be far away
compared to the loop radius. The same comments regarding the magnetic field
direction, the arrival time along the loop length, and X or § apply to the
exposed cylindrical loop as to the loop below the ground plane. As indicated
in figure 2B only one coordinate system is used in this structure, the (r,¢,z)
or (x,y,z) system with the z axis taken as the loop axis. This coordinate
system is used to analyze both the loop interior and exterior. For convenience
in both these types of loop structures the ¢ = 0 and ¢'= O directions are defined
by the directions of the y and y' axes (which are themselves in the same

direction).

The general scheme of solution of this problem involves the basic
assumption that £>>a so that the solution may be approximated as one
involving two instead of three spatial dimensions. The resistive loading
at the loop gap is considered to be approximately uniform with z so that
all the electromagnetic parameters are z independent for a distance (%)
which is large compared to the loop radius. Practically, this resistive
loading at the loop gap may be at several discrete points which are ideally
uniformly spaced along the loop gap. The separations between adjacent load
points should be small compared to the loop radius to approximate a continuous
load distribution. We next assume all electromagnetic parameters such as
e, u, 0, etc., to be constants, specifically nét functions of the fields or
time. The parameters of the various media are taken as scalar constants



which are independent of position within any defined region. The parameters
€, U, and 0 have a subscript, 2, applying to inside the loop and no subscript
for the external medium as indicated in figures 1B and 2B. When a third
medium (e.g., an insulator) is added to the loop exterior, these parameters
are designated by a subscript, 1. Then a magnetic field is assumed in the
various media which has only a z or z' component and which is a function of
only r and ¢, or r' and ¢' as appropriate. This magnetic field distribu-
tion, and the associated electric field distribution, is then expanded in
the appropriate cylindrical coordinate system in the appropriate functions
which solve the vector wave equation.3

The form of the field expansions for this problem, with only a z component
of the magnetic field which is also z independent, is

_ (2) cos(né)
H = H_ z: a_ ¢ "’ (kr) [ } (1)
[o]

z sin(n¢)
n=0
® : -sin(n¢)
Z ¢ kry n
E = - jzH a B———  (cos(nd) (2)
T z, n=0 n kr
and )
. (2" cos(n¢)
E¢ = JZHzo Z;; a_ Cn (kr) sin(no) (3)
juw

where a time dependence of the form e t is assumed but is suppressed from
all the expressions. The positive direction for the field components is
defined by the standard convention of the direction of increasing the various
coordinates. The use of the braces with the trigonometric functions inside
indicates that a linear combination (the same combination for the three

field components) of the two functions is used. Integer n is use%zio that
the trigonometric functions are periodic over 2n. The function Cn (kr)
Hél)(kr), and Héz)(kr)
for an £ of 1, 2, 3, or 4 in that order. A prime over a Bessel function
denotes the derivative with respect to the argument. By using the constant,
Hz , with dimensions amperes/meter the expansion coefficients, a_ , are

denotes one of the Bessel functions Jn(kr), Yn(kr),

.0 , : , ,
dimensionless convenient numbers.5 The propagation constant has the
general form

k ==\ [=jun(otjwe) (4)

where for o<<we this reduces to

k = w\fue = % , . (5)

3. Notation for the various functions and formulas for their manipula-
tion can'be found in AMS 55, Handbook of Mathematical Functioms,

National Bureau of Standards, 1964.
4. For these expansions see, for example, J.A. Stratton, Electromagnetic

Theory (Chap. VI), 1941,
5. Units are rationalized MKSA unless otherwise specified. Results are

generally expressed in dimensionless form.
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and for o>>we this reduces to

k=\[—Tum_c=“]"51 (6)

The wave impedance has the general form

” ,
Z = . 7
otjue 7

These two parameters can alsc be subscripted to apply to the various
media. Expanding the fields in the various media as in equations (1)
through (3), we apply the boundary conditions that tangential E and H
be continuous across boundaries. Due to the convenient boundary of a
circular cylinder (constant r), HZ and Eg become of chief concern, and
Er is not, therefore, listed with"the field expansions. However, using
equations (1) through (3) the expansions for the remaining two of the
tnree field components can be constructed if the expanrsion for any one
of the field components is given (except possibly for n=0).

The mathematical procedure for determining the loop response
characteristics involves the independent comsideration of the parameters
of a Norton equivalent circuit. Since the loop structures have &>>a,
with the mathematics based on an infinite length, the parameters are
defined per unit length. First, we consider a short circuit surface
current density due to an incident plane wave. Shorting the loop gaps
makes the geometry very convenient (planes and circular cylinders) for
this calculation. This model is not entirely appropriate for the case
of o>>we (in the external medium), and with the use of external dielectrics
another model is introduced based on the average of the incident magnetic
field over the dielectric surface. The surface current density is normal-
ized to the magnetic field giving a transfer function which goes to unity
for large X or 6 as appropriate. Only one orientation of the electric
field (oriented in the y or y' direction) is comsidered for the incident
plane wave. This note considers the frequency respomse characteristics
of these cylindrical loops for g<<we and ¢>”>we, including some variations
in the structures for the latter case. The loop sensitivity to the direction
of wave incidence (or sometimes called electric field sensitivity) is not
treated here, but may be in some future note.

After the short circuit current density the admittances per unit
length at the loop gap are considered. There are three such admittances
considered, one associated with the loop interior, a second with the loop
exterior, and a third with the signal cables (a conductance per unit length).
The first two of these require field expansions on the inside and outside
of the loop structure, respectively, to relate voltage across the loop gap
to surface current density. The boundary condition at the loop gap for
the electric field is obtained from a quasi-static approximation of the
electric field distribution at the loop gap. The approximation only applies
for cases in which the loop gap width, 2b, is much less than the loop radius
and much less than radian wavelengths or skin depths of interest in media
adjacent to the loop gap. In cases for which X or &8, as appropriate, is of
the order of the loop radius or larger (for flat frequency response), b is

10



automatically much less than X or § if b<<a. Conveniently the three
admittances per unit length can be separately considered. These admittances
per unit length are normalized by dividing by the low frequency form of the
admittance per unit length of the loop structure, a simple inductance. The
sum of the normalized admittances then goes to one for sufficiently large %
or 8,as appropriate. Combining these normalized admittances with the short
circuit current transfer function then gives the response characteristics of

the particular loop configuration.

In this note we first consider the case of only two distinct media of
interest (inside and outside the loop structure). After calculating the short
circuit current transfer function and the normalized admittances, they are
combined for the case of o<<we with identical u's and €'s in both media to
give the response characteristics versus the various parameters. Then the
same case 1s considered for o>>we with identical u's and o's in both media.
Next, the conductivity inside the loop structure is assumed negligible compared
to the external conductivity for o>>we, showing some improvement in the
response. A second case, with three distinct media, is then considered. The
third medium is added to isolate the loop structure from the external medium.
The short circuit current transfer function and the normalized admittance
associated with the loop exterior are recalculated. For o>>we but negligible
o's inside the loop and in the medium just outside the loop and for identical
u's in all three media the response functions are again calculated showing a

considerable further improvement in the response.

For the reader's benefit, if he wishes to gain some additional insight
into other types of electromagnetic interaction (scattering, radiation, etc.)
with cylindrical structures similar to those employed here a few references

are included.é’

II. Short Circuit Currents with no External Insulating Dielectrics

Consider the loop gaps, as in figures 1 and 2, shorted. The assumed
incident plane wave produces a surface current density which is divided
by the magnetic field in the incident wave to obtain a short circuit current
transfer function.

A. Cylindrical Loop below Ground Plane

Considering the cylindrical loop below a ground plane as in figure
1B, if we short the loop gap the ground plane is made continuous and flat and
is described by y' = 0. For this type of loop the boundary at the loop gap
is considered as r = a orasy' = 0, whichever is more couvenient for a parti-
cular calculation. As long as the gap width is much less than the loop radius
these two expressions give essentially the same boundary.

The incident plane wave is of the form (for the magnetic field)

6. R.W.P. King and T.T. Wu, The Scattering and Diffraction of Waves, 1959.
7. J. R. Wait, Electromagnetic Radiation from Cylindrical Structures, 1959.

11



- 1 ] 1 s t

H (r',6') = H e jkx' _ oy Jkr'sin(e") (8)
z z z

inc o o

With the loop gap shorted this plane wave has the electric field perpendicular
to the infinite conducting plane and thus no additicnal waves are necessary

to combine with the incident wave to match the boundary conditions. Note
that. this plane wave is conveniently defined such that

H, (',0) =4 : (9)

z ., z
inc Q

With the boundary condition that the surface current density (units of amps/
meter) on the conducting plane equal the adjacent tangential magnetic field
(H), the short circuit surface current density at the loop gap is just

J =H (10)

where J is taken in the + x' direction. Defining a short circuit current

transferofunction, T', as the ratio of Js to the magnetic field in the

. . . o
incident wave (at x' = 0) then gives

T' =1 (11)
for the cylindrical loop below a ground plane.

B. Exposed Cylindrical Loop

Consider now the exposed cylindrical loop as in figure 2B. If
the loop gap is shorted the circular cylinder is made continuous and is
described by r = a. For this case the boundary at the loop gap is con-
sidered as r = a for calculations relating to both inside and outside
the loop. Again the gap width is considered much less than the loop

radius.

Again the incident plane wave is of the form
-jk jkrsi
H (r,6) =H_e Jkx H, eJ n{¢) (12)
inc o o

Unlike the cylindrical loop below a ground plane, we need to add a reflected
wave to match the boundary conditions, making a somewhat more complicated
short circuit current transfer function. So first expand equation (12)

in ecylindrical coordlnatss, u31ng the appropriate functlons for the wave
equation solution, as -

8. See reference 3 for the expansion of cos&krs;u(¢)] and sin[krsin(¢)}].

9. In the notatlon used for the summatlons,:g » 0y is the lower limit
n=n

(as normal),. . nz is the upper limit (= in this case), and n, is the increment.

in n (starting at the lower limit) for the successive terms. In equation (13),

for example, the two summations are then for even and odd n, in that order.

