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I. Introduction

TWO previous notes have discussed the response of the cy~i~drical ~
loop using rough approximations for the loop characteristics. ‘ The
first of these notes considered the case of negligible air conductivity
and pointed out that for the proper amount of loading (from the associated
signal cable) the frequency response is limited by the radian wavelength, X,
being of the order of, or greater than the 100P radius. In the second note
this was generalized to include the case of the nonlinear, time varying air
conductivity in which the conduction currents dominate the displacement
currents (u>>we)o In this latter case the frequency response is limited
in that the skin depth? 6$ must be of the order of? or greater than the
loop radius. If a skin depth is defined by taking the maximum air conduc-
tivity (for times of interest) in the vicinity of the 100P and the maximum
frequency of interest, then for lower frequencies the loop response is
approximately independent of the air conductivity even though this conduc-
tivity is nonlinear and time varying. Thus, an analysis of the response
of a B loop which assumes a linear, time independent air conductivity, even
though it does not accurately describe this response, is still useful in
determining the upper frequency response and in comparing the performance
of different loop designs. The purp?se of this note is to perform just
such an analysis on the cylindrical B loop. This analysis starts with
the case of negligible air conductivity and then goes to the case of U>>UC.
In the latter case, modifications in the design consisting of the addition
of insulation inside and outside the 100P structure are considered, showing
the resulting improvement in the upper frequency response for a given loop
sensitivity

In this note we consider two general kinds of cylindrical loops as ‘
illustrated in figures 1 and 2. To distinguish the two cases, the first
(in figure 1) is referred to as a cylindrical loop below a ground plane
and the second (in figure 2) is referred to as an exposed cylindrical
loop. These two cases are treated together in this note because of the
similarities in the mathematical forms of their response characteristics.
For the cylindrical 100P below a ground plane the ground plar,a(as well
as the loop structure) is assumed perfectly conducting for simplicity.
It is also assumed that L>>a and that the ends of the cylindrical
structureare smoothly transitioned through the ground plane as indicated
in figure lA. These restrictions are necessary if the magnetic field in
the direction of the loop axis is to have the same value inside the loop
(over the whole cross section area, naz) as outside the loop (above the
conducting ground plane).

Consider a case in which the external or incident magnetic.field
is in the z direction and independent of z (the coordinate in the direction
of the loop axis). Theni from previous ana,lysis,this component of the
magnetic field should be approximately uniform inside and outside the loop
structure when the radian wavelength, K, or skin depth, 6, (as appropriate)
issimificantly larger than the 100P radius and when the signal cable
impedance loading the loop

1, Lt Carl E. ~aum, Sensor
Response of a B Loop, Dec.
2. Lt Carl E. Baum, Sensor
Radiation and Conductivity

gap is sufficiently large. If the magnetic field

and Simulation Note VIII, Maximizing Frequency
1964.
and,Simulation Note XXIX, The Influence of
on B Loop Design, Oct. 1966.
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is not in Che z direction and the field arrives at different positions along
the length of the loop at different times, then X or 6 will have to be even
larger for the measurement of a component of this magnetic field parallel to
the loop axis. As icdicated in figure lB, two coordinate systems are used
for this case. One of these, the (r,$,z) or (x,Y,z) system is used to analyze
the loop interior. The other, the (rl,@’,zl) or@’,y’,zr) system with the z’
axis in the middle of the loop gap is used to analyze the loop exterior above
the conducting ground plane. In this note, as the various parameters, response
characteristics,etc., are considered, we first consider the cylindricalloop
below a ground plane because, in some cases, the mathematics are a little
simpler. We sometimes identify certain parameterswhich pertain to the
response of the loop below the ground plane, but not the exposed loop, by
the addition of a prime to the symbol.

The exposed cylindrical IOOP is also assumed to have E>>a so that end
effects can be ignored. In a typical application, as in figure 2A, this type
of loop might be at some height, h, above a conducting or not-so-conducting
(e.g., soil or water) ground plane with the loop gap on top and a signal cable
extending from the loop (vertically)to beneath the ground plane. In this
configuration the fields scatter from the vertical cable and interactwith
the loop, and the field scattering from the loop interacts, because of the
ground plane, back on the loop. In some cases, these problems can be
minimized by symmetrically placing the loop structurewith respect to the
cable structure and by having the loop relatively far from the ground plane.
This may not be sufficient in all cases, however,particularlyfor a nonlinear
air conductivity at frequencies for which h is greater than an approximate
skin depth, 6. In any event such problems are not considered in this note.
The loop is considered as if there were no connecting signal cable to inter-
act with the fields, and the ground plane is considered to be far away
compared to the loop radius. The same comments regarding the magnetic field
direction, the arrival time along the loop length, and X or 6 apply to the
exposed cylindrical loop as to the loop below the ground plane. As indicated
in figure 2B only one coordinate system is used in this structure, the (r,$,z)
or (x,y,z) system with the z axis taken as the loop axis. This coordinate
system is used to analyze both the 100P interior and exterior. For convenience
in both these types of loop structures the + = O and +1= O directions are defined
by the directions of the y and yt axes (which are themselves in the same
direction).

The general scheme of solution of this problem involves the basic
assumption that i>>a so that the solution may be approximatedas one
involving two instead of three spatial dimensions. The resistive loading
at the loop gap is considered to be approximatelyuniform with z so that
all t,heelectromagnetic parameters are z independent for a distance (!?)
which is large compared to the loop radius. Practically, this resistive ..

loading at the loop gap may be at several discrete points which are ideally
uniformly spaced along the loop gap. The separations between adjacent load
points should be small compared to the 100P radius to approximatea continuous
load distribution. We next assume all electromagneticparameters such as =
e, B, a, etc., to be constants, specifically ncitfunctions of the fields or
time. The parameters of the various media are taken as scalar constants

8
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which are independent of position within any defined region. The parameters
c, p, and a have a subscript, ~, applying to inside the loop and no subscript
for the external medium as indicated in figures lB and 2B. When a third
medium (e.g., an insulator) is added to the loop exterior, these parameters
are designated by a subscript, 1. Then a magnetic field is assumed in the
various media which has only a z or z’ component and which is a function of
only r and $, or r’ and $’ as appropriate. This magnetic field distribu-
tion, and the associated electric field distribution~ is then expanded in
the appropriate cylindrical coordinat~ system in the appropriate functions
which solve the vector wave equation.

The form of the
of the magnetic field

52

Er = - jZHz
o

and m

field expansions for this problem, with only a z component
which is also z independent, is4

‘g)(kr)an Cn
{1

cos(n+)
sin(n$) (1)

m

I H-sin(n@)C(k)(kr) n cos(n+)
n

a
n kr

n=O
(2)

(3)

where a time dependence of the form e
jut

is assumed but is suppressed from
all the expressions. The positive direction for the field components is
defined by the standard convention of the direction of increasing the various
coordinates. The use of the braces with the trigonometric functions inside
indicates that a linear combination (the same combination for the three
field components) of the two functions is used. Integer n is use

?3
o that

the trigonometric functions are periodic over 2m. The function Cng (kr)

denotes one of the Bessel functions Jn(kr), Yn(kr), H~l)(kr), and H~2)(kr)

for an L of 1, 2, 3, or 4 in that order. A prime over a Bessel function
denotes the derivative with respect to the argument. By using the constant,
Hz , with dimensions amperes/meter the expansion coefficients, a are

n’
di~ensionless convenient numbers.5 The propagation constant has the
general fom

k ‘-
(4)

where for uccuc this reduces to

k=d= =*. (5) -..

3. Notation for the various functions and formulas for their manipula-
tion canbe found in AMS 55, Handbook of Mathematical Functions,
National Bureau of Standards, 1964.
4. For these expansions see, for example, J.A. Stratton, Electromagnetic

Theory (Chap. VI), 1941. ‘
5. Units are rationalizedMKSA unless otherwise specified. Results are
generally expressed in dimensionless form.
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and for D>>UC this reduces to

‘=+=? (6)

The wave impedance has the general form.

z F “(II=
a+jQE

(7)

These two parameters can also be subscripted to apply to the various
media. Expanding the fields in the various media as in equations (1)
through (3), we apply the boundary conditions that tangential E and H
be continuous across boundaries. Due to the convenient boundary of a
circular cylinder (constant r), Hz and E+ become of chief concern, and
Er is not, therefore, listed with the field expansions. ‘dowever,using
equations (1) through (3) the expansions for the remaining two of the
tnree field components can be constructed if the expansion for any one
of the field components is given (except possibly for ,n=O),

The mathematical procedure for determining the loop response
characteristics involves the independent consideration of the parameters
of a Norton equivalent circuit. Since the loop structures have !t>>a,
with the mathematics based on an infinite length, the parameters are
defined per unit length. First, we consider a short circuit surface
current density due to an incident plane wave. Shorting the loop gaps
makes the geometry very convenient (planesand circular cylinders) for
this calculation. This model is not entirely appropriate for the case
of G>>US (in the external medium), and with the use of external dielectrics
another model.is introduced based on the average of the incident magnetic
field over the dielectric surface. The surface current density is normal-
ized to the magnetic field giving a transfer function which goes to unity
for large X or d as appropriate. Only one orientation of the electric
field (oriented in the y or y’ direction) is considered for the incident
plane wave. This note considers the frequency response characteristics
of these cylindrical loops for ~<<uc and G>>uc, including some variations
in the structures for the latter case, The loop sensitivity to the direction
of wave incidence (or sometimes called electric field sensitivity) is not
treated here, but may be in some future note.

After the short circuit current density the admittances per unit
length at the loop gap are considered. ‘L’hereare three such admittances
considered, one associated with the loop interior, a second with the loop
exterior, and a third with the signal cables (a conductance per unit length). -

The first two of these reqvire field expansions on the inside and outside
of the loop structure,respectively, to relate voltage across the loop gap
to surface current density. The boundary condition at the loop gap for .
the electric field is obtained from a quasi-staticapproximation of the
electric field distribution at the loop gap. The approximation only applies
for cases in which the loop gap width, 2b, is much less than the loop radius
and much less than radian wavelengths or skin depths of interest in media
adjacenc to the loop gap. In cases for which X or 6, as appropriate, is of
the order of the loop radius or larger (for flat,frequency response), b is

10



aut~matically much less than i or 6 if b<<a.
admittances per unit length can be separately
per unit length are normalized by dividing by

Conveniently the three
considered. These admittances
the low frequency form of the

admittance per unit length of the 100P structure a simple inductance. The
sum of the normalized admittances then goes to one for sufficiently large X
or d,as appropriate. Combining these normalized admittanceswith the short
circuit current transfer function then gives the response characteristicsof
the particular loop configuration.

In this note we first consider the case of only two distinct media of
interest (inside and outside the loop structure). After calculating the short
circuit current transfer function and the normalized admittances, they are
combined for the case of U<<UC with identical BIS and c’s in both media to
give the response characteristicsversus the various parameters. Then the
same case is considered for u>>us with identical p’s and afs in both media.
Next,the conductivity inside the IOOP structure is assumed negligible compared
to the external conductivity for c>%oe, showing some improvement in the
response. A second case, with three distinct media, is then considered. The
third medium is added to isolate the loop structure from the external medium.
The short circuit current transfer function and the normalized admittance
associated with the loop exterior are recalculated. For U>>UC but negligible
a’s inside the loop and in the medium just ouCside the loop and for identical
Bts in all three media the response functions are again calculated snowing a
considerable further improvement in the response.

For the reader’s benefit, if he wishes to gain some additional insight
into other types of electromagnetic interaction (scattering,radiation, etc.)
with cylindrical structures similar to those employed here a few references
are included.6*7

11● Short Circuit Currents with no External Insulating Dielectrics

Consider the loop gaps, as in figures 1 and 2, shorted. The assumed
incident plane wave produces a surface current density which is divided
by the magnetic field in the incident wave to obtain a short circuit current
transfer function.

A. Cylindrical Loop below Ground Plane

Considering the cylindrical 100P below a ground plane as in figure
lB, if we short the loop gap the ground plane is made continuous and flat and
is described by y’ = O. For this type of loop the boundary at the loop gap
is considered as r = a orasyl = O, whichever is more convenient for a parti-
cular calculation. As long as the gap width is much less than the loop radius
these two expressions give essentially the satieboundary.

The incident plane wave is of the’form (for the magnetic field)

6. R.W.P. King and T.T. Wu, The Scattering and Diffraction of Waves, 1959.
7. J, R: Wait, Electromagnetic Radiation from Cylindrical Structures, 1959.
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(8)
“ inc “o

With me loop gap shorted this plane
to the infinite conducting plane and
to combine with the incident wave to
that.this plane wave is conveniently

Hz, (r’,~) = Hz
inc o

With the boundary condition that the
meter) on the conducting plane equal

40

wave has the electric field perpendicular
thus no additional
match the boundary
defined such that

waves are necessary
conditions. Note

(9)

surface current density (units of amps/
the adjacent tangential magnetic field

(’d),the short circuit surface current density at the loop gap is just

Js = Hz
o 0

(lo)

where J is taken in the + x’ direccion. Defining a short circuit current
s

transfer”function,T’, as the ratio of J to the magnetic field in the.s
incident wave (at x’ = 0) then gives

T’=1

for the cylindricalloop below a ground

B. Exposed Cylindrical Loop

-o

(u)

plane.