For the case of n3 = 1, ny can be dropped from the summation, leaving the

standard form.
12



m,z w’z
i, (r,¢) = Hzo [Jo(kr)+2 Z Jn(kr)COS(n¢)+j2 Z Jn(kr)sin(nqb)} (13)

inc n=2 n=1

Referring to equations (1) through (3) we have an associated azimuthal

electric field of © 2 © 2
E¢ (r,9) = jZHz [Jé(kr)+2 z: Jé(kr)cos(n¢)+j2'§: Jé(kr)sin(n¢ﬂ (14)
inc ° n=2 nsl
To this incident wave add a reflected wave which has the general form
CD’Z CD’Z
- (2) (2) . (2) .
B, (r,6) = H, [aoHo (kr)+2 E: a B (kr)cos (n¢)+j2 zi: a H- (kr)51n(n¢)]
refl o} — =
n=2 n=l
(15)
and =2 =2
1 1 t
E,  (r,¢) = jzi [a 152 G2 a (%) (krcos (a)+i2 > a H<2)(kr)sin(n¢):’
o z oo nn nn
refl o] =
n=2 n=1
(16)

Applying the boundary condition that the tangential electrical field is zero
on the cylindrical surface, the relationships for the coefficients of the
reflected wave, from equations (14) and (16) are given by

3! (ka) + anﬂéz)(ka) =0 (17)
or
J' (ka)
N .
a = - 1 (18)
n Héz)(ka)

The surface current density (in the +¢ direction) is given by

Jg(¢) = -[H, (a,9) + H, (ayd)] (19)
inc refl

In this expression, as the individual terms are combined, an expression
appears which 1is defined as .

D @)
T =J (ka) - ; B " (ka) .~ o (20)
n n H(Z)(ka) n ‘
n
or
(2)] ' '(2%
J (ka)H "7 (ka) - J'(ka)H >"{ka)
Tn _ o n n n ‘ (21)

(2)]
H " (ka)

13



The numerator reduces by expanding the Hankel functions, cancelling terms,
and applying a Wronskian relationship tc give

-1

[, mka (2", ]
Tn = {3 —E—-Hn (ka)i (22)
Then
@ " °°,2
3,() 22 '
0 = - [To+2 Z Tncos (n¢)+j2 Z Tnsin(nqb)I ' (23)
zo n=2 n=1 -

The short circuit surface current density is then

Jso = J_(0) _ (24)

where, for this calculation, the variation of J (¢) over -¢O < ¢ < ¢
is ignored. Define the short circuit current transfer function as

Js =, 2
o
T=-7 —TO+ZZ Tn (25)
z
o n=2

The minus sign is placed in the definition so that T + +1 for small |ka

As mentioned before only one wave corientation for this transfer
function is considered, or equivalently one position on the cylinder
for the loop gap. For o<<we equation (5) 1s used to express k in terms
of X and to plot T versus A/a in figure 3. Similarly for the case of
o>>we T versus §/a is plotted in figure 4. Note that in these cases T
is essentially one for X/a > 10, and that for 1 < X/a < 10, T is rather
well behaved. This latter region is significant for the upper frequency
response. Note also for o>>we that for small §/a the incident magnetic
field (as in equation (12)) has an exponentially decreasing amplitude
for increasing x. Thus, for negative x the surface current density on
the cylinder can be much larger than at the gap. This points out a
limitation in the use of such a '‘plane wave to represent the incident
magnetic field in the conducting source region. Since we are only
considering the one wave direction for these calculations, this causes
no problems and is used. In a later section, when external insulators
are considered, however, this is a significant problem, and a more
appropriate definition for that case is used.

III. Admittances With no External Insulating Dieleétrics '

Removing the incident waves consider the loop gaps to be unshorted
or open. Drive the gap uniformly along its length with a voltage, V s
and calculate the surface current demnsities produced. These current
densities give the three admittances per unit length for the loops
attributable to the loop interior, loop exterior, and the signal cable
load. First, however, consider the boundary conditions at the loop gap,
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A. Boundary Conditions at Loop Gap

Assume that the electric field has a quasi-static distribution in the
vicinity of the loop gap. By having a quasi-static distribution, we restrict
the width, 2b, of tne loop gap to be mucn less than X or §, as appropriace.

Also assuming that b<<a, tunen the loop structurc near tne gap is anproximately
flat. Consider, then, tae loop gap and immediate vicinitv as in [ ure 5.

The electric field distritution across the loop gzop is approximated uy calculat-
ing this distributi? across a gap in aa infinite conducting plase ia the

low frequency limit. An appropriate coaformal transformation for tuis .oroblem
is
ZH
P sin (w) (26)
wnere
zui = x‘l+jy' (::'/)
and
w = utjv (28)
The coordinates for the two-dimensional giap structure are x' aud v'. The

equipotentials are given by lines of constant u and the electric ficld lines
by lines of constant v.

Along y" = 0 (in the loop gap) we have v =0 giving

us= arcsin(-g- ) (29)
The potential distribution is then
1Y N
V(x'") = - _g%g_ arcsin (% ) (30)
and the electric field distribution is
‘ -1/2
" 3V vgap x'"'\2
E(X ) = - %" b -1 - (b ) (31)

Define a distribution function
-1/2
1 2
£(8) = 7 [1-5 J (32)

Then for cylindrical coordinates since

b = as ' o (33)

(o]

for small ¢ , the clectric field distribucion at r = a for l¢] <. is
taken as ’ ©

\Y
E (a = - B3P ¢ %
o (09 == 4 () 38
10. This same approximation is used in cornection with a gap in a cvlinder
in P. M. Morse and H. Fesnback, Methods of lieoretical Physiecs, Vol. II, op.
1387-1398, 1953.
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There is a limitation in the use of this electric field distribution in
that the loop gap has objects in it, such as signal cable connections, winich
distort the field. Equations (32) and (34) strictly apply only to the case
in which no such perturbing objects exist, such as for no signal cable load.
In ignoring z variations »f the structure these perturbations associated with
the signal cable inputs are also ignored. However, within the limitations
of the assumption of z independent geometry this is a reasonable electric

field distribution to use.
B. Internal Admittance of Cylindrical Loop

Turning to the admittances per unit length, consider first the
internal admittance per unit length which is the same for both types of
loops (which have the same internal geometries as in figures 1B and 2B).
Expand the fields inside the locp as

H (r,0) = H {aOJO(klr) + 2 Z aan(kir)COS(n¢)} (35)
M o n=1
and
E¢(r,¢) - jzszo [aoJ('J(kzr) + 2 nZl anJr‘l(klr) cos(n¢)J (36)

The first kind of Bessel functicn makes the field finite at the origin and
the use of cos(n$)} makes E, even in ¢ as required by the boundary conditions.
The associated surface current density at the open loop gap (in the +¢ direc-
tion) is 2

JSE = Hz(a,i¢o) (37)
This is driven bf the gap voltage, V ap’ giving an .admittance per unit
length J gap
s
A
V=T (38)
gap
For sufficientlyilow frequencies this is just lﬂjwuznaz) and is the dominant
loop admittance.  Thus, normalize this admittance per unit length (and others
to follow) and define

, -2
YE = Juuija yl (39)

which we call the normalized internal admittance of the cylindrical loop.
In this form we can observe the deviation of the admittances from the
ideal low-frequency form and thus the deviation of the loop respomnse from
the ideal case for a B loop. Note that Y,> 1 for small Ikaf

The boundary condition to be satisfied is that E (a,¢) is given by
equation (34) in the loop gap and is zero elsewhere, Equating the expres-
sions for E (a ¢) from equa;ions (34) and (36), multiply each side by
cos(n¢) and 1ntegrate over 3 between 0 and 27. Only the nth term in the
summation contributes giving for each n
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\
- —82p 2 - '
26 f s cos(né)de JZUZle aan(kla) (40)
(o] Q (o]
-d
0
Solving for the coefficients gives
¢o
JVgem 1 (qb )
a = = \ £ {= Jcos(n¢)de (41)
n 21razlhz J;(kla) %, ¢o
© -4
e}
’ 11
Letting ¢/¢O = £ we have
L
d>o
1 X) -
5 f p cos(nd)de = £(€)cos(ne _£)d&
e} e} - °
~¢ -1
° 1
o1 cos(n¢ &) a
T \[1_52
-1
= J (no) (42)
Then
a = jVgap Jo(n¢o) (43)
n 2naZ£Hzan(kza)
For convenience define
J (k,a)
n' 4
Y, =-S— (44)
zn Jn(kza)
Combining these equations the admittance per unit length is
yg = - —1—21|'aZ [Yz + 2 Z Yz Jo(n'q)'o)cos(mbo) (45)
) o} nel n . :

11. H. B. Dwight, Tables of Integrals and Other Mathematical Data, 1965,

equation 859.042.
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In normalized form (from equation (39)), combining the terms using
equations (4) and (7),

Kla =
=2 [Yz £2), Jo<n¢o>c05<n¢o>} 48
© n=1 O

Figure 6 has Y, plotted against 4/a for the case of g<<we. Note that
in this instance Y£ as no imaginary component, i.e., it is.a real number,
Figure 6A shows the first few resonances for small X/a. In figure 6B the
vertical scale is expanded to show the departure of ¥ from one as X/a is
decreased. In figure 7 Y, is plotted against §/a for“the case of ¢>>uwe.