Consider now the exposed cylindrical loop as in figure 2B. If
the loop gap is shorted the circular cylinder is made continuous and is
described by r = a. For this case the boundary at the loop gap is con-
sidered as r = a for calculations relating to both inside and outside
the loop. Again the gap width is considered much less than the loop
radius.

Again the incident plane wave is of the form

Iiz (r,+) = Hz e-jkx
~ ~ ejkrsin(+)

z (12}
inc o 0

Unlike the cylindricalloop below a ground Plane, we need to add a reflected
wave to match the boundary conditions~ making a somewhat more complicated
short circuit current transfer function. SQ first expand equation (12)
in cylindrical coordinates,using the appropriate functions for the wave
equation solution,

K See reference 3

9. In the notation

(as normal),,n2 is

as 6,Y .,

for the expansion of cos $;:n(+)] and sin[krsin($)]. =A
used for the summations,= , nl is the lower limit

n= nl
the upper limit (~ in this case), and nl is the increment,

in n (startingat the lower limit) for the successive terms. In equation (13),
for example, the two summations are then for even and odd n, in that order.
For the case of n3 = 1, n3 can be dropped from che summation, leaving the
standard form.
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H (r,@) = Hz
z.lnc ~ ~O(kr)+2 ~ ‘n(kr)c0s(n$)+j2~ ‘n(kr)sin(n$)j ’13)

=

Referring to equations (1) through (3) we have an associated azimuthal
electric field of

‘$
(r,@) = jZHz

o [Jw+;i ~ ‘w-q “4)J~(kr)cos(n$)+j2 ‘,
in.

To this incident wave add a reflected wave which has the general form

~,2 ~,’

H
[

a H(2)(kr)+2(r,@) = Hz o 0
E

anH~2)(kr)cos(n@)+j2
z

anH~2)(kr)sin(n$)
‘refl o n=2 n=l 1

(15)
and

[

=,2 ~,2

z 1a H(2)~kr)cos(n@)+j2
(2){kr)+2 ~n

‘+
(r,+) = jZHz aoHo

E
anH~2)tkr)sin(n@)

refl o n=2 n=l
(16)

Applying the boundary condition that the tangential electrical field is zero
on the cylindrical surface, the relationships for the coefficients of the
reflected wave, from equations (14) and (16) are given by

J’(ka) + a H(2)tka) = O
n nn

(17)

or
J;(ka)

a =.
n

(18)
Hj2)~ka)

The surface current density (in the +$ direction) is given by

Js(@) = -[HZ (a,$) +H (a,+)] (19)
in. ‘refl

In this
appears

or

expression, as the individual terms are combined, an expression
which is defined as

J~(ka)
.

H(2)(ka) ,Tn = Jn(ka) -
H(2)’ka) n

(20)

n(

J (ka)H(2)tka) - J’(ka)H(2/ka)
Tn=n

n n n

H;2)(’a)

(21)
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The
and

numerator reduces by expanding the Hankel functions,canceling terms,
applying a Wronskian relationship to give

-1

[

~(2)’ 1
Tn= j ~ n (ka)! (22)

1
Then

‘=,2
J#O

~,2

[1
— = - TO+2
Hz

Tncos(n$)+j2
z 1’

Tnsin{n$) ‘

o n=2 n=l J

The short circuit surface current density is then

Js = Js(o)
o

where, for this calculation, the variation of
is ignored. Define the short circuit current

J~ -,2

T
o=-—

H-
=TO+2

1
Tn

60 n=2

The minus sign is placed in the definition so

(23)

(24)

(25)

that T ++1 for small !kal.

As mentioned before only one wave orientation for this transfer
function is considered, or equivalently one position on the cylinder
for the loop gap. For a<<ue equation (5) is used to express k in terms
of 5 and to plot T versus 5/a in figure 3. Similarly for the case of
a>>tizT versus 6/a is plotted in figUre 4. Note that in these cases T
is essentially one for K/a > 10, and that for 1 < X/a < 10, T is rather
well behaved. This latter region is significant for the upper frequency
response. Note also for a>~ws that for small &/a the incident magnetic
field (as in equation (12)) has an exponentiallydecreasing amplitude
for increasing x. Thus, for negative x the surface current density on
the cylinder can be much larger than at the gap. This points ouc a
limitation in the use of such a ‘planewave to represent the incident
magnetic field in the conducting source region. Since we are only
considering the one wave direction for these calculations, this causes
no problems and is used. In a later section, when external insulators
are considered, however, this is a significant problem, and a more
appropriate definition for that case is used.

.--”
III. Admittances With no External Insulating Dielectrics

,

Removing the incidentwaves consider the.loop gaps to be unshorted
or open. Drive the gap uniformly along its length with a voltage, V
and calculate the surface current densities produced. These currentgap’
densities give the three admittances per unit length for the loops
attributable to the loop interior, loop exterior, and the signal cable
load. First, however, consider the boundary conditions at the loop gap,
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A. Boundary Conditions at Loop Gap

Assume that the electric field has a quasi-static distribution in the
vicinity of the loop gap. 13yhaving a quasi-static distribution, we rcstri.ct
the width, 2b, of the loop gap to be mucn less than A or 5, as {/]>l>roilria&t:.
Also assuming tlultD<<a, c~lcntileloop structure near tne gap is a~>l}rox.i[llatcly
flat. Consider, tilen,tileloop Sap and immediate vicinity as ill(,-+,:!lre~.
‘l’heelectric field distribution across tile loop :~1.p,i:ia}lproximatedL:rcnlc.uiat-
ing this distribute~~ across ~ . .,.1gap 111a.1lntl[~iteCOadllctinS il~~l.,?{,:in the
low frequency limit. An appropriate C04ifOr17Xll transiormatioz~ior tlLLs:>roblem
is

Z1’.- = sin (w)
D (26)

wnere

z’;= x(’-f-jy (;:/)

and
w = u+jv (28)

The coordinates for the two-dimensional ~i~p structure are X’f aii~ ~“. ‘file
equipotentials are given by lines of constant u and the electric ficlcilines
by lines of constant v.

Along y“ = O (in the loop gap) L+IUhave v =0 giving

u = arcsin(f”)

The potential distribution is then
v

V(X”) = - ‘*- arcsi.n(~;’)

and the electric field dis~ribution is

E(x”) = - ;;,, =

+ F - ‘~’)’r”

(29)

(30)

(31)

Define a distribution function

[1

-1/2
f(~) - + l-c’ (32)

L J
Then for cylindrical coordinates since

b = a$o
.. . .

(33)=

for small $ the electric field distribution at r = a for 1~1 ~.$ois
taken as

o’

v
E@ (a,$) = - ~ f ($)

a$o o (34)

10. This same--approximation is used in connection with a gap in a cvlinder
in P. M. Morse and H. Fesnback, Methods of l’lleorc~ica~physics, volo-l~, Pi,.

1387-1398, 1953.
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There is a limitation in the use of this electric field distribution in
that the loop gap has objects in it, such as signal cable connections, wnich
distort the field. Equations (32) and (34) strictlY apply onlY to the case
in which no such perturbing objects exist, such as for no signal cable load.
In ignoring z variations of the structure these perturbations associated with
the signal cable”inputs are also ignored. However, within the limitations
of the assumption of z independentgeometry this is a reasonable electric
field distribution to use.

B. Internal Admittance of Cylindrical Loop

Turning to the admittances per unit length, consider first the
internal admittance per unit length which is the same for both types of
loops (which have the same internal geometries as in figures IB and 2B).
Expand the fields inside the loop as

Hz(r,@) = Hz
[
aoJo(kLr) + 2

z
m anJn(kLr)cos(n@)

o 1: n=l

and w

E$(r,$) * jZgHz
[

aoJ~(kLr) + 2 z anJ~(kkr} cos(n~)
. 0 n=l 1

(35)

(36)

The first kind of Bessel function makes the field finite at the origin and
the use of cos(n$) makes E@ even in $ as required by the boundary conditions.
The associated scgrfacecurrent density at the open loop gap (in the +$ direc-
tion) is i

J = Hz(a,~o) (37}
‘k .

This is driven b; the gap voltage, Vgap’
giving an admittance per unit

length
J
‘$””

Y~=~ (38)
gap

For sufficiently~lawfrequencies this is just l/(juBLra2jand is the dominant
loop admittance. Thus, normalize this admittance per unit length (and others
to follow) and define

which we call the normalized internal admittance of the cylindrical loop.
In this form we can observe the deviation of the admittances from the ..

ideal low-frequency f~rm and thus the deviation of t:e loop response from
the ideal case for a B loop. Note that Yg+ 1 for small Ikat.

The boundary condition to be satisfied is-that E~(a,@) iS given by :
equation (34) in the loop gap and is zero elsewhere. Equating the expres-
sions for E+(a,@) from equations (34) and (36)$ multiply each side by
cos(n$) and integrate over ~ between O and 2a. Only the nth term in the
summation contributes giving for each n

16



-(30

Solving for the coefficients

jV a
a=
n 2naZ2hz J~(kla)

o

Letting $/$0 = C we have
11

Then

$0

&
$0 J(If$ cos(n@)d@

o
-40

gives
‘$0

\i)

Lf
40

$ Cos(n$)d$
o

1

J
-1

1

J
-1

= Jo(n$o)

jv a Jo(n@o)
a=
n 27TaZ2HzJ~(kga)

o

For.convenience define
Jn(k2a)

%n ‘--

Combining these equations the admittance per unit length is

(40)

(41)

(42)

(43)

(44)

.

(45)

11. H. B, Dwight, Tables of Integrals and Other Mathematical Data, 1965,
equation 859.042.
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IrLnormalized form (from equation (39)), combining the terms using
equations (4) and (7),

Figure 6 has Y plotted against %/a for the case of a<<uc. Note that
in this instance Yg {as no imaginary component, i.e., it is.a real number.
Figure 6A shows the first few resonances for small %/a. In figure 6B the
vertical scale is expanded to show the departure of Y from one as A/a is
decreased. Infigure 7 YL is plotted against &/a for~the case of cr>>uc.
In this instance the normalized admittance is a complex number and there
are no resonances. Note that Y also goes to one for large 6/a. The general
expression for Y (equation (46f) allows for arbitrary cl, pi, and OL. For
the graphs in th?s note Ehese parameters, where significant,are taken the
same as the external parameters: E, p, and u. In particular Bg and Ml are
always taken as u for the plots. The conductivity, o , is taken as equal to
a or as having negligible influence, f’ ~and the same app xes to e .

c. External Admittance of Cylindrical Loop Below Ground Plane

Consider now the admittance per unit length attributable to fields
outside the cylindrical loop below a ground plane. Referring to figure lB,
the loop radius does not enter into this admittance due to the presence of
the ground plane. Thus, the case in which ~kb~<<l is considered, l%is
still allows lkal to be of order one since b<<a.. For this admittance we then
consider the first term in a field expansion plus a correction term for the
capacitanceand/or conductance near the loop gap. An approximate field dis-
tribution outside the loop is of the form

(2}
Hz,(r’,$’) = Hz aoHo (kr’)

o
and

E$,(r’,@’) (2)(kr!)s jZHz aoffo
o

(47)

(48)

The Hankel functions of the second kind represent an outward traveling
wave. For ~kb~ <<1 we have

R

b
s

E+l(b,$’)d$’ = - ~gap (49)

Since the ~at.hof integration is not along y’ = O bvs along r’ = b there

is a small error associated with the time rate of change of the magnetic,
flux through the semicircular area enclosed by these two paths of integration,
This is ignored for present purposes but is re~ntroduced~ for convenience,“
when we consider the use of external insulators. Solving equations (48)
and (49) we have

jV a
a=
u (2)‘(kb)nbZHz Ho

o
18



Higher order terms in the electric field expansion (involvingcos(n$’))
do not contribute to the integral in equation (49), thus not affecting
the result for ao.

The surface current density (in the -x’ direction) is

Js =- Hz,(b,~:)
ext

This gives an approximate admittance per

Y’ext
.

J
s
ext

v
gap

J2) ~kb)

~:2)&
o

(51)

unit length as

(52)

For Ikbl<<l this is basically a capacitance and/or conductance per unit
length.

Let us correct this admittance for the electric field distortion
near the loop gap. Consider again the conformal transforinationused.in
section III A. Expanding equation (26) using the (x’,y’) coordinates gives

f’ + j%’ = sin(u)cosh(v)+ jcos(u)sinh(v)

Along the right half of the ground plane (y’=0, x’~b) we have

U=L
2

and

[1

f
v = arccosh ~

If we consider all
an admittance

If we consider the

(53)

(54)

(55)

the electric field out to a distance, x’, we have

()tarccosh Z
b (56)

circula,relectric field distribution of equation (48)
in the limit of small Ikr’1we have an admittance

. .

Y2 =
[1

‘+l~c” in ~’ .(57)

For r’>>b the two field distributions are nearly the same. The increase

in Y1 over,Y2 is then mostly due to the electric field distribution
near the loop gap. As a correction to the admittance consider the
difference, yl - y2, in the limit of large x’. Define

19



Ay = lim (Y1 - Y2)

(58)

which is a rather simple correction term. Correcting equation (52) then

gives

H(z) (kb)
L~

Y’ = - ~bz
H(2) ~kb)

+ * ~n(2)
ext

o

or

[

H(2)(kb)

Y’
.~~

‘2)(kb)
+ kb in(2)

ext
‘1 1

Normalizing this to the ideal loop admittance per unit length gives

(62)

(63)

\

This is called the normalized external admittance of the cylindrical loop
below a ground plane. The preceding equation can be rearranged as

2

{

H(2)(kb)
*

()

~ Y’ = -kb ~
‘2)(kb)

+ kb in(2)
Pi a ext

‘1 )

..

such that the right side is only a function of kbi

Considering the case ‘f lJL = V, this no~li.zed admittance is plotted

in figures 8 and 9 in the form of equation (64)* The case of aceticis

shown in figure 8 with X/b as the independentvariable. The case of O>>UC

is shown in figure 9 with 6/b as the independentvariable,
In both cases

the normalized admittance is a complex number and is negligible compared
to Y& in the limit of small Ikbl.
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D, External Admittance of Exposed Cylindrical Loop

For the external admittance per unit length of the exposed
cylindrical loop we have the geometry of figure 2B, The solution is
very similar to that in section IIIB. Expand the fields outside the
loop as

[

a H(2) = anH~2)(kr)~os(n$)Hz(r,@) = Hz o 0 (kr) + 2
0 E 1

and n=l

[ za H(z)’(kr)+ 2rnanHnE+(r,@) = jZH
z 00 (Z)’(kr) cos(n+)
o .n-l 1

(65)

(66)

The Hankel functions of the second kind are used to give an outward propaga-

ting wave, The cos(n$) terms make E

$

even in @ as required by the boundary
conditions which are symmetrical in . The associated surface current density
at the loop gap (in the +$ direction) is

Js = - Hz(a,~$o)
ext

The admittance per unit length due to the loop exterior is

J&
ext

Y—ext ‘v
gap

(67)

(68)

As before this is normalized by defining

Y 2
ext = juvkra Yext (69)

which is called the normalized external admittance of the exposed cylindrical
loop.

Equating the expressions for E (a,$) from equations (34) and (66),
tmultiply each side by cos(n+) and in egrate over $ between zero and 2Tf

giving for each n

40

-L J() ‘2)’(ka)f ~ ‘cos(n$)d$
a$o = j2rZHz anHn

-+0 0
0

Or, using the results of equation (42)

...

(70)

jv a Jo(n$o)
a=
n

2TraZHzH$2)’(ka)
o

21
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Combining these equations the admittance per unit length is

In normalized form

(72)

(73)

(74]

Again letting Bk = u this nomalized admittance is plotted in figures
10 and 11 for the cases of O<<UE and a>>uc,respectively. For small Ikal this
is again negligible compared to Y .k

E. Cable Admittance

The final admittance per unit length is that due to the signal
cable loading which we define as g=. Actually this loading is at discrete
points along the loop gap. Ideally the spacing between these points is
much less than the loop circumference.12 In any event, g= LS calculated

from

gc=&
c

(75)

where Zc is the cable impedance driven at the loop gap. In normalized
form define

(76}

which is called the normalized cable conductance.

For the case of a<~uc it is convenient to rewrite equation (76) in
the form

P&

()

gca ..

G=j ~ mka
c T (77)

12. See reference 1 for a discussion of this point based on transit times.
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where

y=+

and is the wave

(78)

admittance. For the special case of negligible conductivity,

rc
Ye=+= : = 2.654 X 10-3 mho

o 0
(79).

Also assuming that p = v =

()[)

-1 gca
Gc=jm~

~

which is used for the plots
meter.

I.Iowe have the special case

(80)

with gca/Yo as a convenient dimensionlesspara-

If a~~uc, then for the case of Pt = p = U.

[)
G= = - n(ka)2 >

or
-2 g

()()

L:Gc = j2m a

(81)

(82)

This is also used for the appropriate graphs with gc/a as a convenient
dimensionless parameter.

Iv. Frequency Response CharacteristicsWith no External Insulatin~
Dielectrics.

For the cylindrical loop we define a response function based on
the normalized admittances. For the cylindrical loop below a ground plane
define

;’
R’ =

[
+Y’ +G

1

-1

Y ‘L ext c

and for the exposed cylindrical loop define

[
‘Y=YQ+Y +G -1ext c

1
Including the short
loop below a ground

and for the exposed

R = TRY

(83)

(84)
.

circuit current transfer “functions,for the cyl~ndri~a~
plane define

,

(8S)

cylindrical loop define

(86)

99



These functions relate, in normalized form, the response of the types of
cylindrical loop considered to the time derivative of the magnetic field, ~,
in the incident wave. In the limit of small ~ka~ (for nonzero gap width and
finite cable conductance per unit length), all four of these functions go
to unity. The effects of the admittances are given by R’ and R and the
effects of the short circuit current are included in R’ a~d R toygive the
overall response functions. For the cylindrical loop below a ground plane
R’ and R’ are the same for the cases considered so far.
8

With the later
a dition of another external medium these two response functions differ.

Using these response ftinctionsthe frequency response characteristics
of these loops may be calculated. The gap width and cable conductance are
varied in order to observe their effects on the loop response. For the case
of a>>wc the conductivity inside the loop is also made negligible so as co
improve the loop response. The minimum X/a or d/a as appropriate (or the
upper frequency response) is defined as the maximum value of ~/a or c!/afor
which

(87)

(88)

whichever is appropriate. For the case of CJ<CUCresonances occur and the
upper frequency response, as above, is inadequate to characterize the
frequency response. Thus, the damping of the first resonance to flatten
the frequency response curve is also considered.

A. No Conductivity and Same Parameters Both Inside and Outside Loop

First consider the case of a<<ue in which the permittivity and
permeability are the same both inside and’outside the loop. Given the
loop radius and gap width we would like to be able to choose a best value
of gc for optimum frequency response characteristicsof
length of the cylinder can then be chosen togetherwith
to obtain this optimum gc.

The response functions versus K/a for a given b/a

the loop. The
the cable impedance

with gFa/Yfi.as a
parameter may-be.plotted, and-on the basis of this a best val~~ of”gca/%
may be chosen. However, the definition of “best*’is somewhat arbitrary.
Defining the upper frequency response by equations (87) and (88) the
associatedi/a is minimized by setting g= to zero. With negligible conduc-
tivity, however, the loop is a resonant structure, seriously perturbing
the frequency response curvs, significantly raising the normalized frequency -
response (above the low frequency limiting value) for.frequencieslower than
this upper frequency response. Thus, this definition of upper frequency
response may not be appropriate. A larger gc may ’flattenout the resonance
in the frequency response curve so that equatiogs (87) and (88) provide a “
more adequate description of the upper frequency response.
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Define the first resonance as the lowest frequency (or largest ~/a) for
which the real part of the total normalized admittance is zero. Calling this
5 as Xr gives

Re
[]
Yk + Yext

A
Ar ‘0

—=—
a a

(89)

This equation does not include Gc because it is a purely imaginary number
(equation (80)). (For the loop below a ground plane substitute Y’ for Y
and similarly throughout this section.) This normalized resonantefi~veleng~~!
3r/a, is a function of b/a.

Consider now an approximate model for the loop response near this
resonance by considering the sum of the loop admittances to be a parallel
combination of an inductance, L, a capacitance,C, and a conductance, G.
Resonance occurs at that frequency at which the admittances of the inductance
and capacitance cancel each other. If L, C, and G are assumed to be frequency
independent, then we may consider a few choices of G based on circuit theory
calculations. Dividing by the admittance of the inductor, l/juL, (similar
to the case with the loop admittance), the normalized admittance of these
three elements is

yt=l - W2LC + jwLG

This gives a response function

[ 1

-1
R=l
Y

- U2LC i-juLG

(90)

(91)

The short circuit current transfer function is assumed constant for this
approximate analysis,

Assuming that L, C, and G are frequency independent,the response is
critically damped if

(92)

A critically $amped response has the property that the response to a step
function (of B in this case) has no overshoot and that G as in equation (92)
is the minimum value with this characteristic. There is also the case of
maximum flat frequency response given by .

(93)

,

This has the property that G is the minimum value for which the magnitude ‘
of the frequency response curve of equation (91) is less than or equal to
one for all frequencies. However, since the loops considered here are
distributed systems these definitions of critical damping and maximum
flatness are only approximate, This can be seen in some of the figures
where the magnitude of the response function goes a little above one for
the maximum flatness case.

25



Apply these results to the loops
cnoices for gc.
first resonance
is appropriate.
or

a

Define the parameters
to get a rough idea of the optinum
in equation (91) such that at the

?
has the same value as in-equatiori(83) or (84) whichever
t this resonance the real part of the admittance is zero,

Then, at this resonance, the imaginary part of the admittance is
7

a a

From equations (92) and (93) we can
part of the loop-admittance. Since
critical damping set

(95)

assign the’two values to the imaginary
Yg is a purely real number, then for

(96)

‘a a

and for maximum flat frequency response set

lm ~ex~+Gc] ~ ~r =~ (97)

—=S—
aa

Substituting for Gc from equation (?7) gives for critical damping

‘a a

and for maximum flatness

where again for the plots Vg = P.

(98)

(99}

..

The case 0$ a<<uc with pi = P and G2 = c is treated id figures
12 through 15 fox the loop below a ground plane and in figures 16 through’
21 for the exposed loop. In each of the groups.of figures there is first
~r/a plotted against b/a. T’nisis followed bY g dYo, for the two cases
of critical damping and maximum flatness, plotte~ against b/a. Next, the
response functions are plotted for two values of b/a(,Ol and el) versus
X/a with g a/Y. “(includingthe two special cases) as a parameter. Since
~andRf ;re thk same only R1 is considered for the loop below a ground
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.

plane. Then the frequency responses as contained in the characteristic
i/a from equations (87) and (88) are plotted versus gca/Yo with b/a as
a parameter. These plots are only taken down to a minimum gca/Yo given
by the approximate maximum flat frequency response, lower values losing
some significance. Finally, in figure 22, &/a is plotted against gca/Yo
for a few values of the cable impedance so that the reader can easily
relate the loop length to the loop radius, the cable impedance,and the
desired value of gca/Yo. Considering the maximum flatness criterion,
the upper frequency response (for bla = .1) occurs at a X/a of about
2.9 for the loop below a ground plane and of about 2.8 for the exposed
cylindrical loop.

B, High Conductivity and Same Parameters Both Inside and Outside
Loop

Consider the case of u>>uc in which the permeability and con-
ductivity are the same both inside and outside the loop. The permittivi-
ties are unimportant as long as both are much less than u/u . In this
case the response functions versus &/a are plotted for a given b/a with
gc/u as a parameter. The cylindrical loop below a ground plane is treated
in figures 23 through 25. The exposed cylindrical loop is treated in
figures 26 through 30. In each case, the final figure has the frequency
response (frcm equations (87) and (88))) in the form of a characteristic
6/a, plotted versus gc/a with bla as a parameter and versus b/a with

gc/u as a parameter.

There are no resonances of concern here for U>>WS and so the
maximum frequency response occurs at gc/O = 0. However, practically we
need a nonzero g= so the optimum situation is to have gc/u<<l. For b/a = .1,
the upper frequency response for negligible g=/u occurs at a 6/a of about
3.8 for the loop below a ground plane and of about 3,6 for the exposed loop.

c. High Conductivity Only Outside Loop

For U>>UC, as a first attempt at improving the frequency response,
constrain Gk<<a while vg = I-I.This can be accomplished by using some
insulator such as a typical plastic (polyethylene, teflon, an insulating
epoxy, etc.) to fill the loop. The restriction on the relative conductivities
applies during the intense radiation pulse which makes the air conducting and
hopefully makes this ocher material conducting to a much lesser,extent. ALSO
assume that u>>uc , Then for frequencies such that 6/a is of order one, the
skin depth or rad!an wavelength (as appropriate) inside the loop is much
larger than the loop radius. Thus, for frequencies of interest Y2 is one
and for this case the response functions are of the form

[ 1

-1
RJ=R1=l+Y1’+GC ..