In this instance the normalized admittance is a complex number and there

are no resonances. Note that Y also goes to one for large 6/a. The general
expression for Y, (equation (46%) allows for arbitrary Egr My and ¢g,. For
the graphs in this note these parameters, where significant, dre taken the
same as the external parameters: €, u, and 0. In particular u, and u, are
always taken as p for the plots. The conductivity, o,, is takedl as equil to
0 or as having negligible influence, and the same applies to €+

C. External Admittance of Cylindrical Loop Below Ground Plane

Consider now the admittance per unit length attributable to fields
outside the cylindrical loop below a ground plane. Referring to figure 1B,
the loop radius does not enter into this admittance due to the presence of
the ground plane. Thus, the case in which [kb|<<l is considered. This
still allows |[ka| to be of order one since b<<a.. For this admittance we then
consider the first term in a field expansion plus a correction term for the
capacitance and/or conductance near the loop gap. An approximate field dis-
tribution outside the loop is of the form

B aoﬂgz)(kr') 47

Hyr(rhet) =

and

n

. (2) 1

t t

Egr(r'heh) JZHzoaoHo (kr') (48)
The Hankel functions of the second kind represent an outward travelling
wave. For [kb[ <<l we have

T

"S By (b,6")de" = =V (49)

Since the gath of integration is not along y' = 0 but along r' = b there
is a small error associated with the time rate of change of the magnetic
flux through the semicircular area enclosed by these two paths of integration.
This is ignored for present purposes but is reintroduced, for convenience, -
when we consider the use of external insulators. Solving equations (48)
and (49) we have

v .

ao = ——g_L'_'(z)l (50)
mbZH_ H (kb)
z_ 0o
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Higher order terms in the electric field expansion (involving cos(n¢'))
do not contribute to the integral in equation (49), thus not affecting
the result for a,-

The surface current density (in the -x' direction) is

s
I, == H G | (51)
ext

This gives an approximate admittance per unit length as

J (2)
y' = SEXt x - J Ho (kb) (52)
ext Voo b2 HéZ) (kb)

For |kb|<<l this is basically a capacitance and/or conductance per unit
length.

Let us correct this admittance for the electric field distortion
near the loop gap. Consider again the conformal transformation used in
section III A. Expanding equation (26) using the (x',y') coordinates gives

f' + j%f = sin(u)cosh(v) + jcos(u)sinh(v) (53)

Along the right half of the ground plane (y'=0, x'>b) we have
T
u = (54)

and

xY
v = arccosh b (55)

If we consider all the electric field out to a distance, x', we have
an admittance

-+ 1
vy, = 2—%95—- arccosh (§ (56)

If we consider the circular electric field distribution of equation (48)
in the limit of small lkr [ we have an admittance =

o+ WE_
okt B A-FU

- X
y2 T b

(57)

For r'>>b the two field distributions are nearly the same. The increase
in y, over y, is then mostly due to the electric field distribution

near the loop gap. As a correction to the admittance consider the
difference, y; - y,, in the limit of large x'. Define
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by = lim (y; = y,)

E-)-r:zu
b
2 41/2 ‘
= 1ip Lwe [1 +1 -3,) } (58)
—I+m
Thus
by = Ei%ﬂé 1n(2) (59

which is a rather simple correction term. Correcting equation (52) then
gives

(2)
. H "’ (kb) .
] o G+iwe
y' L 1 + ln(z) (60)
ext ThZ Héz)(kb)
or
P am
y' = + kb 1n(2) . (61)
ext ThZ Hiz)(kb)
Normalizing this to the ideal loop admittance per unit length gives
r - 2 1
ext | IOMLT@ Yoxt (62)
or
-
g [P0
! =~ [=] — kb { —57—— + kb In(Z 6
ext (b) b 13 (1b) (2) (63)
1

This is called the normalized external admittance of the cylindrical loop
below a ground plane. The preceding equation can be rearranged as

R 1$% (ib)
_u.l Py Yext = =kb m) + kb In(2) ) ' (64)
N .

such that the right side is only a function of kb:

Considering the case of u, = u, this normalized admittance is plotted
in figures 8 and 9 in the form of equation (64). The case of g<<we is
shown in figure 8 with X/b as the independent variable. The case of o>>ue
is shown in figure 9 with §/b as the independent variable. In both cases
the normalized admittance is a complex number and is negligible compared
to ¥, in the limit of small |kb|.
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D. External Admittance of Exposed Cylindrical Loop

For the external admittance per unit length of the exposed
cylindrical loop we have the geometry of figure 2B. The solution is
very similar to that in section IIIB. Expand the fields outside the

loop as

Hz(r,¢) = Hz [angz)(kr) + ZE:Zanﬂﬁz)(kr)cos(n¢)} (65)

o ——

and n=1
E¢(r,¢) = jZHzo[aoHéz)(kr) + %Z:anHéz)’(kr) cos(n¢)J (66)

.n=1

The Hankel functions of the second kind are used to give an outward propaga-
ting wave. The cos{n¢) terms make Ey even in ¢ as required by the boundary
conditions which are symmetrical in ¢. The associated surface current density

at the loop gap (in the +¢ direction) is
J = - H (a,£¢ ) (67)

S
ext

The admittance per unit length due to the loop exterior is

Is

yext = Y
gap

As before this is normalized by defining

. 2
Yext = Jmuzna yext (69)

which is called the normalized external admittance of the exposed cylindrical
loop.

Equating the expressions for E (a,¢) from equations (34) and (66),
multiply each side by cos(n¢) and ingegrate over ¢ between zero and 27T

giving for each n

¢
v [o]
- a -Q ’ = 3 (2)'
;%ja S £ [¢o) cos(n¢)de JZﬂZHzoaan (ka) . (70)
_¢ .
(o]

0r, using the results of equation (42)

jv__ J (n% )
a = —zapo o (71)
" omazu_ Héz) (ka)

o
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Define
Hr(lz) (ka)
Y = =T (72)
extn HéZ) (ka)

Combining these equations the admittance per unit length is

s

= - —l .
yext 2ma’z [Ye 0 + ZZ t J (n¢0) cos (n¢o)] (73)
n=1

In normalized form

= "4 ka Y +2m Y J (n¢ )cos(né ) 74
b 2 exto Z extno o % (74)

n=1

ext

Again letting W, = u this normalized admittance is plotted in figures
10 and 11 for the cases of o<<we and 0>>we,respectively. For small |ka| this

is again negligible compared to Yz.
E. Cable Admittance

The final admittance per unit length is that due to the signal
cable loading which we define as B.- Actually this loading is at discrete
points along the loop gap. Ideally the spacing between these points is
much less than the loop circumference.l? 1In any event, g, is calculated

from

N
gc - ZCE (75)

where Z. is the cable impedance driven at the loop gap. In normalized
form define :

= 4 2
G, = juu,ma‘g (76)

which 1s called the normalized cable conductance.

For the case of u<<we it is convenient to rewrite equation (76) in

the form

g a

u i . e . )
E -c—) 4 77

G =ju——TTka

c Y

12. See reference 1 for a discussion of this péint based on transit times.
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where

1
Y=7 (78)

and is the wave admittance. For the special case of negligible conductivity,

1 €0 -3
Y =7 = T 2.654 x 10 ~ mho . (79).
o )

Also assuming that y, = u = H, We have the special case

-1 Jg a
S -
Gc =T a) Yo (80)

which is used for the plots with gca/Yo as a convenient dimensionless para-
meter.

If o>>we, then for the case of Hy = W = g
g ‘

2 C
Gc = - w(ka) 5 (81)
or
-2 g
- L I
Gc = jan 2 5 (82)

This is also used for the appropriate graphs with gc/c as a convenient
dimensionless parameter. '

Iv. Frequency Response Characteristics With no External Insulating
Dielectrics.

For the cylindrical loop we define a response function based on
the normalized admittances. For the cylindrical loop below a ground plane

define

v . -1
- '
Ry [22 + Yext + Gc} (83)
and for the exposed cylindrical loop define
-1
R, [Yz Y+ 6 ] CON

Including the short circuit current transfer functions, for the cylindrical
loop below a ground plane define .

Rl = TIR! . :
y (85)
and for the exposed cylindrical loop define

R = TRy (86)
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These functions relate, in normalized form, the response of the types of
cylindrical loop considered to the time derivative of the magnetic field, é,
in the incident wave. In the limit of small |ka| (for nonzero gap width and
finite cable conductance per unit length), all four of these functions go

to unity. The effects of the admittances are given by R' and R_ and the
effects of the short circuit current are included in R' add R to give the
overalil response functioms. For the cylindrical loop below a ground plane
R' and R' are the same for the cases considered so far. With the later
addition of another external medium these two response functions differ.

Using these response functions the frequency response characteristics
of these loops may be calculated. The gap width and cable conductance are
varied in order to observe their effects on the loop respomse. For the case
of o>>we the conductivity inside the loop is also made negligible so as to
improve the loop response. The minimum X/a or §/a as appropriate (or the
upper frequency response} is defined as the maximum value of %/a or &/a for

which

(87)

or ’
Rl = % (88)

whichever is appropriate. TFor the case of o<<we resonances occur and the
upper frequency response, as above, is inadequate to characterize the
frequency response. Thus, the damping of the first resonance to fiatten
the frequency response curve is also considered.

A, No Conductivity and Same Parameters Both Inside and Outside Loop

First consider the case of o<<we in which the permittivity and
permeability are the same both inside and outside the loop. Given the
loop radius and gap width we would like to be able to choose a best value
of g, for optimum frequency response characteristics of the loop. The
length of the cylinder can then be chosen together with the cable impedance

to obtain this optimum 8c*

The response functions versus X/a for a given b/a with g.a/Y, as a
parameter may be.plotted, and.on the. basis of this a best value of gca/Yo
may be chosen. However, the definition of '"best" is somewhat arbitrary.
Defining the upper frequency response by equations (87) and (88) the
associated 4/a is minimized by setting 8o to zero. With negligible conduc-
tivity, however, the loop is a resonant structure, seriously perturbing
the frequency response curve, significantly raising the normalized frequency
response (above the low frequency limiting value) for-frequencies lower than
this upper frequency response. Thus, this definition of upper frequency
response may not be appropriate. A larger g. may flatten out the resonance-
in the frequency response curve so that equations (87) and (88) provide a
more adequate description of the upper frequency response.
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Define the first resonance as the lowest frequency (or largest 4/a) for
which the real part of the total normalized admittance is zero. Calling this

X as Xr gives

Re [Yz + YextJ A =0 (89)
AL
a . a

This equation does not include G, because it is a purely imaginary number
(equation (80)). (For the loop below a ground plane substitute Y' for ¥
and similarly throughout this section.) This normalized resonanteﬁavelenggﬁ,
Xr/a, is a function of b/a.