Y ext

and

(loo)

-1 -
~ T[R-T= l+Yext+G c

1
(101)
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Again gc/a<<l is necessary for optimum frequency response, The
cylindrical loop below a ground plane is covered in figures 31 through 33.
The exposed cylindrical loop is covered in figures 34 through 38. For
bla = .1 the upper frequency response for negligible gc/o occurs at a d/a
of about 2.8 for the loop below a ground plane and of about 2.6 for the
exposed cylindrical loop. These figures represent about a 30% decrease
in the characteristic 6/a or about double the upper frequency response.
Thus, reducing the conductive load on the 100P gap by making the conductivity
inside the loop insignificantdoes,improve the 100P response characteristics.

v. Short Circuit Currents with External Insulating Dielectrics

Now consider a possible improvement of the cylindrical loop for O>>UE.
This improvement consists of placing an insulator, of mathematicallycon-
venient geometry, on the outside of the 100P structure so as to avoid, to
some extent, the shorting effect of the conducting air across the loop
gap. The insulator inside the loop is of course retained. As illustrated
in figure 39A, the cylindrical loop below a ground plane has an insulating
hemicylinder (of radius, d} above the ground plane, symmetrically located
over the loop gap, The exposed cylindrical loop, as in figure 39B, has
an insulating cylindrical shell of inner radius, a, and outer radius, d,
completely around the loop and centered on the loop axis. The same notation
is used for the short circuit currents, admittances, etc, A subscript one
is used for the parameters of the added external medium. For the plots we
only consider the case of U$ = U1 = v (or practically, Vo), ag<~a, and
~ cca.
1

All three permictivltiesare assumed to be small compared to a/w.

We wou,ldexpect the upper frequency response to be determined by the
larger of lka~ and ]kd! which are of order one. The new dimension, d, can
enter into this limitation in that the amplitude and phase of the incident
wave can very over the extent of the external dielectric. Then for frequencies
of interest (on the order of the upper frequency response or less), the
restrictions on the parameters of two of the media make Ikgal<<land Iklal<<l,
simplifying the form of the results somewhat. The additional external medium
requires a recalculationof the short circuit current transfer functions and
the normalized external admittances. We first consider the short circuit
current transfer functions.

A. Cyl@drical Loop Below Ground Plane

Consider the loop gap shorted for the cylindrical loop below a
ground plane in figure 39A. The incident plane wave is of the form

Hz, (r’,$’) = Hz e-~kx’ = Hz ejkr’sin($’)
inc o 0 ., .

(102)’

whit’h,as in equations (13) and (14)~ gives two of the field components in
cylindrical coordinates as =$2 -,2

(r’,$’) =Hz
r

Hz, 2Jo(kr’)+2
[

Jn(kr’)cos(n$‘)+j2I Jn(kr’)sin(n@’)
inc o n=2 n=l

1
(103]
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and
9

J,(kr,.g

=,2

‘$‘
(r~+’) = jZHz J~(kr’)cos(n~’)+j2

I
J~(kr’)sin(n$’)

inc Q.~ 1
(104)

Due to the presence of the additional external medium.we must add additional
waves to match the boundary conditions. Inside the external insulating
region there is a wave with two of the components as

[

-2

x

=2
H ,(r!$’) = I-IzaoJo(klr’)+2

2
anJn(klr’)cos(n$’)+j2

1
anJn(klr’)sin(n@’)

‘1 o nn2 n=l

(105)

and

“[

=,2 -,2

E$,(rl$’) = jZIHz aoJ~(klr’)+2
z

anJ~(klr’)cos(n@’)+j2
z 1anJ~(klr’)sin(n@’)

1 0 n=2 n=~

(106)

The Bessel functions of the first kind are used so that the fields are finite
at the origin. There is ‘alsoa wave outside the dielectric, reflected from
the structure, with two of the components as

[

-,2 =,2

(r:$’) = Hz boH~2?kr’)+2
z z

b H(2)(kr’)cos(n$’)+j2 n nH,
1

b H(z)(kr’)sin(n$’)nn
‘refl o n=2 n=l

(107)
and

r -,2 -.2

[

,

b H(2){kr’)+2
z

b ~(z)’ ,

z
b H(2)tkr’)sin(n@’)

1
(rl$’) =jZHz o 0

‘$‘
nn (kr )cos(n$’)+j2 nn

refl o n=2 n=1

(108)

tQ,For this reflected wave the Hankel functions of the second kind are used
give an outward propag~ting wave.

..

The boundary conditions to be satisfied are that Hz, and E , are
continuous at r’ = d, giving from the magnet’icfield (equationa tlo3)* (105),
and (107))

(Z)(kd) = anJn(kld)Jn(kd) + bnHn
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and from the electric field (equations (104), (106), and (108))

‘2)lkd) =ZJ:(kd)+bnZHn anZIJ:(kld) (Ho)

Solving these last two equations for an gives

Jn(kd)H~2)ikd)-J~(kd)H~)(kd)

an =
‘2)\kd)-z$J~(k1d)H~2) (kd)Jn(kld)Hn

The wave impedances

Then in equation
terms, and apply

are replaced by

(111)

(112)

(111) expand the Hankel functions in the numerator, cancel
a Wronskian relationship to give

H
-1

.lT& ‘1k 1)‘2){kd)- ~ ~ J:(kld)H~2) (kd)an = J2 Jn(kld)Hn (113)
1

Now (and for later use) we expand the Bessel functions and their
derivatives for small arguments as

n-o

Jo(z) = 1

Ye(z) = ~ In(z)

.. -1

Limiting the results now to the case of o>>uc, as discussed above, we
constrain that ~kldl<<l. The coefficients then-considerablysimplify.
Consider then the individual terms for the magnetic field in the external
insulator from equaeion (105) with the coefficients from equation (113}.
For n = O,

(114)
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(115)

which is independent of kid. For n ~ 1 we have

which for small Ikldl is proportional to (k1d)2. Then in the limit of small
Ikldl only then=Oterm is important. This is significant in that for the
case of interest the magnetic field in the external insulator is uniform,
in spite of the fact that the magnetic field in the incident wave for Ikdl
or order one can vary considerably over the extent> 2d~ of the outer surface
of this external insulator.

The short circuit surface current density at the 100P gap is given by

J = Hz, (0,$’)
s
o 1

(117)

(using previously established conventions). Since r’=0 for this calculation
only the first term in equation (105) is nonzero. Also for the case being
,considered (Ikldl<<l), the first term is dominant for the magnetic field
throughout the external insulator. The short circuit current transfer
function (as before) is then (from equations (105) and (115))

Or, for VI = u, this simplifies to

[ )
-1

T’ = 2 (2)(kd)-j~(kd) H2 (119)

This is plotted versus dld in figure 40A. However, notice the behavior of
IT’1, Forsmall d/dit rapidly diverges. This is a physically unreasonable
result because it indicates that instead of the loop response rolling off
for high frequencies it increases very rapidly with frequency. .

The problem lies in the manner of def.iningthe loop response. We have
considered the response to a plane wave by dividing the short ci,rcuitsur-
face current density by the magnetic field in the incident wave extrapolated
to the x*=O plane. However, because a~>uc this plane wave is attenuating .
with the distance, x’. Thus, the magnetic field in the incident wave at
the leading edge of the external insulator, x’=-d, can be much greater than
the magnetic field in this wave at xt=O. It is the magnetic field at the
leading edge of the insulator which is propagating into the insulator and
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determining the short circuit surface current density. This would indicate
that we need to redefine the short circuit current transfer function. Since
the external insulator extends into the medium with the incident wave,
perhaps it is not meaningful to consider the field that would be at r’=0
if the external insulatorwere not there, particularly for the case of a>>uc,
Also, in the real case (measuring the close-in nuclear E&D?),such a plane
wave does not characterize the incident fields because the sensor is in a
source region.

There may be various ways to define this short circui~ current transfer
function. The one we choose is that obtained by relating the short circuit
surface current density to the average value of the magnetic field in the
incident wave at the surface of the insulator. This is a reasonable defini-
tion in that the magnetic field inside the external insulator is uniform,
irrespective of the direction of wave incidence (in the (r:$’) plane);
only the first term (which has no $’ dependence} in the field expansion
determines the field in this region. Inherent in this definition is the
recognition that this kin,dof sensor cannot spatially resolve the incident
wave to distances smaller than the appropriate sensor dimensions, without
knowledge of some pertinent parameters of the incident wave, such as,
whether or not it is a plane wave and, if so, what its direction of propagation
is.

Conveniently, the average value (over $’ at constant r’) in the incident
wave is just given by the first term (n=O) in the expansion as in equation
(103). Thus, a new short circuit current transfer function based on the
average value of the incident magnetic field at rl=d is defined as

Js

[[

-1
T’ ‘1 kd (2)

T’ =— =
= HzOJo(kd) Jo(kd)

j~Jo(kd) H~2)~kd)+—~Ho (kd)
avg Y

o 1]

(120)

As before for u, = u, this reduces to
-1-1

(121)

This is plotted~versus &/d in figure 4013. Note that ~T~ falls off
for small cS/d,a reasonable behavior for such a frequknc$v~~sponse curve.
It-is down to l/flat a 6/d of about ,35, indicating a good upper frequency
response for the short circuit surface current density.

Of course, this definition of the short circuit current transfer
function is somewhat artificial,-but it may be a reasonable one. At least
it gives some quantitative limitation on the frequency response. There are
perhaps other possible definitions of this transfer function, such as one
relating the surface current density to the tot,almagnetic field at r~=d “
(not just the incident fieid). However, for our limitation of Ikld]<cl,
the transfer function would be unity for all frequencies of interest,
providing no limitation on the frequency response which is expected because
of the perturbations in the field due to the IOOP structure. This latter
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definitionwould then be less reasonable. The definition leading to equation
(121) still has limitations, however, in that the d/d for upper frequency
response is small enough that the incident wave has an extent of several
skin depths across the structure, indicating that for such frequencieswe
cannot consider this as a measurement at one point in space. This is,
however, still a small number of skin depths and we thus use this definition
of the short circuit current transfer function in this note.

B. Exposed Cylindrical Loop

Short the loop gap for the exposed cylindrical 100U in fimre 39B.
Again the incident plane wave

H (r$$) = llze
-jkx =

‘inc o

is of the form

~ ejkrsin(@)
z
o

(122)

which gives two of the field components in cylindrical coordinates as

[)2M2 -2
H (r,+) = Hz Jo(kr)+2

z
Jn(kr)cos(n@)+j2 1Jn(kr)sin(n$) (123)

zinc o n=2 n=1

and

r

~,2 =,2

‘4
(r}$) = jZHz J~(kr)+2

1
z

J~(kr)cos(n@)+j2
z 1J~(kr)sin(n@) (124)

inc o
n=2 n=~

Inside the external insulating region (a ~r ~d) two components of the
wave are

[[

-,2

H (r,@) = Hz
] ~[

aoJo(klr)+boyo(klr)+2
1

anJn(klr)+bnyn(klr) cos(n$)
‘1 o n=2

and

E+(r,@)
1

=,2

+j2
. 1[

anJn(klr)+bnYn(klr)

n=1 1

=j ZIHZ
[[ . 1
aoJ~(klr)+boy~(klr)

o

sin(n$)
)

n=z L ,,

(125)

I
) cos(n+) _

wjz

q+j2

I ‘]
anJ~(klr)+bny~(klr) si:(n~) ‘?26) .

a=1
The wave reflected from thems ructure has two comp~n nts as

H
[

(r,$) = Hz coH$2/kr)+2f! CnH~2 kr)cos(n~)+jz c H(2 kr)sin(n$fi (’27)
‘refl o

ft nn
n=2 n=l j
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and -,2

[

-,2

E (rjj) = jZHZ coH$2)~kr)-1-2
z

cnH~2)tkr)cos(n$)+j2
I

cnH~2)~kr)sin(n@)
$refl o 1~n2 n=~

(128)

The first boundary condition to be satisfied is that E is zero at
r=a giving from equation (126)

4

(129)

or

b J~(kla)
n—=.— (130)
a
n Y~(kla)

At r=d the boundary conditions are that Hz and E$ are continuous giving
from the magnetic field (equations (123),~25), and (127))

(2) (~)Jn(kd)+cnHn = anJn(kld)+bnyn(kld)

and from the electric field (equations (124), (126},and (128))

‘2)tkd) =ZJ;(kd)+cnZHn anzlJ~(kld)+bnzly~(kld)

(131)

(132)

Combining these last two equations to remove Cn, substitutingfor bn from
equation (130), and solving for ~ gives

‘2)(kd)(2)~kd)-J;(kd)HnJn(kd)H
a =
n

{

n J~(kla)

y ‘kdlHf)&d’-;F’(k’d) --y’(k’dll

Jn(kld)- ‘) n 1

Simplifying the numerator and substituting for the wave.

[

n=j
a

(133)

impedances gives

We also have bn~rom this last equation and equationz(130).
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Limiting the results now to the case of CJ>>UC,also let Ikldlccl.
The terms in the magnetic field expansion (equation (125)) in the external

(135) -

In the limit of small Ikldl, Che n=O term is,independentof kld while the
higher order terms are proportional t,o(kld) . Thus, only the a. term is
important. Relating Che bn terms to the an terms from equations (125) and
(130) for n=O,

boYo(klr) (kla)2
= — ln(klr)

aoJo(klr) 2
(137)

which goes to zero so that the b. term can be neglected compared to the
a. term, and for n~l

bnyn(klr)

()
2n

&
anJn(kLr) = r

(138)

so that the bn terms are of the same order as the an terms for n>l. But
since these an terms can be neglected compared to the a

7

term, t~e bn terms
can likewise be neglected. Then in the limit of small kldl only the a.
term is important, meaning that the magnetic field in the external insulator
is uniform. This is the same as the result for the cylindrical loop bela~
a ground plane.

The short circuit surface current density at the loop gap is given by

Js = - H (a,O)
o ‘1

(139)

(using previously established conventions). Actually since the magnetic
field is uniform throughout the external insulator the surface current
density is independent of $. The short circuit current transfer functio~
(using the first definition) is the* (from equations (125) and (135))

fl

For u * I.1~this is plotted versus 6/a with d/a as a parameter in figure
41. Again ITl diverges rapidly for small d/a, indicating the same problems
as T’.
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Ilotethe use of d/a=l in the curves. This is a limiting case of d/a.
Remember that we first took the limiting case of kld = O. In doing this
we have constrained the displacementand conduction currents in the external
insulator to have negligible influence compared to those in the conducting
air. However, this requires that there be such an insulating region in
the first place. Without this additional region the short circuit current
transfer function is as in equation (25) and plotted in figure 4. In
equations (135) and (136) we can see that, for small but finite ~kldl,
if d/a is set equal to one then the terms for n ~ 1 are no longer
proportional to (kld)z and are of the same order as the a term. Likewise
the on terms for n ~ 1 also contribute to the sum for the”magnetic field.
Thus, the use of d/a = 1 is only meant in the sense of a limiting case.
The limit is taken after the limit of k d = O is taken. Actually d/a
must be greater than one, how much grea~er depending on how small ~kld~
is for frequencies of interest.

As for the case of the cylindrical loop below a ground plane define
a new short circuit current transfer function based on the average
value of the incident magnetic field at r = d. This average value is
just the first term in equation (123} giving

For PI = p, this is plotted in
short circuit current transfer

(141)

figure 42, again giving a more reasonable
function.

Since only the first term in the magnetic field expansion (which
has no $ dependence) gives the short circuit current transfer function,
the loop response is independentof the azimuthal (4) direction of wave
incidence. From another viewpoint the magnetic field in the external
insulating region is independentof $, as is the surface current density,
so that it makes no difference at which @the luop gap is placed. The
external insulator somewhat isolates the loop conductors from the con-
ducting air. The loop radius is ideally only a very small fraction of
the radian wavelength or skin depth, as appropriate, in the external
insulator. There is also assumed to be a sufficient thickness, d-a,
of this insulator to maintain the isolation from the currents in
conducting air.

VI. External Admittances with External Insulating Dielectrics..

Now reconsider the loop admittances. The normalized cable
ductance remains the same. Likewise the normalized internal admittance ,
is unchanged by the addition of external insulators and for the cases
of interest in the remaining sections is just one for all frequencies
of interest. However, the presence of the external insulators significantly
changes the normalized external admittances which need to be recalculated
for the new geometries.

the

con-
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A. Cylindrical Loop Below Ground Plane

Consider first the external admittance per unit length of the
cylindrical loop below a ground plane using the geometry of figure 39A.
As in the case without the external insulator take the first term in the
field expansion with a correction for the field distribution near the
loop gap. Since we are interested in the case in which a>>uc but Ikldl<<l
the currents (conductionplus displacement) in the external insulator
are insignificant compared to those in the conductin% air. Thus, we do
not correct for the capacitance and conductance, but rather for the
inductance in the vicinity of the loop gap.

Inside the external insulating region there is then a wave with
two of the components as

H ,(r~$’) = HZ

[

aoJo(klr’)+boYo(klr’)
‘1 o 1

and

E ,(r~$’) =
[

jZIHz aoJ~(kLr’)+boy~(klr’)
‘$1 o 1

(142)

(143)

Outside the insulator there is a wave with two of the components as

(2)(kr!)Hz,(rl$’) = Hz COHO
o

and

(qkr,)E+,(rl$’) = jZHz COHO
o

(144)

(145)

The boundary conditions to be satisfied are that Hz, and E$,
are continuous at r’ = d giving from the magnetic field

aoJo(kld) + boYo(kld) = coH$2)(kd)

and from the electric field

= C ZH(2)tkd)aozlJ~(kld) + bozly~(kld) o 0

Removing co from these last two equations gives

b.
—=.
a
o

Setting r’ = b

,’

H(2)~kd)zJ ~kd) - H(2)(kd)Z1J:(k1d)
01

~2)(kd)Z1Y~(k1d)H72)‘
o (kd)ZYo(kld)- Ho

we have

(146)

(147)

(148)

(149)rbE , (b,@’) = - Vgap
+1
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giving from equation (143)

jvRap

[

b

1
-1

a= J;(klb) +$ Y:(klb)
0 ?rbzH

Iz
Q

o

The surface current density is
,’

[

b
J~ = -Hz,(b,~~)=-H a Jo(klb) +

zoo
1

&Yo(klb)
ext 1 0

The admittance per unit length is then ~

Js Jo(klb) + a.‘Yo(klb)

Y’
.~=_ L

ext V rbz b
gap 1 J:(k,lb)+~y;(klb)

(150)

(151)

(152)

Substituting from equation (148) for bo/ao and rearranging terms, then

[

‘2}{kd)ZYo(k1d)-H~2)(kd)ZIY~(kld)]Jo(k#[Ho

-Yo(klb}[H[2)>(&d)ZJo(kld)-Hj2)(kd)ZIJ#kld)]
1

Y’ ‘-*ext
1

[

‘2)tkd)ZYo(k1d)-H(2)(kd)ZIY:(kld)]J&(klb)IHo of
1
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~(2)&d)Z Jo(kl ) ~ 1.b Y (kd)-Jo(kld) Yo(klb)

~;2)
+1

(kd)Zl Jo(klb)y:(kld)-J;(kld)y~klb)
c1

-i=- .

Substituting

H(2)‘
(kd)Z J~(klb)yo(kld)-Jo(kld)y:(klb)

H72)(kd)Z1 Jo(klb)y:(kld)-J;(kld)yo(k#)
o

J;(klb)y:(kld)-J:(kld)y#klb)

+ Jo(klb)Y;(kld)-J;(kld)yo(klb)
(153)

for the wave impedances from equation (112) and letting lklcll’<l,
expand the appropriate 13esselfunctions for small arguments giving -

}i(2)tkd) ~ (kld)2 ~

Ht2)(kd) ‘1 ()—Tin b ‘1

< 0

Y’ =-*ext
H(2)~kd) ~ kld
o ‘1—— — ‘+— d2-b2]z~ [
H$2/kd) ‘1 ‘d b

{154)

Negle ting the first term in5
the numerator because it is proportional to

(kld) and using

~zl = owl (155)

then

I

H(2) ~kd)

1

-1

. (oUrd O

%xt ‘~k —-l-j
H(2) (kd)

~ [d2_b’2]

o

(156)

Considering small /kldl then leads to a considerable simplification in the

.

form of the result. Looking a: this last equdtion note that the external
admittance per unit length is the series combination of an inductance.
attributable to the external insulator (the last term in the braces) and
the impedance of the external medium (the’first term in the braces).

2 2 /2 in the term for the inductance of theNote the factor n[d -b ]
external insulator. This is just the cross section area of the external
insulator except for a small area rb2/2. This is accounted for by noting

that the electric field is related to V in equation (149) by an integral
gap
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along a path constrained by r’=D instead of directly across the

The area enclosed by these two paths is precisely Tb2/2. Thus,
Y’ to give
exe

{
1

-1
‘2)(kd)

2
‘1

UP xd
w~nd 1

Y’ = -jr
H(2)(kd)

+ j~
ext

o

loop gap.
correct

(157)

which is no longer a funccion of the loop gap width,2b. Multiplying by
juUg?ra2we have in normalized form

(2)(M)
-1

Pg 2
Y:xt

()[

112 ‘1~ —-
2:1

)

(158)
B1 - ;l~H(2)(kd)

o

Rearranging this gives

(159)

such that the right side is independent of a. Considering the case of

P
~

=
‘1

= ~ and a>~uz, this normalized admittance is plotted versus
6 d in figure 43. Note that in the limit of small Ikdl the normalized
admittance is arbitrarily small.

B. Exposed Cylindrical Loop

Turning to the external admittance per unit length of the
exposed cylindrical loop we have the geometry of figure 39B. Inside

the external insulator there is a wave with two of the components as

{[~

cm

H (r,@) = Hz ]Z[aoJo(klr)+boYo(klr) +2 anJn(klr)+bnYn(klr)

11

cos(n@)

‘1 o n=l

(160)

and

{[

m

E$ (r,@) = jzl~z ]1[
aoJ~(klr)+boY~(klr) +2

I }-

anJ~(klr)HnY~(klr) cos(n$)

1 0 n=l
(161)..

Outside the insulator the two components are ,

[

G

lIz(r,$)= Hz coH~2)(kr)+2
I 1

cnH~2)(kr)cos(n$)
o *=1

(162)
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and a

E4(r,4) = jZHz
[
COH$2)(kr)+2

E
cnH~2){kr)cos(n+)

o 1n=1

(163)

Since Hz and E+ are continuous at r=ri,then from the magnetic field

(2)(~~) (164)anJn(kld)+bnyn(kld)= CnHn

and from the electric field

‘2);kd)anZIJ~(kld)+bnZIY~(kld) = cnZHn (165)

Removing Cn gives

bn H(z) ~kci)ZJn(kld) - H(2) (kd)ZIJ~(kld)
—=-
a

- &ii72)~kd)ZYn(kld) nn (kd)ZIY/kl(.i)
n’

(166)

At r = a, E~ is zero except in the loop gap where it is given by equation
(34). Equating this distribution for E (a,@)with that,from equation (161),
multiplying each by cos(n$),

$0

_L
J()

f Q cos(n$)d$ =
a$o +0

-+0

and integrating over$ from O to 27Tgives

[

b 7
j2nZ1Hz an J~(kla)+ ~ y~(kla)

A
(167)

o n

Or, using the results of equation (42)
jv a Jo(n@o)

[

-1D
a
n = 2~aZ H J~(kla)+ ~y~(kla)

lZ n 1
0

(168)

The surface current density is

Js =- Hz (a,~$o)
ext 1

The external admittance per

(169)

unit length is then
.

Js
b m b

i
Jo(kla)+~Yo (kla)

z

Jn(kla)+~ext yn(kl~)
Y

=— =- +,2
ext V b ,Jo(n@o)cos(n$C

gap z~azl J~(kla)+~y~(kla) n=l J~(kla)+~y~(kla)

L
(170)
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Considering the nth term and substituting for bn/an, then

b
Jn(kla)+ $Yn(kla)

n

‘2)(kd)ZlY;(k1d)]

[

(2)‘kd)Zyn(kld)-HnJn(kla)rHn (

-Yn(kla)[H(2)tkd)ZJn(kld)-H~2)(kd)ZIJ~(kld)]
n

[

} J~(k1a)[H~2)~kd)ZYn(kld)-H(2)(kd)Z1Y~(k1d)]n

‘2)(kd)ZIJ~(kld)]‘2)~kd)ZJn(kld)-Hn-Y~(kla)IH
n

1

[

H(2)~kd)z[Jn(kla)Yn(kld)-Jn(kld)Yn( kla) ]
n

-H(2) (kd)Zl[Jn(kla)Y~(kld) -J~(kld)Yn(kla)1
n

)

{.

H(2)‘(kd)Z~J;(kla)Yn(kld)-Jn(kld)y~(,kla)1
n

-H(2)(kd)Z1[J:(k@Y~(kld)-J~(kld)y: (kla)1
n

H(2)tkd)Z Jn(kla)Yn(kldl-Jn(kld)Yn(kla) + ~

~;2)
(kd)ZIJn(kla)Y~(kid}-J~(kld)Yn(kla)n

H(2) tkd)Z

H72)(kd)Z1
n

(171)



Substituting for the wave impedances from equation (112) and letting Ik dl<<l,
expand the appropriate Bessel functions for small arguments, For n=O t~is gives

H(2) {kd) ~ (kld)z

b
o

in

()

: +1

Jo(kla)+~ Yo(kla) H:z)(kd) ‘1 ‘d

=
b“ H(2) tkd) ~

J~(kla)+~ Y: (kla) ‘Id d ‘1

H72) (kd) ‘1
——--+~[kd a

dz-az ]
o

0

(172)

Neglecting the first term in the numerator l~ecauseit is proportional to
this n=O term is then proportional to (kLci)-l. For n~l we have

(k1d)2,

b
Jn(kla)+ ~ Yn(kla)

11 =

_L!-H(2) tkd) ~ (kld)z 1- ~
.— —

H72)(kd) ‘1
‘d>

~;2)~kd)
~ kld ~ ~

d I-(:)’n——. -—.
~;z)

(kd) ~1 ‘d a
klcla ~+ .a-2n

n IId

(173)

For a/d < 1 and for small Ik cIIthis general term is proportional to kld and is
thus negligible compared to ~he n=O term. Then keeping only the n=O term and
combining 21 with kl as in equation (155)

[

‘2)(kd)

1

-1

,up2rd ‘1 22
Y= ‘Jk + juvln[d -a ]
ext

H~2) (kd)
(174)

Again consideration of small Ikldlhas lead to a significant simplification in
the form of the result. Looking at the form oi this last equation, note that,
as with the cylindrical loop below a ground plane, the external admittance
per unit length is the series combination of afiinductance associated with the
external insulator and the impedance of the externai medium (driven at the
surface of the external insulator).