Consider now an approximate model for the loop response near this
resonance by considering the sum of the loop admittances to be a parallel
combination of an inductance, L, a capacitance, C, and a conductance, G.
Resonance occurs at that frequency at which the admittances of the inductance
and capacitance cancel each other. If L, C, and G are assumed to be frequency
independent, then we may consider a few choices of G based on circuit theory
calculations. Dividing by the admittance of the inductor, l/jwlL, (similar
to the case with the loop admittance), the normalized admittance of these
three elements is

Y, = 1 - o’lC + julé (90)
This gives a response function

-1
[1 - wic + ijGJ (51)

The short circuit current transfer function is assumed constant for this
approximate analysis.

R
y

[}

Assuming that L, C, and G are frequency independent, the response is
critically damped if

= 2 (92)

(!
%

A critically damped response has the property that the response to a step
function (of B in this case) has no overshoot and that G as in equation (92)
is the minimum value with this characteristic. There is also the case of
maximum flat frequency response given by .

a\/¢=V2 | o o

This has the property that G is the minimum value for which the magnitude
of the frequency response curve of equation (91) is less than or equal to
one for all frequencies. However, since the loops considered here are
distributed systems these definitions of critical damping and maximum
flatness are only approximate. This can be seen in some of the figures
where the magnitude of the response function goes a little above one for
the maximum flatness case.
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Apply these results to the loops to get a rough idea of the optimum
choices for g,. Define the parameters in equation (91) such that at the
first resonance has the same value as in equation (83) or (84) whichever
is appropriate. t this resonance the real part of the admittance is zero,

or

A

w2LC l ‘ =1 (94)
- -5
a

o [ox

Then, at this resonance, the imaginary part of the admittance is

L
o= jA/E— (95)

ijG‘

N

TN

-
‘a

From equations (92) and (93) we can assign the two values to the imaginary
part of the loop admittance. Since Y is a purely real number, then for
critical damping set

Im [iext + Gc}
and for maximum Elat frequency response set

Im [Yext‘+ GCJ . '\/2 97)
J x r

Substituting for G. from equatiom (77) gives for critical damping

= 2 ' (96)
X
= —E
a

@ |

a a

g.a , K

< . &l x 2_Im[*f }2 (98)
Y B, ™ a ext
o ) _J X

B

and for maximum Flatness

g a A
N T 4 -
Y U, T & VG; Im Yext (99)
o Z X Kr
H S - = ——
; a a
where again for the plots My = M.
The case of o<<we with p, =y and €, = ¢ is treated in figures

12 through 15 for the loop below a ground plane and in figures 16 through
21 for the exposed loop. In each of the groups of figures there is first
Xr/a plotted against b/a. This is followed by g.a/Y,, for the two cases
of critical damping and maximum flatness, plotteg against b/a. Next, the
response functions are plotted for two values of b/a(.0l and .1) versus
X/a with g al/Y, {including the two special cases) as a parameter. Since
R& and R' are the same only R' is considered for the loop below a ground
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plane. Then the frequency responses as contained in the characteristic
X/a from equations (87) and (88) are plotted versus g.a/Y, with b/a as

a parameter. These plots are only taken down to a minimum gca/Yo given
by the approximate maximum flat frequency response, lower values losing
some significance. Finally, in figure 22, 2/a is plotted against g.al/Y,
for a few values of the cable impedance so that the reader can easily
relate the loop length to the loop radius, the cable impedance,and the
desired value of gca/Yo. Considering the maximum flatness criterion,
the upper frequency response (for b/a = .1) occurs at a X/a of about

2.9 for the loop below a ground plane and of about 2.8 for the exposed

cylindrical loop.

B. High Conductivity and Same Parameters Both Inside and Outside
Loop

Consider the case of o0>>we in which the permeability and con-
ductivity are the same both inside and outside the loop. The permittivi-
ties are unimportant as long as both are much less than o/w . In this
case the response functions versus 6/a are plotted for a given b/a with
gc/0 as a parameter. The cylindrical loop below a ground plane is treated
in figures 23 through 25. The exposed cylindrical loop is treated in
figures 26 through 30. In each case, the final figure has the frequency
response (from equations (87) and (88)), in the form of a characteristic
é/a, plotted versus g./c with b/a as a parameter and versus b/a with
gc/0 as a parameter.

There are no resonances of concern here for ¢>>we and so the
maximum frequency response occurs at g./c = 0. However, practically we
need a nonzero g, SO the optimum situation is to have gc/c<<1. For b/a = .1,
the upper frequency response for negligible gc/° occurs at a d/a of about
3.8 for the loop below a ground plane and of about 3,6 for the exposed loop.

C. High Conductivity Only Outside Loop

For o>>we, as a first attempt at improving the frequency response,
constrain o,<<¢ while uy = u. This can be accomplished by using some
insulator such as a typical plastic (polyethylene, teflon, an insulating
epoxy, etc.) to f£ill the loop. The restriction on the relative conductivities
applies during the intense radiation pulse which makes the air conducting and
hopefully makes this other material conducting to a much lesser extent. Also
assume that o>>we,. Then for frequencies such that §/a is of order one, the
skin depth or radian wavelength (as appropriate) inside the loop is much
larger than the loop radius. Thus, for frequencies of interest Y. is one

and for this case the response functions are of the form % -

) -1
v [l +Y Lt GCJ I (100)

I
]
o]
[]

and

S
B

-1 .
T [i + Yext + Gc } (101)
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Again g./o<<l is necessary for optimum frequency response. The
cylindrical loop below a ground plane is covered in figures 31 through 33.
The exposed cylindrical loop 1s covered in figures 34 through 38. For
b/a = .1 the upper frequency response for negligible g./¢ occurs at a 6/a
of about 2.8 for the loop below a ground plane and of about 2.6 for the
exposed cylindrical loop. These figures represent about a 30% decrease
in the characteristic §/a or about double the upper frequency response.

Thus, reducing the conductive load on the loop gap by making the conductivity
inside the loop insignificant does. improve the loop response characteristics.

V. Short Circuit Currents with External Insulating Dielectrics

Now consider a possible improvement of the cylindrical loop for g>>we.
This improvement consists of placing an insulator, of mathematically con-
venient geometry, on the outside of the loop structure so as to avoid, to
some extent, the shorting effect of the conducting air across the loop
gap. The insulator inside the loop is of course retained. As illustrated
in figure 3%A, the cylindrical loop below a ground plane has an insulating
hemicylinder (of radius, d) above the ground plane, symmetrically located
over the loop gap. The exposed cylindrical loop, as in figure 39B, has
an insulating cylindrical shell of inner radius, a, and outer radius, d,
completely around the loop and centered on the loop axis. The same notation
is used for the short circuit currents, admittances, etc. A subscript one
is used for the parameters of the added external medium. For the plots we
only consider the case of yu, = u, = u (or practically, u), 6,<<0, and
Gl<<c. All three permittivities are assumed to be small compared to o¢/w.

We would expect the upper frequency response to be determined by the
larger of |ka| and |kd| which are of order one. The new dimension, d, can
enter into this limitation in that the amplitude and phase of the incident
wave can very over the extent of the external dielectric. Then for frequencies
of interest (on the order of the upper frequency response or less), the
restrictions on the parameters of two of the media make |kga[<<l and [kla|<<l,
simplifying the form of the results somewhat., The additional external medium
requires a recalculation of the short circuit current transfer functions and
the normalized external admittances. We first consider the short circuit

current transfer functions.
A. Cylindrical Loop Below Ground Plane

Consider the loop gap shorted for the cylindrical loop below a
ground plane in figure 39A. The incident plane wave is of the form

-'k ¢ 'k oo ! '
Hz| (r t . ¢ I) = Hz e J X = Hz eJ r Sln(¢ ) (102)
inc o - o

which, as in equations (13) and (14), gives two of the field components in

cylindrical coordinates as ©.2 =, 2
IR EROTI §
H . (r',¢') = H LJo(kr')+2 J (kr')cos(n¢')+j2 Jn(kr')sin(n¢')}
inc o n=2 n=1

(103)
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and ©,2 ©,2
E., (ri¢") = jZH, [Jc',(kr')+22 Jr'l(kr')COS(n¢')+jZZ J'(kr')sin(mb')]
o n

inc =2 nmk

(104)

Due to the presence of the additional external medium we must add additional
waves to match the boundary conditions. Inside the external insulating
region there is a wave with two of the components as

©. 2 oy 2
Hzi(r}¢') = Hzo[;OJo(klr')+2§: Jn(klr’)cos(n¢')+j2§i aan(klr’)sin(n¢'%
n=2 n=]1

(105)

and

) <, 2 o, 2
E¢i(rl¢’) = 214, [aoJc')‘(klr’HZZ anJr'l(klr')COs(n¢')+jZZ anJr'l(klr')sin(nc#')]
° n=2 n=1
(106)

The Bessel functions of the first kind are used so that the fields are finite
at the origin. There is also a wave outside the dlelectric, reflected from
the structure, with two of the components as

©, 2
H, (rle') = Hz [b H(Z%kr )+2§: b H(Z)(kr )cos(n¢')+j2§: b H(Z)(kr )sin(n¢' J
Zrefl o) n=2 el

(107)
and

©,2 cn’z
E., (rl¢") = jZH [b H(Z)(kr )+2§: an(z)(kr')cos(n¢')+j2§: ansz)Zkr')sin(n¢'4

refl =2 =1

(108)

For this reflected wave the Hankel functions of the second kind are used ta
give an outward propagating wave.,

The boundary conditions to be satisfled are that Hz, and E,, are
continuous at r' = d, giving from the magnetic field (equations ?103), (105),

and (107))
3 (kd) + boiS?) (ka) = and (k;d) (109)
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and from the electric field (equations (104), (106), and (108))

t
23! (kd)+b zH$? (k) = ay2;3) (o) (110)

Solving these last two equations for a, gives

1 t
1, k)i (k) -1, (k) B (i)
i )" Z1 D (111)
J (e d)H, ™ (kd) = 75 I3 (o d) B (kd)
The wave impedances are replaced by
Z U
L. Lk
Y/ u kl (112)

Then in equation (1lll) expand the Hankel fumctions in the numerator, cancel
terms, and apply a Wronskian relationship to give
-1
u
= .Tkd (2) L1k, (2)
ap =4 J5 | Ik " (kd)~ 7 lin(kld)Hn (kd) (113)

Now (and for later use) we expand the Bessel functions and their
derivatives for small arguments as

n=20
J(z) =1 Iiz) = =3, (2) = - %
Y (z) = 2 1n(z) Y'(z) = =Y. (z) = 2
° w o 1 Tz
n2l | (114)
n n-l
. Lz ) 1 z
In(2) = 4y 2) Ial2) = 7 (2)
hat 9
~ n-l ! _Z_ ' . E.!— £ "'n"‘l
Y (z) = - >—F (2) Ti(z) = 5= (2)
' J

Limiting the results now to the case of o>>we, as discussed above, we
constrain that |k d|<<l. 'The coefficients then .considerably simplify.
Consider then the individual terms for the magnetic field in the external
insulator from equation (105) with the coefficients from equation (113).

For n = 0,
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-1 ‘
\ kd [,(2)! “1 kd (2
ad (kr') = {54 [Ho Gy 2 Ky )(kd)J (115)

which is independent of kjd. For n > 1 we have

n
, mkd 2)! “1 nkd 2
ad (kjx') = (—2— i [Ht(l ) (k) - u———-——zt(‘kld) u{ )(kd)J (116)

which for small lk d| is proportional to (kld)z. Then in the limit of small
|kld| only the n=0"term is important. This is significant in that for the
case of interest the magnetic field in the external insulator is uniform,

in spite of the fact that the magnetic field in the incident wave for lkd]
or order one can vary considerably over the extent, 2d, of the outer surface
of this external insulator.

The short ;ircui;rsg;fage current density at the loop gap is given by

I, = H (0,¢") (117)
o 1

. (using previously established conventions). Since r'=0 for this calculation
only the first term in equation (105) is nonzero. Also for the case being
_considered (|k d|<<l), the first term is dominant for the magnetic field
throughout the external insulator. The short circuit current transfer
function (as before) is then (from equations (105) and (115))

J -1
s u
Do ] gmkd [ (2) Mlkd () ,
T Hz j > Ho (kd)+ ) Ho (kd) | 7 (118) -
o -
Or, for Wy = pu, this simplifies to
-1
. 2..(2
T' = -J%(kd) Hé ) (kd) (119)

This is plotted versus 6/d in figure 40A. However, notice the behavior of
|T'|. For small §/d it rapidly diverges. This is a physically unreasonable
result because it indicates that instead of the loop response rolling off
for high frequencies it increases very rapidly with frequency.

The problem lies in the manner of defining the loop response. We have
considered the response to a plane wave by dividing the short circuit sur-
face current density by the magnetic field in the incident wave extrapolated
to the x'=0 plane. However, because ¢c>>we this plane wave is attenuating
with the distance, x'. Thus, the magnetic field in the incident wave at
the leading edge of the external insulator, x'=-d, can be much greater than
the magnetic field in this wave at x'=0. It is the magnetic field at the
leading edge of the insulator which is propagating into the insulator and
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determining the short circuit surface current density. This would indicate
that we need to redefine the short circuit current transfer function. Since
the external insulator extends into the medium with the incident wave,
perhaps it is not meaningful to consider the field that would be at r'=Q

if the external insulator were not there, particularly for the case of g>sye.
Also, in the real case (measuring the close-in nuclear EMP}, such a plane
wave does not characterize the incident fields because the sensor is in a

source region.

There may be various ways to define this short circuit current transfer
function. The one we choose is that obtained by relating the short circuit
surface current density to the average value of the magnetic field in the
incident wave at the surface of the insulator. This is a reasonable defini-
tion in that the magnetic field inside the external insulator is uniform,
irrespective of the direction of wave incidence (in the (r!¢') plane);
only the first term (which has no ¢' dependence) in the field expansion
determines the field in this region. Inherent in this definition is the
recognition that this kind of sensor cannot spatially resolve the incident
wave to distances smaller than the appropriate sensor dimensions, without
knowledge of some pertinent parameters of the incident wave, such as,
whether or not it is a plane wave and, if so, what its direction of propagation

is.
Conveniently, the average value (over ¢' at constant r') in the incident

wave is just given by the first term (n=0) in the expansion as in equation
(103). Thus, a new short circuit current transfer function based on the

average value of the incident magnetic field at r'=d is defined as

J -1
S ' u
L o =L = ) sTkd (2) ¢ _1 kd (2)
Tavg T H, J_(kd) T T_(kd) " 472 T (kd) [Ho (kd)+ 775 By (kd)
)
(120)
As before for Hp =, this reduces to
' ~1
f = _'-l 2 (2
T k) 23 (k)i ta) (121)
This is plotted versus §/d in figure 40B8. Note that LT falls off

for small §/d, a reasonable behavior for such a frequénc?vgésponse curve.
It.is down to 1/Y2 at a §/d of about .35, indicating a good upper frequency
response for the short circuit surface current density.

0f course, this definition of the short circuit current transfer
function is somewhat artificial, but it may be a reasonable one. At least
it gives some quantitative limitation on the frequency response. There are
perhaps other possible definitions of this transfer function, such as one
relating the surface current density to the total magnetic field at r'=d
(not just the incident fieid). However, for our limitation of Ikldl<<l’
the transfer function would be unity for all frequencies of interest,
providing no limitation on the frequency response which is expected because
of the perturbations in the field due to the loop structure. This latter
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definition would then be less reasonable. The definition leading to equation
(121) still has limitations, however, in that the ¢/d for upper frequency
response is small enough that the incident wave has an extent of several

skin depths across the structure, indicating that for such frequencies we
cannot consider this as a measurement at one point in space. This is,
however, still a small number of skin depths and we thus use this definition
of the short circuit current transfer function in this note.

B. Exposed Cylindrical Loop

Short the loop gap for the exposed cylindrical loop in figure 39B.
Again the incident plane wave is of the form

-,k -k‘ v

H (r,¢9) =l e IRX 25 e rsin(¢) (122)
z Z z
inc o] o

which gives two of the field components in cylindrical coordinates as

©,2 ©,2
H (r,¢) =H_ |J (kr)+zz Jn(kr)cos(n¢)+jzz Jn(kr)sin(nq;) (123)
Zinc Zo| ©
n=2 n=1
and w,2 , ©,2
E¢ (r,¢) = jZH ‘;;(kr)+2§: Jé(kr)cos(n¢)+j2§: J;(kr)sin(n¢) (124)
ine Zs =2 =1

Inside the external insulating region (a < r < d) two components of the
wave are

oo’z
Hz](.r,d:) = Hzo l:aoJo(klr)'*-boYo(klr) +ZZ aan(klr)'*'bnYn(klr)} cos(n¢)
< n=2
©,2 .
+j2z [anjn(klr)+bnyn(klr)J sin(n) (125)
n=1 .
and ©,2

E¢(r,¢)=jZleo [aoJc"(klr)'*'boYc',(klr) +ZZ anJr'l(klr)-i-bnYr'l(klr)]cos(nq)) -

1 n=2

®;2 . ,
+ 2}{: ' ;" i TN
3 n=l[aan(klr)+bnYn(klr)] sin(n¢) 126)
The wave reflected from themssructufe has two compgnﬁnts as
b b

5 (r,9) = Hzo [coﬁc(,zzkr)ﬂz cnﬁr(lzikr)cos(nd:)“"jZZ anéZ{kr)sin(w)j (127)

refl =2 e}
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and ©,2 -2

E (r,9) = JZH [; H( )(kr)+2 j{: c H( )(kr)cos(n¢)+32§: ( )(kr)31n(n¢ﬁ
Prefl & &

(128)

The first boundary conditicn’ to be satisfied is that E, is zero at
r=a giving from equation (126) ¢

a ! ' =
an(kla) + bnYn(kla) 0 (129)
or
b J'(k,a)
1
;E.g - _{L.____ (130)
n Yn(kla) :

At r=d the boundary conditions are that H, and E4 are continuous giving
from the magnetic field (equations (123), 025), and (127))

Jn(kd)+an§2)(kd) = aan(kld)'i'bnYn(kld) ' (131)

and from the electric field (equatioms (124), (126), and (128))
(2)} - ' '
ZJ (kd)+c ZH (kd) = anZlJn(kld)+anlYn(kld) (132)
Combining these last two equations to remove C s substituting for b from
equation (130), and solving for a, gives

1 (kd)H(z)(kd) -1 (kd)H(z)(kd)

a =
n J'(k a) Z J'(k,a)
n* 1 (2) _l ' n-_1 ' (2)
{Jn(kld) LT arm— Y k di} (kd) - Jn(kld) - Y;(kla) Yn(kldi} Hn (kd)