In normalized form then
2

(){ .()

‘L ~ ~- =
2

,1.

2 H:2)(kd) ‘1
Y =— — ——

d (175)‘\kd Hj2)(kd),ext. 111 d

For p = U1
$

= u and U>>WC this normalized’admittanceis plotted versus 6/a
with /a as a parameter in figure 44. As with the short circuit current
transfer function, the case of d/a=l is a limiting case. The limit of kld=O
is taken first, and d/a must actually be at least a little larger than one.
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VII. Frequency Response Characteristics with External Insulating Dielectrics

For this case in which the insulators are used both inside and outside the
loop, we are only interestedin the limits of a>>uc and lkld~~<l. ALSO constrain
that UL = U1 = P. ConvenientlyYk is then just one. Using the short circuit
current transfer functions and normalized external admittances from che previous
two sections, we can then calculate the response functions and compare the
results to those obtained without the external dielectric.

A, Cylindrical Loop Below Ground Plane

The cylindrical lLGp below a ground plane now has response functions
of the form

R’ = [l+Y~xt +GC]-l (176)
Y

and

R’ = T’avg R;
(177)

avg

where we have defined a new response function, R’ , to be used with
the short circuit current transfer function, T’ a~g Considering the effectsavg
of the normalized admittances,

This is plotted in figure 45 versus 6/a with d/a as a parameter and with gc/a =0.
Note that for large d/a this response function falls off very little for small
dia.

Using T’ from equation (121), R’ is then calculated, It is plotted
in figure 46 ?~~sus 6/a with d/a as a p~~~meter and with g /a =0. In figure 47
it is replotted but with gc/a as the parameter for a speci~ic d/a of 2. As
summarized in figure 48 optimum upper frequency response is obtained with negli-
gible gcla and for d/a somewhere between 1/ ~ and 2. This optimum upper

r

frequency response corresponds to a 6/a of about 1.1. Comparing these results
to the case of no external insulator, but insulator inside the loop, the
addition of the external insulator has decreased the characteristic 6/a by
about 60% or has raised the upper frequency response by a factor of about 6,5. -.
Compared to the case of no insulators, external or internal, these results
represent a decrease in the characteristic 6/a of about 70%, or an increase
in the upper frequency response of a factor of about 12, better than an order
of magnitude. The use of an external insulator (togetherwith the internal.
insulator] then represents a considerable improvement in the response
characteristics of the cylindrical 10QP below a ground plane.
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and

Be Exposed Cylindrical Loop

The exposed cylindrical 100P now has response functions of the form

R = [l+Y ~xt+Gcl-l
Y

R
avg

T
avgRy

(179)

(180)

where again we have defined a new response function, Ra,,.,to be used with
the short circuit current transfer
admittances,

/

function, T Fr~~5the normalized
avg”

which is plotted in figure 49 versus 6/a with dla as a parameter and with gcfo
=0, Again for large d/a the response function falls off very little for small
&/a.

Using T from equation (141) we also have R . Conveniently there is
a special-cas~v~f Ravg given by gc/o = O in which ti?~gformof the result
simplifies to

l{ J
,-1

R a ‘2)(kd) j (182)- j: (kd)2Jo(kd)H2.avg
i

gc
—=0

./
a

which is independent of a. This is plotted versus 6/d in figure 50. Note
that this is of the same fo~ as T’ in equation (121) showing that for
this case of gc/u = O, R is jus?v~he response function for the penetration
of magnetic field (paral?~? to thd 100P axis) into an insulting cylinder of
radius, d?’immersed in a conducting medium. Figure 51 has,Ravg plotted
against d/a with gc/a as..aparameter for the limiting case of d/a= 1.
Figure 52 summarizes the results for the upper frequency response. As
expected, optimum upper frequency response requires negligible gc/u (say
small compared to .1). Note that optimum upper frequency response occurs
for the limiting case of d/a s 1 for which the characteristic 6/a is about
.35. As discussed before, dla must actually be somewhat larger than one<if
the short circuit current transfer function and normalized external admittance
are to have the forms developed in sectionsV“B and,VI B, respectively.
Comparing th-e results to those for no external insulator, but ~sulator
inside the loop~ the characteristic 6/a has been decreased by about\87% and
the upper frequency response has been increased by a factor of about 55.
Compared to the case of no insulators, external or internal, these results
give a decrease in the characteristic 6/a of about 90%, or an increase in
the upper frequency response of a factor of about 110, better than two orders
of magnitude. Of course, the requirement of making d/a a little larger
than one lowers this frequency response improvement somewhat. Also, such
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a small characteristic &/a brings us back to the problem of the definition
of the short circuit current transfer function because the incident magnetic
field is several skin depths in extent across the loop structure at the upper
frequency response limit. In any case, however, the use of an external
insulator (together wi~h the internal insulator) represents a large improvement
in the response characteristics of Che exposed cylindrical loop.

VIII. Summary

Considering two types of cylindrical loop, the cylindrical loop below
a ground plane and the exposed cylindrical loop, these loops are both assumed
to have axial lengths much greater than their radii. Also, the resistive
signal cable loading at the loop gap is assumed to be uniformly distributed
along the length of the loop. Calculating the response of such a loop to an
incident plane wave with the magnetic field parallel to the loop axis, the
solution is then only a two dimensional problem. Only one orientation (an
optimum one) of the loop gap with respect to the direction of wave propagation
is considered. This is because the purpose of this note is to compare the
frequency responses of this type of loop in different kinds,of media and in
some different configurations (to improve the frequency response).

The case of negligible air conductivity is considered first. The
upper frequency respo-ns—eis given from the result that the radian wavelength
is of the order of the loop radius. An optimum (non zero) cable conductance
per unit length is required to dampen the first resonance and thus optimize
the frequency respcnse characteristics.

Then the case of a~>ucis considered. For this solution the air
conductivity is assumed independentof both time and the electric field.
For this high air conductivity three var~ations on the design of the
cylindrical loop are considered for their frequency response characteristics.
First, no insulators are used so that a high air conducciviiy is present both
inside and outside the loop. Next, the inside of the loop is filled with
an.insulator to exclude the high air conductivity from the inside, and then
an insuiator is used both inside and outside the loop structure to exclude
the high air conductivity from the immediate vicinity of the loop. For
each of these variations the upper frequency response is given by a skin
depth in the air which is of the order of the loop radius. Note that there
is a significant improvementwith each addition of a local insulatingmedium.
This is most pronounced for the exposed cylindrical loop in that progressing
from no insulators to both internal and external insulators results in about
an order of magnitude relative decrease in the’characteristic6Ya for upper
frequency response. Or, this produces about two orders of magnitude relative
increase in the upper frequency response. Yor optimum frequency responses
it is also necessary for the cable conductance per unit length to be
sufficiently small compared to the air conductivity.,., .

However, there are other problems associated with the high air conduc-
tivity case. Since in uteasuremencsof the close-in nuclear’EMP the sensor is in
a source region, a plane wave without local sources does not accurately describe
the field distribution. Thus, the short circuit current transfer functions are
somewhat artificial. Also the air conductivity in this source region is non-
linear and time varying. This makes che analysis somewhat approximate for such
a situation.

46



A, ANGULAR VIEW

1
Einc

c, /L,u

@ ~i”~

/

B. CROSS SECTION ‘
.

FIGURE!,CYLINDRICALLOOP BELOW GROUND PLANE

47



A. ANGULAR VIEW

tY

I

[

Einc

“ t-ijnc

B. CROSS SECTION.

\

\
—.— — —

/ /~

.. .

—— --0
x

FIGURE 2.EXPOSED CYLINDRICALLOOP

48



1.5 I I i I I III I i I I I I i I

1.4-

1,3-

1.2-

I I i I I 1 i I

1.!-

I,0

.9 1 I I I 1 I I I I I I I I I I I I I I I I I
1o-1 100

! I

‘/a
10i 102

:
.*

.2

.1

0

-.05

A. MAGNITUDEOF T VS. */a

i I I I i I J I I I I I I 1 I

—

...I I I I I 1 I I 1 I I 1 I II I I I I I I I II

10-’
.,

10° ‘/a , 10’ 102

B,PHASE OF T VS. .$a

FIGURE3.SHORT CIRCUITCURRENT TRANSFER FUNCTIONFOR EXPOSEDCYLINDRICAL

LOOP WITH NO CONDUCTIVITY

49



\

I

I I I I I I I [

! I I I I I I I 1 I I I I I t II

10-’ 10° 8/q 1( Ioz

A. MAGNITUDEOF T VS. %1

./ ( 1 I i I I i II I I 1 1 / I { I I I I I I f I i-

.08-

.06-

.04-

.02-

0

-.02I I I 1 I11 I I I i I 1 11
..

I ! I I 1 1 I I II

10-’

FIGURE4.

loo % ~iol [02

B. PHASE OF T VS. $’a

SHORT CIRCUITCURRENT TRANSFERFUNCTIONFOR EXPOSED

CYLINDRICALLOOP WITH W+ CONDUCTIVITY

50



tY
II

U=-.57T1; 1 i
1-FIFI

.r

w-––––––h---–q

A.IDEALIZATIONOF LOOP GAP

4Iv

E FIELD LINES
I
I

.6T

I
.37T

I I , I
.- -!- ----- -“- ~- -j- -4- -<-” --!=- -4-. -+-; ‘“ , 1 t I ~‘i I I

I I I
I I i 1.

4--’ -+– -+–’- -:-- –+- -+-’--, ,4--’ —L- -j-- “-+--
* t I 0----

+h------–vaaD ---------––-----– -------4-
-,57T

B.

FIGURE5. ELECTRIC

a –r

o .57T-
CONFORMAL TRANSFORMATIONOF LOOP GAP

FIELDDISTRIBUTIONNEAR CYLINDRICALLOOP GAP

u

,, -.

51



100

50.

0.

-50.

-100.
10-’

I III

I I I t I I I I

10°

I

I t I t I t I I I ! t I I 1 I

A. Yg VS. ~/a WITH b/aAS A PARAMETER

[01

I,5

I.0

0.5

0

-0.5

-1.0

i I

-i.5,()-1 ,00 k/” - 10’

I I I I I I I I

1

r I I I I I f I

B.Y1 VS. ‘~ WITH b/aAS A pARAMETE~ (SCALEoF A EXPANDED)

FIGURE6.NORMALIZEDINTERNALADMITTANCE OF CYLINDRICALLOOP WITH NO

CONDUCTIVITY

5’2 .



lo2_ I I I I I I II

Io’ :’

b/ff.1

100- ‘

I0’ I I 1 I I 1 II

10’ I

I I f I I I IL

–Ya=.01,.00[

I I I I I I I I
) ., 10’

8 Wt$ b/aAS A PARAMETER[1A. Re Yt VS. /a
I

FIGURE7. NORMALIZEDINTERNALADMITTANCE OF

53

102: I I

:$
I I I 11(

10’

b/a‘.1

I0°_

I I I I I [11--

/
V(J=.001

I 1 I I 1,OIL
10’ 10° 10’

%

HB. Im Y1 vs.ah WITH b~ AS A PARAMETER

CYLINDRICALLOOP WITH HIGHCONDUCTIVITY



-1o”

-I()-I

- I0-2_

-1(s3 I 1 1 I II1[
100 10

1 1 1 1 111 L

1 1 I I I
I

$)

,.“e F’mr’” ~b

10°

,0-1

IO-;

I I I 1 I 1 I 1-

-i

I0-4
10°

I 1 1 I IIII 1 I
10’ I02

FIGURE8. NORMALIZED EXTERNAL ADMITTANCEOF CYLINDRICALLOOP BELOW GROUND PLANE WITH NO CONDUCTIVITY

! 54



10°_ I I I 1 I I lr

-1

I I I I I I I L“

1

‘“’r

,()-s~ __LdLud
10° ,,10’ I02,.