Y (k a)
(133) )
Simplifying the numerator and substituting for the wave impedances gives
J' (k,a) '
_ wkd __n 1 @) )
% =H 7 | Tig ey Yt T (D)
M | I (2) -
H a1 (134)

Y
We also have b from this last equation and equation (130).
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Limiting the results now to the case of o>>we, also let |k d[<<l.
The terms in the magnetic field expansion (equation (125)) in th€ external

insulator simplify. Considering first the a, terms we have for n=0 -1
(k,a) ' K 2
_ ) .mkd 1 (2) 1 kd al"(4(2)
aoJo(klr) = i_i_ L+ 7 ln(kld) Ho (kd)+ T2 1- a Ho (kd)
(135)
and for n>1 1 , 1
2n N . 2n
_ |z . Tkd a (2)} _ "1 nkd a (2)
agdn (k7)) = (d) L R FY B LN 29t "la) (k)
(kld)
(136)

In the limit of small Ik d|, the n=0 term i1s_independent of k,d while the
higher order terms are proportional to (k;d)“. Thus, only the a, term is
important. Relating the b, terms to the a, terms from equations (125) and

(130) for n=0,

2
b Y (k,r) (k,a)
oo 1 _ 1 ‘
3o - 2 g (137)
co 1

which goes to zero so that the b, term can be neglected compared to the
a, term, and for n2l

:njn:tl: _ %)Zn (138)
nn 1

so that the b  terms are of the same order as the a, terms for n>l. But
since these aj, terms can be neglected compared to the a, term, the b, terms
can likewise be neglected. Then in the limit of small |k.d| only the aq
term is important, meaning that the magnetic field in the external insulator
is uniform. This is the same as the result for the cylindrical loop below

a ground plane.

The short circuit surface current demnsity at the loop gap is given by

Jso = - Hzl(a,O) (139

(using previously established conventions). Actually since the magnetic
field is uniform throughout the external insulator the surface current _
density is independent of ¢. The short circuit current transfer function
(using the first definition) is then (from equatiséns (125) and (135))

s u é 1
‘--—o— = 11_(_(_1- - (2) 'L -lﬂ - _a_ (2)
T= Y 5 | )= 5 41 - 13 Y ) (140)
(o]

For up, = u, this is plotted versus &/a with d/a as a parameter in figure
41, &gain ITI diverges rapidly for small §/a, indicating the same problems

as T'.
35



Note the use of d/a=l1 in the curves. This is a limiting case of d/a.
Remember that we first took the limiting case of k.d = 0. 1In doing this
we have constrained the displacement and conductioft currents in the external
insulator to have negligible influence compared to those in the conducting
air. However, this requires that there be such an insulating region in
the first place. Without this additional region the short circuit current
transfer function is as in equation (25) and plotted in figure 4. In
equations (135) and (136) we can see that, for small but finite|kld|,
if d/a is set equal to one then the terms for n > 1 are no longer
proportional to (k d)2 and are of the same order as the a term. Likewise
the b, terms for n > 1 also contribute to the sum for theomagnetic field.
Thus, the use of d/a = 1 is only meant in the sense of a limiting case.

The limit is taken after the limit of k.d = 0 is taken. Actually d/a
must be greater than one, how much grea%er depending on how small |kldi
is for frequencies of interest.

As for the case of the cylindrical loop below a ground plane define
a new short circuit current transfer function based on the average
value of the incident magnetic field at r = d. This average value is
just the first term in equation (123) giving '

J
s U 2
_ o ____T ___).md @ ey S ka ] a2
Tavg " "H_3_ G T TG )12 Jo(kd) B (kd)+ 2= 579 1 d) i, tia)
o
(141)
For u, = u, this is plotted in figure 42, again giving a more reasonable

short circuit current transfer function.

Since only the first term in the magnetic field expansion (which
has no ¢ dependence) gives the short circuit current transfer functiom,
the loop response is independent of the azimuthal (¢) direction of wave
incidence. TFrom another viewpoint the magnetic field in the external
insulating region is independent of ¢, as is the surface current density,
so that it makes no difference at which ¢the luop gap is placed. The
external insulator somewhat isolates the loop conductors from the con-
ducting air., The loop radius is ideally only a very small fraction of
the radian wavelength or skin depth, as appropriate, in the external
insulator. There is alsc assumed to be a sufficient thickness, d-a,
of this insulator to maintain the isolation from the currents in the

conducting air.

VI. External Admittances with External Insulating Dielectrics

Now reconsider the loop admittances. The normalized cable con-
ductance remains the same. Likewise the normalized internal admittance
is unchanged by the addition of extermal insulators and for the cases
of interest in the remaining sections is just one for all frequencies
of interest. However, the presence of the external imnsulators significantly
changes the normalized external admittances which need to be recalculated

for the new geometries.
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A. Cylindrical Loop Below Ground Plane

Consider first the external admittance per unit length of the
cylindrical loop below a ground plane using the geometry of figure 39A.
As in the case without the external insulator take the first term in the
field expansion with a correction for the field distribution near the
loop gap. Since we are interested in the case in which 6>>we but |k d|<<1
the currents (conduction plus displacement) in the external insulator
are insignificant compared to those in the conducting air. Thus, we do
not correct for the capacitance and conductance, but rather for the
inductance in the vicinity of the loop gap.

Inside the external insulating region there is then a wave with
two of the components as

Hzo[aoJo(klr')'Fb 6Yo(klr')} (142)

114

1t
Hz],_(r’¢ )
and

13

E¢i(r§¢') jzlazo(}oJé(klr')+boYé(klr')] (143)

Qutside the insulator there is a wave with two of the components as

Paly = (2) o
Hoo(rse") HZOCOHO (kr') | (144)
and
E  (r;¢") = jZH ¢ H(Z)Ekr') (145)
' z oo
The boundary conditions to be satisfied are that H , and E, ,
are continuous at r' = d giving from the magnetic field ¢

‘ _ (2)
ao;o(kld) + boYo(kld) = COHO (kd) ‘ (146)
and from the electric field
a 2.3 (k,d) +b 2, ¥ (kid) = c 20 (kd) (147)
010" 1 0l 0 1 o o
Removing <, from these last two equations gives

H(z)zkd)ZJo(kld) - Héz)(kd)zlJé(kld)

b -
o
2= - 148)
2 DY @ (
o Ho (kd)ZYo(kld) Ho (kd)ZlYo(kld)
Setting r' = b we have
bE b, ! = - V
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giving from equation (143)

b -1
~ gaE t __9_ ]
a [Jo(klb) + 2 Yo(klb)J (150)

o
L
bZ le
o

The surface current density 1is

b
71 =- -—0— .
(b,+ %) Hz(;ao[.]o(klb) + a Yo(klb)] (151)

The admittance per unit length is then b

I J (kb)) + ;Q-Yo(klb)
ext . 1 o]
y! = = - b (152)
ext Vv TbZ v 20
gap 1 Jo(klb) + %o Yo(klb)

Substituting from equation (148) for bo/ao and rearranging terms, then

(2} (2) '
I Cyb) [H ™ (k) ZY (kg d)-H ™ (kd)Z, ¥ (K d) ]

. 2)' (2) '
-Yocklb)[HQ (;cd)ZJo(kld)-H0 (kd)ZlJo(kld)]

~

t
Yext

o

0

i
wal . N
' (2! (2 '
{Jo(klb) [H (kd) ZYQ (qu) Ho (kd)ZlYo(kld) ]

¥ (2} (2) "
~¥! (k bY[H" (kd) 2T (kyd)-H “/ (kd)Z T4 (k d) ]

(2 xqy ' '
BT (k)2 LT (k B)Y ) (kyd) =T (k,d)Y (k;b)]

_ 4
! (2) (1d) Z[ 37 (1, B)Y_Cle d)rd_(k d)Y* (k)]
o o 1 0.} ItrO 1 o 1 a

(2)! ‘
%j% (kd)z[JO(klb)Yo(kld)-Jo(kld)Yo(klb)]p. '
H

(2) poroe ot byt : ,
-8, "7 (ka)Z; [35 (k)T Cepd) =3¢ (ke )Y (ke D) ]
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QNmn 3 (K BIY (k d)=J_(k d) ¥_(kb)

(2) 1 Tt
HO (kd)Zl Jo(klb)Yo(kld) Jo(kld)Yéklb)

(27 ' - '
BoOO(kd)Z (kDY (kd)=T (K d)Y! (kD)

(2) ' \
H™ (kd)Z) Jo(klb)Yo(kld)-J;(kld)Yo(klb)

s Jé(klb)Yé(kld)-Jé(kld)Yé(klb)
JO(klb)Yo(kld)-Jo(kld)Yo(klb)

(153)

Substituting for the wave impedances from equation (112) and letting |kld|<<1,
expand the appropriate Bessel functions for small arguments giving

(2) 2
(kd) (k,d) '
LI L ln(d> + 1

Héz)(kd) ul kd b
. I ,
Text ThZ, 2! (154)
™ (kd) | kgd k
H_ 1 Si_+ _.]:_ [d2—b2]
(2%kd) u, kd b .2b

Neglegtlng the first term in the numerator because it is proportional to
(k d)” and using

KZy = wHy (155)
then
(2) -1
(kd) WH1T
. wund o : 1 2.2
y. =43 + ] [d<-~b“] (156)
ext k H22)<kd) 2

Considering small |k,d| then leads to a considerable simplification in the
form of the result. ~Looking at this last equdtion note that the external
admittance per unit length is the series combination of an inductance
attributable to the external insulator (the last term in the braces) and
the impedance of the external medium (the first term in the braces).

Note the factor ﬂ[dz-b2]/2 in the term for the inductance of the
external insulator. This is just the cross section area of the external
insulator except for a small area mb2/2. This is accounted for by noting
that the electric field is related to Vgap in equation (149) by an integral
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along a path constrained by r'=b instead of directly across the loop gap.