?fb

! [ 10A. Re Y~xt ~b 2VS. 8/b
{

\

I00 ‘_ I r

10’~

lo-2-_

,0-3L
I0° 10’

I I I 1 I I I l-”

.-

1 I 1 I I1II

102

FIGURE 9. NORMALIZEDEXTERNAL ADMITTANCEOF CYLINDRICALLOOP BELOW
GROUND PLANE WITH HIGH CONDUCTIVITY

55



_ ,~c

-1o-

-10

-10 )

I I I I I I I

10’

I I I 1 I

I

[1

IQ

A. Re Yext US.‘/0 WITH b~ AS A PARAMETER

,00

Io-

10-

lo-

I I I I I I 1 r

I I I I I I II

HB,Im Yext VS.

—

. .
1 I 1 I I I

10° 10’ 102

‘/0

1/ WITH b~ AS A PARAMETERa

FIGURE10.NORMALIZEDEXTERNAL ADMITTANCEOF EXPOSED CYLINDRICAL.00P WITH NO CONDUCTIVITY

56



10’

10°

10-’

I0-:

\

I 1 I I I I

I I I 1 I I 1 r

!/O=.1,.01,.001

I I I 1 1 I I

I

I

I0°

10-’

\

9&.1

I I I I II

1 I I I I 111

I I I I I I 1I0-2
3XI0-’ 1) 10’ 3XI0’ 3X1(? 10° 10’ 3XI0’

[1
?0

[1
!’a

A. Re YextVS. 84 WITH b/a AS A PARAMETER B.[m Yext VS.?a WITH !)aAS A PARAMETER

1

FIGURE11.NORMALIZEDEXTERNAL ADMITTANCEOF EXPOSED CYLINDRICALLOOP WITH HIGH CONDUCTIVITY

57



3.

1.

!

o,

. I

i I 1 I t I II [ t I I I Ill I I I I f Ill

103 102 ba
/

10’ 10°
gcc1

B. ~ vs.~~ FOR APPROXlhIIATECRITICALDAMPING AND FOR APPROXIMATE ‘
o

FIGURE{2.

MAXIMUM FLAT FREQUENCYRESPOliSE“

RESONANT FREQUENCYCHARACTERKTKS OF cyLINDR/CALLOOP BELOW

GROUND PLANE WITH NO CONDUCTIVITY

58



10’

10°

10-’
,()-1 ,00 v

gca a
,(JI 102

A. MAGNITUDEOF R’VS. ‘~ WITH ~ AS A PARAMETER

0.5

0

-0.5

-1,0

-1.5

-2.0

-2.5

-3.0

-3.5

Ask’aAPARAMET::l
10-’ 100 gca
B, PHASE OF R’VS. $(0 WITH ~

FIGURE 13.RESPONSE CHARACTERISTICSOF CYLINDRICAL

PLANE WITH NO CONDUCTIVITY:b/a=,01
59

102

LOOP BELOW GROUND



A.

101_ I I I I I 1 I I I I i I [ I I i 1 t i I I I I l?
g,.

K)
‘~ z1,029AT MAXIMUM FLATNE

(MF)

~Z 1,532AT CRITICALDAMPING
(CD)

.-0 I
I w“ _ ,, ,

10-1-1 I I I 1 I I

~00 VQ 101 102
Mi:NITUDE OF R’ VS. ~/a WITH w Y~ AS A PARAMETER

0.5 L I I I I II1

0

-0,5 -

-1.0 -

-[.5 -

-2.0 -

-2.5 -

-3.0 -

I
~,.. ,

i

I I I

10-’

B. PH

FIGURE

SE

4.

OF R’ VS. ~~ WITH -+ AS A PARAMETER
0

RESPONSE CHARACTERISTICSOF CYLINDRICAL LOOP BELOW GROUND

PLANE WITH NO CONDUCTIVITY‘ b/a :.!

60



30

% 20

10,

0
0

gca
b/a :,1 ENDS WHERE ~

(

= /.029

AT MAXIMUM FLATNESS

,/

= 1.421

I I

2. 4. gca 6.

~

8.

~ WITH b/aAS A PARAMETER‘/aVS. ~.

..

FIGURE15.DEPENDENCE OF FREQUENCY RESPONSE ON CABLE CONDUCTANCEFOR

CYLINDRICALLOOP BELOW GROUND PLANE WITH NO CONDUCTIVITY:

IR’I= ~“
61

10.



Xr
-r

1.-

0 I i I 1 i III I I I I I Ill 1 f I 1 [ 1II
163 IGZ ZO Id 10*

h. $ VS. b/a

I I

@cAL DAMPING I

1.

t

}

0’ t 1 t I I I I I I ! I I I I I I I I I I I I 11

163 102 ~/~ IOJ 10°

i3~ vs.b/GFOR APPROXIMATE_CRITICALDAMPINGAND FOR APPROXIMATE
“ Y~

MAXIMUM FLAT FREQUENCY RESPONSE

[ FIGURE!6. RESONANT FREQUENCY CtiARACTERiSTiCSOF EXPOSED CYLINDRICAL

LOOP WiTH NO CONDUCTIVITY

62



2XI0

10

I0(

2xlo-

0.5

0

-0.5

-1.0

-1.5

-2.0

-2.5

-3.0

-3.5

10-’

I I I I I I I I I I I I I 1 I I I I I I I I r
gca ,0

T()
II

‘o (MF)

~= 2.068AT
‘o (CD)

CRITICAL

, gCa
~= 1.440AT MAXIMU

I 1 I I I I II

I0° ‘/a 10’
gca

A.MAGNITUDEOF Rv VS. ‘/a WITH~ AS A PARAMETER

10-’

B,PHASE

FIGURE17,

..

10°
la

gca
OF Ry VS. ?a WITH —Yo AS A PARAMETER

EFFECT OF ADMITTANCESON RESPONSE

WITHNO CONDUCTIVITY:b/O=.01

63

10’

102

EXPOSED CYLINDRICAL

102 ‘

LOOP



10°

Id
Id 10° la 10’ 102

A.MAGNITUDEOF Ry VS. *!a WITH ~ AS A PARAMETER
o

0,5- I i I t I I II I I I I I i II

.0

-0.5

-(.0

-1.5

-2.0

-2.5

-3.0

I I

LMF I

1..
,.

I
-3.51 I I f I f IIll f { i I I [Ill I I 1 1 I iIll

d
o ~/Q “ 10’ I02

‘ogc* AS A PARAMETERB. PHASE OF Ry VS. */Q ~[T~ — YQ

FIGURE 18.EFFECT OF ADMITTANCES ON RESPONSE OF EXPOSED CYLINDRICAL
( LOOP WITH NO CONDUCTIVITY’ bQ = .1

64



2

2x

x 10’ I I 1 i i i I I I I I I i I I I
9&

I I I I I I I I

Y~
10’

\

: gCa ~.1
-x =1.440AT MAXIMUMFLATNESS

(MF)

- ~ :2068 AT CRITICALDAMPING
Ylj “

Irnl\cOu/

I0° -

r-

~ 5.

Io-’ I I I I II11. I II I I I 1
10-’ I0°

IIII
~~ 10’

gCa 102
A.MAGNITUDEOF R VS. ‘~ WITH ~ AS A PARAMETER

o.!

(

-0.{

-1.(

-1.5

-2.0

-2.5

-3.0

-3.5

I I I I I I I
‘o
I

Y,.
I I I I I I i I I I I 1 I I I

Yf)

T l— ..
I I I ! I I J I I I I I I I I I

10-’ 10° &
ga I

B.PHASE OF R VS. ‘/a WITH~ AS A PARAMETER
YfJ

FIGURE{9.

I I I I I 1 I
I

RESPONSE CHARACTERISTICSOF EXPOSED CYLINDRICALLOOP WITH NO

CONDIJCTIVITY:b/O:,01
65



I

I

I

A.

o

-0.5

-1,0

-!.5

-2.0

-2,5

–3.o

t

-3.5 !, I I t I i IIll ! I t I I III

10 [0: - ~/~ ‘1

1 I I I I Ill

\
~MF 1

..

I I I I I 111
I

102

..

B.PHASE OF R VS, ‘/a WITH + AS A PARAMETER -

FIGURE20.RESPONSE CHARACTERISTICSOF EXPOSED CYLINDRICALLOOP WITH

NO CONDUCTIVITY‘ b/a= I
66



40.

30.

‘/t 20.

10.

0

FIGURE21.

ga

/

?a z.1 ENDS WHERE ~‘ 1.067

AT MAXIMUM FLATNESS
t/

\/

/

b~ =.1

.01 gca
!fa=,01ENDS WHERE ~ =1.440

\/~
AT MAXIMUM FLATNESS

1 I , I I I t I 1

0 2. 4. gJ 6“ 8. 10!

Y~
gca

~~ vs.~ WITH% AS A PARAMETER

..

DEPENDENCEOF FREQUENCY

EXPOSED CYLINDRICALLOOP

67

RESPONSE ON CABLE

WITHNO CONDUCTIVITY:

CONDUCTANCE FOR



.

L

10-’1 I I I I I ! 1 I 1 I I I I I Ij

10-’ 10° 10’
gca

Y()

gca
?fJvs.~ WITH Zc AS A PARAMETER

FIGURE22. DEPENDENCE OF CYLINDRICALLOOP LENGTH ON CABLE CONDUCTANCE



2x 10”

I0°

10-’

2X10-2
10-’ 10° ~/~ 10’ I02

.

A, MAGNITUDEOF R’VS. 8! WITH‘c/aAS A PARAMETER

‘“~

I I I I I I II I 1 I I I I I I

-0

-.25 -
%#o

--.50 -
.

1.
“ -.75 -

:-1.00 -
.

-1.25 - .

<-1.50 -

-1.75 I I I I I I II I I 1 I I I II I I I I I I II

10+
o 8/~ 10’ [02

10gC/rAS A PARAMETERB.PHASEOF R’VS.?a WITH

FIGURE23.RESPONSECHARACTERISTICSOF CYLINDRICALLOOP BELOW GROUND PLANE

WITHHIGH,EQUALCONDUCTIVITIESBOTHlfiS16)E8 OUTSIDEOF LOOP:b&.01

69



2xlo0“ i I I I I I I I I I I I I I I ( I I I I I 1 Ii”

I0°
!l@

Id_

2X162., I f I I I I I I 1 I I I t I I II

10
0’ ~/~

‘0 9C
10’ 102

A.MAGNITUDE OF R’ VS. ~/a WITH /. AS A PARAMETER

.25

,0

-.25

-.50

-.75

–1.00

–1.25

–1 .50

1 I I I i I II I I I I I I II I I i I I I II

.

:>+

,

,

.,

-1.751~~
d 10° ~/a . 10’ 102

B.PHASE OF R’ VS. ~/. WITH ‘% AS A PARAMETER

FIGURE 24. RESPONSE CHARACTERISTICSOF CYLINDRICALLOOP BELOW GROUND

PLANE WITH HIGH, EQUAL CONDUCTIVITIESBOTH INSIDEAND OUTSIDE

OF LOOP ‘ b/O = ,1
70



10,

8,

~la 6.

4,

2.
0 2. 4. ‘% 6. 8. 10.

A, 84 vs.“/= WITH b/a AS A PARAMETER

I5.

10,

V.

5.

0

“a’>:fl
/“;4/./ :/”/.

/

I I I I / I II I I I I I I I

I I I I I I I I

’163 102 10°

B. S/O VS. b/o WITH ‘c/a AS A PARAMETER

FIGURE 25, DEPENDENCE OF FREQUENCY RESPONSE ON CA8LE CONDUCTANCE FOR

CYLINDRICALLOOP BELOW GROUND PLANE WITH HIGH; EQUAL

CONDUCTIVITIESBOTH INSIDE& OUTSIDE OF LOOP : I R’I= ‘IT

71



2x

2X1

10°

10°

[0-’

-2
0

I
2

.25

0

-.25

-.50

-.75

- I.00

-1.25

A.MAGNITUDE OF Rv VS.8/a WITH ‘% AS A PARAMETER$
I I I I I I I I

-1.50 I

I I I I I I II I I I I 1 I II

..

-1.75‘ 1 I I I I 1 II t I 1 I I [ II I I I 1 I Ill

[0-1 10° 8/0 .101 102-

& PHASE OF Ry v~.% WITH‘c/uAS A pARAMETER

FIGURE26.EFFECTOF ADMITTANCESON RESPONSEOF EXPOSEDCYLINDRICALLOOP
WITHHIGH,EQUALCONMJCTiVITIESBOTHINSIDE& OUTSIDEOF LOOP:b~=.01

72



2xl(f I I I I I I I 1

I0° _

16’_

2 x 162-1 I I I I I I II I 1 I I I I II
10’ 1( )

8/4
I o’ I 02

A.MAGNITUDE OF Rv VS.~/a WITH ‘c/mAS A PARAMETER

‘“m
o

-.25

-.50

–.75

-1.00

-1.25

1

- I.50
1

_,.75L_uLuLu
16’ II

I I I I I I 11/ I I I I I 111[

gc/=m

/4
10.

5.

,2.
1.