The area enclosed by these two paths is precisely wb2/2. Thus, correct
)

Yeoxt to give
-1
ned 2
1 - ,wund 1 (ied) + .wulnd (157
Vext =1 4k (2) T2 )
Ho (kd)

which is no longer a function of the loop gap width,2b. Multiplying by
jwuzwa we have in normalized form

-1
u 2 H(z)(kd)
vt =_’i~_2(§.) 1 -® 2 1 7 (158)
ext Hy d Hy kd Héz)(kd)
Rearranging this gives
-1
5(2)
M), w2 iy (kd) (159)
==} Y =24 1 ~-— —
s 2 ext My H(Z)(kd)
Q

such that the right side is independent of a. Considering the case of

= u and ¢>>we, this normalized admittance is plotted versus
G%d in"figure 43. Note that in the limit of small |kd| the normalized
admittance is arbitrarily small.

B. Exposed Cylindrical Loop
Turning to the external admittance per unit length of the

exposed cylindrical loop we have the geometry of figure 39B. Inside
the external insulator there is a wave with two of the components as

HZ [ao.Io (klr)+boYo (klr)] +2 Z [aan (klr) +bnYn(klr)J cos (n¢)

H o (r,¢) =
1 o . a=1
(160)
and ©
s v Il 4
E¢l(r,¢) = JZJ-HZO [aoJo(klr)+boYo(Llr)] +ZZ [anqn(klr)%an'l(klr)] cos(ng)
: n=1 (161)
Outside the insulator the two components are
_ (2) = (2)
H(r,¢) = i, [coﬁo (kr)+z>: c H (kr)cos(nqb)] (162)
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and o

E¢(r,¢) = szzoﬁ: (2)(kr)+2§: c H()(kr)cos(n¢) (163)

n=1

Since Hz and E, are continuous at r=d, then from the magnetic field

¢

— (2),..
aan(kld)+bnYn(kld) '.Can (kd) : (164)

and from the electric field

(2);
! ' =
anZlJn(kld)+anlYn(kld) CnZHn (kd) (165)

Removing <, gives

b 1 ) 22, (kg @) - 8P (k)2 3 (k)
n n 1 n1

& (2) kd)ZY¥_(k,d) = 1) (kd)z ¥! (k. d) (1667
A (k) 2¥,_( 18 (kadz, ! (e )

At r = a, E, is zero except in the loop gap where it is given by equation
(34). Equating this distribution for E (a,¢) with that from equation (161),
multiplying each by cos(n¢), and integrating over¢ from O to 27 gives

%
1% a o bn 7
- —5ap = 9 ' —_— '
20 f(¢o cos(n¢)de¢ JZnZle a Jn(kla)+ 3 Yn(kla{J (167)
o o n
-¢
Or, using the results of equation (42) -1
jV J (n¢,) b
—_— 1
% T 27raZ h [Jn(klaH- a Yn (kla) (168)
17z n
o
The surface current density is
J = - H_(a,+¢ ) (169)
Sext 21 °
The external admittance per unit length is then
J : by i b
, _ Sext ) 5 Jo(kla)+ -y Yo(kla) ‘s (k a)+ a Yo (k g) S ' ) (s,
= = - 5 . b n¢ )cos(n
ext Vgap 27raZl Jl (k a)+ L Yl (k a) J (k a)+ _n_ Y (k a) [e])
o1l a;, o 17 a,

(170)
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Considering the nth term and substituting for bn/an, then

b
n
Jn(kla)+ a Yn(kla)

b.
“n vyt
J (k a)+ z Yn(kla)

Y (k.a) (1% (kd)ZT (k_d)- H( )(kd)ZlJ;(kld)]

Pty a)[H(z)(kd)ZY (ky ) H(Z)(kd)z ¥ (kyd) ]
-t ey (1D ()2 (e @)-8S2 (ka)z 3! (k) )

(2)(kd)Z[J (kya)Y_ (i d)=J_(k Y _(k;a)]

EJ(kaHHQ)&®ZY(kd)HQ)&®ZY (t;d)]

(2) ' '
-Ho7 (kd) 2, [T (k) ¥k d) =T} (kyd) Y (kja)]

5(2)" .
B (kd)Z[I] (k)Y (k,d)-T (k,d)Y! (k,a)]

(2) i ' t ' [
-Hn (kd)zl[Jn(kla)Yn(kld)—Jn(kld)Yn(kla)]

f\a\_/\f'-\A_/\

e}
B (kd)Z J_(kja)¥_ (k,d}=J (k,d)Y (ka) .1
(2) ' '
B "M (kd)Zy T (kja)Y) (kyd)=J) (k, DY (K;a)

52 )z 31 @)Y @)= (Y (ga)  I) (@)Y (k) =3 (k)Y (k,a)

—
2 ' . .
é )(kd)zl Jn(kla)Yn(kld) Jn(kld)Yn(kla) 'Jn(kla)Yn(kld)-Jn(kld)Yn(kla)

(171)
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Substituting for the wave impedances from equation (112) and letting \k d|<<1,
expand the appropriate Bessel functions for small arguments. For n=(0 tfiis gives

(2)! 2
H (kd) _g(kld)

0
b - In|[—=|+1
0 (2) U kd a
Jo(kla)+'zg Yo(kla) Ho (kd) "1
b T @ k. d (172)
J' (k,a)+ == ¥' (k,a) 0 (kd) VR < § Ky 2.9
o1 a o 1 ) IR a + 3a [d-a<]
Ho (kd) "1

Neglecting the first term in the numerator because it is pr0portioﬁal to (k d)z,
this n=0 term is then proportional to (kld)—l. For n>1 we have 1

1 ’ ; Zn
o Héz)(kd) ' (kld)2 1- ("ll
_n . - —_— + 1 (173)
Jn(kla)+ " Yn(kla) H(Z)(kd) ul kd 1+ E)Zn
n _ n d
b T (@) al2n
3! (kj@)+ 22 v (k) a) H"h(kd) o kyd gy g 1o d}
n n n (2) u kd a k.d a a\Zn
H ® (kd) "1 1 1+ (G)

For a/d < 1 and for small |k d| this general term is proportional to k,d and is
thus negligible compared to %he n=0 term. Then keeping only the n=0 térm and

combining Zl with kl as in equation (155)

~-1

(2)
Lwu2rd Hl (kd)

=4=1

. 2
y + juu T[d"-a?] (174)

Again consideration of small |k d|has lead to a sigrificant simplification in
the form of the result. LookinZ at the form of this last equation, note that,
as with the cylindrical loop below a ground piane, the external admittance
per unit length is the series combination of an inductance associated with the
external insulator and the impedance of the externai medium (driven at the

surface of the external insulator).

In normalized form then (2) -1
p 2 2 H (kd)
y =2 3) 1o (o 2L O (175)
ext. d ' d My kd HéZ (kd)
For u. = u, = u and o>>we this normalized ‘admittance is plotted Qeréus §/a

with &/a a§ a parameter in figure 44. As with the short circuit current
transfer function, the case of d/a=l is a limiting case. The limit of k,d=0
is taken first, and d/a must actually be at least a little larger than ofle.
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VILI. Frequency Response Characteristics With External Insulating Dielectrics

For this case in which the insulators are used both inside and outside the
loop, we are only interested in the limits of 0>>we and |k d[<<l. Also constrain
that w, = pu_ = u, Conveniently Y, is then just one. Using the short circuit
current trafisfer functions and normalized external admittances from the previous
two sections, we can then calculate the response functions and compare the
results to those obtained without the external dielectric.

A, Cylindrical Loop Below Ground Plane

The cylindrical loucp below a ground plane now has response functions
of the form

-1 .
' ro+
R.y (1 + Yext GCI (176)
and
R| = Tl Rf (177)
avg avg "y
where we have defined a new response function, R' |, to be used with

the short circuit current transfer function, T;vg' Considering the effects
of the normalized admittances,

-1
412 2 Hfz)(kd) -1 ay? 8,

R' = {1423 jI- == | - —= (178)
vy d kd H(:.) (kd) (o}

(o]

This is plotted in figure 45 versus &/a with d/a as a parameter and with g./o =0.
Note that for large d/a this response function falls off very little for small

§/a.

Using T'  from equation (121), R'  is then calculated. It is plotted
in figure 46 §e8sus 6/a with d/a as a pgggmeter and with g_ /g =0. In figure 47
it is replotted but with g /o as the parameter for a specigic d/a of 2. As
summarized in figure 48 optimum upper frequency response is obtained with negli-
gible gc/d and for d/a somewhere between lL{E'and 2. This optimum upper

frequency response corresponds to a ¢/a of about 1.1. Comparing these results
to the case of no external insulator, but insulator inside the loop, the
addition of the external insulator has decreased the characteristic d/a by
about 607% or has raised the upper frequency response by a factor of about 6.5.
Compared to the case of no insulators, external or internal, these results
represent a decrease in the characteristic ¢/a of about 70%, or anm increase
in the upper frequency response of a factor of about 12, better than an order
of magnitude. The use of an external insulator (together with the internal
insulator) then represents a comsiderable improvement in the response
characteristics of the cylindrical loop below a ground plane.
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B. Exposed Cylindrical Loop

The exposed cylindrical loop now has response functions of the form
_ -1
Ry = [1+Yext+cc] (179)

and

(180)

R T R
avg avg'y

where again we have defined a new response function, R , to be used with
the short circuit current transfer functionm, Tavg' From®the normalized

admittances,

. =1 1l
a 2 a 2 2 H£2%kd)' 2 8¢
Ry= l+E 1’3 -Ed-——- - m(ka) 5 (181)
Héz‘%kd)

which is plotted in figure 49 versus 6/a with d/a as a parameter and with g./0
=0, Again for large d/a the response function falls off very little for small

§/a.

Using Tav from equation (l4l) we also have R ve' Conveniently there is
a special- case Er Ravg given by gc/d = 0 in which tf&8form of the result

simplifies to

={ - 5% (kd)zJo(kd)Hz(.z)(kd) (182)

R
avg

g_c=o .

o}
which is independent of a. This is plotted versus §/d in figure 50. Note
that this is of the same form as T'v in equation (121) showing that for
this case of gc/c = 0, R v is jus%‘ he response function for the penetration
of magnetic field (paralie% to the loop axis) into an insultaing cylinder of
radius, d, immersed in a conducting medium. Figure 51 has R,,, Plotted
against 8/a with g./0 as a parameter for the limiting case of d/a= 1.
Figure 52 summarizes the results for the upper frequency response. As
expected, optimum upper frequency response requires negligible gc/o (say
small compared to .l). Note that optimum upper frequency response occurs
for the limiting case of d/a = 1 for which the characteristic 8/a is about
.35. As discussed before, d/a must actually be somewhat larger than one if
the short circuit current transfer function and normalized external admittance
are to have the forms developed in sections V' B and VI B, respectively.
Comparing these results to those for no external insulator, but insulator
inside the loop, the characteristic ¢/a hds been decreased by about:87% and
the upper frequency response has been increased by a factor of about 55.
Compared to the case of no insulators, external or internal, these results
give a decrease in the characteristic é/a of about 90%, or an increase in
the upper frequency response of a factor of about 110, better than two orders
of magnitude. Of course, the requirement of making d/a a little larger
than one lowers this frequency response improvement somewhat. Also, such
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a small characteristic §/a brings us back to the problem of the definition

of the short circuit current transfer function because the incident magnetic
field is several skin depths in extent across the loop structure at the upper
frequency response limit. In any case, however, the use of an external
insulator (together with the internal insulator) represents a large improvement
in the response characteristics of the exposed cylindrical loop.

VIII. Summary

Considering two types of cylindrical loop, the cylindrical loop below
a ground plane and the exposed cylindrical loop, these loops are both assumed
to have axial lengths much greater than their radii. Also, the resistive
signal cable loading at the loop gap is assumed to be uniformly distributed
along the length of the loop. Calculating the response of such a loop to an
incident plane wave with the magnetic field parallel to the loop axis, the
solution is then only a two dimensional problem. Only one orientation (an
optimum one} of the loop gap with respect to the direction of wave propagation
is considered. This is because the purpose of this note is to compare the
frequency responses of this type of loop in different kinds of media and in
some different configuratioms (to improve the frequency response).

The case of negligible air conductivity is considered first. The
upper frequency response is given from the result that the radian wavelength
is of the order of the loop radius. An optimum (non zero) cable conductance
per unit length is required to dampen the first resonance and thus optimize
the frequency response characteristics.

Then the case of 0>>weis considered. For thils solution the air
conductivity is assumed independent of beth time and the electric field.
For this high air conducitivity three variations on the design of the
cylindrical loop are considered for their frequency response characteristics.
First, no insulators are used so that a high air conductivity is present both
inside and outside the loop. Next, the inside of the loop is filled with
an. insulator to exclude the high air conductivity from the inside, and then
an insulator is used both inside and outside the loop structure to exclude
the high air conductivity from the immediate vicinity of the loop. For
each of these variations the upper frequency response is given by a skin
depth in the air which is of the order of the loop radius. Note that there
is a significant improvement with each addition of a local insulating medium.
This is most pronounced for the exposed cylindrical loop in that progressing
from no insulators to both internal and external insulators results in about
an order of magnitude relative decrease in the characteristic §/a for upper
frequency response. 0Or, this produces about two orders of magnitude relative
increase in the upper frequency response. For optimum frequency responses
it is also necessary for the cable conductance per unit length to be
sufficiently small compared to the air conductivity. .

However, there are other problems associated with the high air conduc-
tivity case. Since in measurements of the close-in nuclear EMP the sensor is in
a source region, a plane wave without local sources does not accurately describe
the field distribution. Thus, the short circuit current transfer functions are
somewhat artificial. Also the air conductivity in this source region is non-
linear and time varying. This makes the analysis somewhat approximate for such

a situation.
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The numerical results plotted in figures 3 through 38 and 40 through 52
were calculated using the CDC-6600 in the Weapons Laboratory at Kirtland Alr
Force Base. Most of the numerical techniques programmed for these calculations
are straightforward and require no explanation. A description of the methods
used to generate the first, second, and third kinds of cylindrical Bessel
functions, appearing throughout_ the equations in the test, may be found in a

previously published math note.

Upper bounds on truncation error when calculating the values of infinite
series representing: (1) the internal admittance of a cylindrical loop, and
(2) the external admittance of an exposed cylindrical loop are derived below.
A general term of the summation in the equation for the normalized internal

admittance (equation (46)) is in the form
-1

J (z)
ntl Jo(n¢o)cos(n¢o) (A1)

n
A = - -
z J (Z)

n

where ¢o is the angular gap half width, and Jn(z) the nth order Bessel
function of the first kind. To derive an expression for an upper bound to
the relative error when forming the sum, a limit must be obtained for

PR EEN
n=N

where N is the order of the term past which truncation of the series is
allowed. :

e = (A2)

It can be shown that, for n>>

Jn+l(z)

ERORE z/ (2n+1) (A3)
n

(For the admittances, the summations were carried in every instance until

n = 100|z| + 100.) .Then,

A, = zJ (n$ )cos(ng )/n (A4)
Also, for n¢o>lO,
|3 (no ) [<0.8/fmo, o (A5)

1. Lindberg, R. C., "Bessel, A Subroutine for the Generation of Bessel
Functions with Real or Complex Arguments;' Mathematics Note I, The Dike-
wood Corporation, October 15, 1966.
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and a criterion was set such that N>lO¢;l, thereby causing

0.8 z cos (n¢°)
A= ‘ (46)
n 1/n¢°
so that e, the absolute error, can be expressed as
- z cos(n¢ )
£ = z: An <0.8 E: 1/2 ‘ (A7)
n=N
Also,
l o
£ < O'shl Z n3/2¢ 1/2 _<_0.8|Z| J‘ (o )3/2 d(n¢o)s (A8)
n=N o _ N¢°‘ o
so that an upper bound for absolute error may then be expressed as
€.< —]'-Az—‘ﬁz . (A9)
(N¢°)

The relative error, a more informative error expression, is expressed

as 2e
e = 28 p, (A10)

where E is an input value of the allowable relative error (genmerally

desired E = .001). In practice, our relative error was calculated excluding
the zero order term of the summation, because it was more convenient.

A general term in the equation for the normalized external admittance
of an exposed loop (equation (74)) may be expressed as

L@\
A = |B- —Eilﬁil— J (n¢ )cos(nod ) (All)
n z (2) o0 ) ;
(z) *
It can further be shown that, for ﬁ>%z|(agéiﬁ, h 1,100|z|+100),

q¢2)
(z) .
—%— x4 - (A12)
H ™" (2)
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thereby reducing the general term to

= Z
An = Jo(n¢0)cos(n¢o) (Al3)

and the same error criteria apply to this expression as derived for the

calculations of the normalized internal admittance. Here again our relative
error calculations were made excluding the zero order term of the summation.

A slightly different approach was used to obtain am upper bound on
truncation error for the infinite series in equation (25). A general term
for that series has the form

(2) -1
1 n Hn+l(z)
Ay (=)= @)y L2~ 5@ : (414)
Hn z Hn (z)
If the summation is performed until n>>z| then
z
An(z) = (22 (A15)
nH z)
n
from a preceding argument. The ratio of adjacent terms is then
(2)
R = . = B u) (Al6)
n An n+2 H(z)(z) )
nt2
But, it can be shown that
Héz)(z) 2 1 :
.HTZT(-Z)— {.5 n(n+l) (A17)
nt2
an¢ the ratio of successive terms thenr becomes
2
e (B —x
Ry = (2 (n+1) (n+2) (418)
and therefore, for z fixed and n»e
limit Rn = 0. . Al9)
n->e
Further, R is mongtonically decreasing as n*®» . These conditions then

allow an u%per bound on this absolute error to be expressed as
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|4n_, j

e < 7
|Ax-2| = |4
where N is the index of the last term (even) taken in the summation, and

where the summation is performed only over even numbered n. The relative
error is then calculated in the normal manner, yielding

(A20)

<E. (A21)

(Again we set E = ,00L) In practice, our calculation of relative error
for short circuit current ratio omitted the zero order term and involved
only sums where n > 2. Because of the very rapid convergence of the T sum,
we did not require that n > 100|z| + 100.

A few general comments about the operating characteristics of the
program might be made. Only the high speed of the CDC 6600 made these
calculations practical. The technique for forming the Bessels to a limited
number of orders appears in Mathematics Note 1. We required 100,000 orders
for each plotted point in some cases, so our program was necessarily different
from the program in the mathematics note. All calculations gatisfy the
requirement that either the relative error was less than 10 °, or 100,000
orders had been calculated per point.

An early series convergence in the sums for T (Figures 3,4) generally
satisfied the error criterion described above in fewer than 20 orders.

Normalized internal admittances (Figures 6,7) all converged so slowly
that 100,000 orders were calculated for each point, at which time 1073 <e :;0'2.
There was a direct connection between the magnitude of the arguments of the
Bessel functions and the relative error.

Normalized external admittances (Figures 8,9) for the loop below ground
plane involved only the first 2 orders of Bessels.

Another slow convergence was encountered in the calculations for
normalized external admittances for the exposed loop (Figures 10,11).
This time, after calculating 100,000 orderi for each point, our relative
error was still of the order 10~ <er§2x10- .

The rest of the quantities were obtained either from arithmetic
combinations with the quantities described above or from substitutions
from handbooks. In either case, the accuracy we had already achieved

was maintained throughout. .
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