1 I I I I I I II I [ 1 I I Ill
8/ti

10’ 102 ‘
B.PHASE OF Ry VS.h’.WITH gc/rAS A PARAMETER

FIGURE 27. EFFECT OF ADMITTANCES ON RESPONSE OF EXPOSED CYLINDRICALLOOP

WITH HIGH, EQUAL CONDUCTIVITIESBOTH INSIDE& OUTSIDEOF LOOP:

90 ~ ,! 73



2x

2x

t

I

I

I
2

9~ -
A,MAGNITUDEOF R Vs.8A WITH /aAS A PARAMETER

.25 [ I I i I t I I I L I I I I II I I 1 I 1 II”

o

-,25 -

-.50 -

-.75 -

-1.00 -

-1.25-

-1.50-

-1,75 I \ I I I I 1111 t I I I I I II

10-1 10° ?% - 10’ 102

B.PHASE OF R VS.8/aWITH‘c& AS A PARAMETER

-J

..

I 1 I I I I Ilj,

FIGURE28.RESPONSECHARACTERISTICSOF EXPOSED CYLINDRICALLOOP WITH HIGH,EQUAL

CONDUCTIVITIESBOTH INSIDE& OUTSIDEOF LOOP’b/a’01

74



2xlo0 I I I I I I Ii f I I 1 I [ II 1 I I I I i II

18 ~
%&z o

1.

I o-’ -

2xlo2’ I I I I I IIll I I I I i I II

10-’ 10° Ya 10’ 102

-- A. MAGNITUDE OF R VS.‘~ WITH ‘c/$AS A PARAMETER
,Z3 I I I I I I If

o

-.25-

-,50 -

-.75

-1!00

-t,25

-1.50
I

I I I I I I II I I I I I Ill

●

,

-1,75 I I I I I Ill I I I I I Ill 1 I I I I II I

10-’ [0° ?40 10’ 102

B, PHASEOF R VS. 84 WITH‘c/&AS A PARAMETER

FIGURE29,RESPONSECHARACTERISTICSOF EXPOSED CYLINDRICALLOOP WITH HIGH,
EQUAL CONDUCTIVITIESBOTHINSIDE& OUTSIDEOF LOOP’% ‘ ,I

75



/0.

8.

~6a.

4.

2. “

I

9.

“ ./”y/ ./.
7’

0[ I I I I I 1111 I I I I I I Ill I I I I I I 111

10-3 10-2
b/a

B. ~/a vs.$0 WITH‘c/TAS A PARAMETER

FIGURE30.DEPENDENCEOF FREQUENCYRESPONSE

EXPOSED CYLINDRICALLOOP WITHHIGH,

INSIDE& OUTSIDEOF LOOP:IRI= ~/ *
J

76

10-’ 10*

..

ON CABLE CONDUCTANCEFOR

EQUALCONDUCTIViTIESBOTH



2

A,

2xio0‘ I I I IIIII I I I I I I II I I I I I I II

I0° _
!Jc&= ()

Id _ /

2.

x162’ I I I I I 111 I I I I
I0’

I Ill
I0° 8/a 10’ 102

MAGNITUDE OF R’ VS.8/0 WITH ‘c/m AS A PARAMETER
,25 I I I I II 1(

o

-.25 -

-.50 -

-,75 -

-1.00 -

–1.25 -

~
-1$50-

1 I I I I I I I I i I I i I 1 I

..

-,.75~ I 1 I I I III I I I I IIIJ
16’

1

I0° 8/0‘
10’ 102 .

B, PHASE OF R’ VS. 8/0WITH gc/r AS A“ PARAMETER

FIGURE 31. RESPONSE CHARACTERISTICS OF CYLINDRICAL LOOP BELOW GROUND

PLANE WITH HIGH CONDUCTIVITY OUTSIDE 8 NO CONDUCTIVITY

b,INSIDE OF LOOP : ~ = .01

, 77



‘oOr--’-

/f I I I I I I 11[

10’ lb 8/0 10’
A.MAGNITUDE OF R’ VS. 8/0 WITH ‘c/r AS A PARAMETER

,25

0

–,25

-50

–.75

–1 .00

—

—

.25

.50

1’

d

+751_ JJ_uu

161
B.PHASE

32.

102

I I I 1 I I iI I i I I I I [

I0° [0’

..

102”
OF R’ VS. ?0 WITH ‘c/a AS A PARAMETER

RESPONSE CHARACTERISTICSOF CYLINDRICALLOOP BELOW

WITH HIGH CONDUCTIVITY OUTSIDE & NO CONDUCTIVITY

LOOP: b/a ~ .1 78

.

GROUND

INSIDE

PLANE

OF



10.

8.

6.

~/~

4.

2.
0 2. 4. gc/V 6.

A 8/0vs.‘c/aWITH b/aAS A PARAMETER

15,- 1 I I I I [11

I0.

t
~.— +..!L

i -==

8, 10.

—“—,

01 I I I I I I II

I(T3
,()-2 b/n~ 10-’ ,00

‘c/gAS A PARAiETERB. 8!0VS. b/O WITH

DEPENDENCEOF FREQUENCYRESPONSEON CABLE CONDUCTANCEFOR
CYLINDRICALLOOP BELOW GROUND PLANE WITH HIGHCONDUCTIVITY

OUTSIDEAND NO CONDUCTMTYINSIDEOF LOOP’IR’1=)4
79



2x10° I i i i IIIi i I I i 1IIi \ I I i I I il

I 0°

2X

/ // //
Lv.

10-i_

/0-2 f I I 1 I I I I I I t I I I I II

Io-’ IOO.
~/~

lot ~&

A. MAGNITUDEOF Ry VS.8/0WITH‘% AS A pARAMETER
.25 I I i J I 1II i I I I i III I I I [ i III

o

-.25 -

-.50-
(.t

-.75 -

-1.00-

-[,25-

-/.50- ..

-1.75 I I I I 1 III i I I 1 I III I I 1 I I I11;

10-1 10° % -10’ 102“

B. PHASE OF Ry VS. ~ WITH“/@ AS A PARAMETER

FIGURE34.EFFECTOF ADMITTANCESON RESPONSEOF EXPOSEDCYLINDRICALLOOP WITH
HIGHCONDUCTIVITYOUTSIDE& NO CONDUCTIVITYINSIDEOF LOOP’b/~=.01

80

.



2

A,

2XIOQ I i I I I I I I I I I I i I I I I I I I i I I 1“

10° _ n

I10’_ / /
/

/ / /

x 162:, I I I I I I

10 I0° V(J
MAGNITUDE OF Ry VS,8/a WITH ‘c/~AS A

“2’r---’--

–,25

-50

1
–.75

– I.00

-
–1 .25I

/

–1 .50

–1 .75

J-
10’

PARAMETER

L

102

I I I I I I I I [ I I I I I 1-

gc/’=0

I 1 I I I I II I I I I I I I 1, I I 1’ I I I IIJ

16’

B.PHASE

FIGURE 35,

.

low Y. 10’ 102
‘c/a AS A PARAMETEROF Ry VS.8/a WITH

EFFECT OF ADMITTANCESON RESPONSE OF EXPOSED CYLINDRICALLOOP

WITH HIGH CONDUCTIVITYOUTSIDE8 NO CONDUCTIVITYINSIDEOF

LOOP ‘ ?Q = .1 81



2XIO(

10(

2x

I01

102 I I

10-’

I I 1 I I I II

%0 II

A.MAGNITUDEOF R VS.%q WITH‘?m AS A PARAMETER
.25

0

-.25

-.50

-.75

-/<00

-{.25

-1.50

-1.75

1 f I I I I I I

I 02

/0-’

I I I I I I 1(

I I I I I Ill

..

I I I I I

/0°
Yg

- to’ /.2.

B. PHASE OF R VS. 8/0 WITH‘yg AS A PARAMETER

FIGURE36.RESPONSECHARACTERISTICSOF EXPOSEDCYLIWIRICALLOOP WITH HIGH

CONDUCTIVITYOUTSIDE& NO CONDUCTIVITYINSIDEOF LOOP:b/a=,0!

82



2x 0° i I I 1 I I I I I I I I I I i I I i I 1 I 1 I I

I

2x

A.MAGNITUDEOF R VS.8~ WITH ‘c/rAS A PARAMETERm.
.Z3

o

-.25

-.50

-.75

-1.00

-1.25

-1.50

1

I I I I I i I ( I I I I I I I I I I I I I I f

I I I 1 I I I I 1 I I I I I
,()-1 ,~o - ,* I ,02”

B.PHASE OF R VS.8/aWITH ‘?a AS A PARAMETER

FIGURE37.RESPONSECHARACTERISTICSOF EXPOSED CYLINDRICALLOOP WITH HIGH

CONDUCTIVITYOUTSIDE(iNO CONDUCTIVITYINSIDEOF LOOP # = I

83



10

8

6.

8/0

4.

2.
0 2. 4. yc/r 6. 8. 10.

A, $/a vs.‘c~ WITH b/a AS A PARAMETER

I5.

Io.

5.

0

0.

FIGURE

.

—’—

I 1 1 i I I II

—+-

163 162

—,—.

—. —

84 “~. b/a WITH gc/@AS A pARAMETER

38, DEPENDENCE OF FREQUENCY RESPONSE

EXPOSED CYLINDRICAL

CONDUCTIVITY INSIDE

LOOP WITH HIGH

OF LOOP : IRi=
84

ON CABLE CONDUCTANCE

CONDUCTIVITYOUTSIDE

FOR

@i

10°



A. CYLINDRICALLOOP BELOW GROUND PLANE

t
Y

I
p, u

—— --D
x

B. EXPOSED CYLINDRICALLOOP

FIGURE39.CYLINDRICALLOOPS WITH AN ADDITIONALDISTINCTEXTERNAL
MEDIUM

85



2

2

10’: 1 I I I I I I R I I 1 I I I I L

/0° “_

arg(T’)

Id I I I I I ! I [ 1 I 1 I I I Ii 1 I I I Ill.

10-2 10-{ Y~ 10° 10’

A. MAGNITUDE& PHASE OF T’VS.8/(j
x10°‘ i I I i IiI1 1 I I 1 IIiI i I I I I I I I

100- — —

1(-)-’/ , II 1
,“

xIO-zl I I I 1 I I I I I I f I I I ! I II \ ! I f I IfIll

10-2 10-’ ~~ 10° 101”

B.MAGNITUDE& pHASE GF T;g w at -

FIGURE40.SHORT CIRCUITCURRENT TRANSFERFUNCTIONFOR CYLINDRICALLOOP

BELOW GROUND PLANE,WITH INSULATINGDIELECTRIC,8 WITH HIGH

EXTERNAL CONDUCTIVITY.
86



lo2_ I I I I I ,1 I I 1 I I I I I I I I,, I I IJ

10’_

$ = 1.

2.

KK2 I I I I I I II I I I I I I II II

10 Id 8/0 I0° 10’

A.MAGNITUDE OF T VS.8/.WITH ‘/nAS A PARAMETERu

10’ ‘L I I I I I I [ I

10° :

u

d/.=1.

-Jz-
2.

A

.,

I I I I I I I 1 I

10° 10’.
8.PHASE OF T VS. a/~ WITH ‘/0 AS A PARAMETER

FIGURE 41. SHORT CIRCUITCURRENT TRANSFER FUNCTION FOR EXPOSED CYLINDRICAL

LOOP , COVERED WITH INSULATING DIELECTRIC, & WITH HIGH

EXTERNAL CONDUCTIVITY a,



3XI0’
[ ‘ “’’”I

I I I i I I I I i i I I I 1 i I

3x

10

1 I 1

t

-1 r ‘
A. MAGNITUDEOF TcvqVS.‘~ WITH $0 AS A PARAMETER

.4“ I I I I I I I 1 I I I 1 I I 1 I I I i 1 I I I 7

~~ = 1,

.2- 105
[.10

o —

-.2 -

-.4 -

-.6

-.8-“~ ~
.,

-1.0 I I I I I I 1 I I t t I t I I I I I I I I I 1

2X10-2 10-1 & 10° - Io’ 2X101
70

8/ WITH $0 AS A PARAMETERB.PHASE OF TavgVS.~

FIGURE42.SHORT CIRCUITCURRENT TRANSFER FUNCTIONFOR EXPOSED CYLINDRICAL

LOOP]COVERED WITH INSULATINGDIELECTRIC,AND WITHHIGHEXTERNAL
CONDUCTIVITY 88



3x’001————

I*OC

‘x

10-’

r

I

10-21 I I I I I I 11 I 1 I I I I II

,*-2 10-’

1(J2
A. Re ~~xf ( /0) vs.84

10°- I IIIf

I I I 1 I I I I

,*O

,0-2L
10-2 10-’

[1B. Im Y~x+ ($0)2vs.‘~

tyd

10’

I I I I I I I L

I 1: I I I I II

10° IO”

FIGURE43.NORMALIZEDEXTERNAL ADMITTANCEOF CYLINDRICALLOOPBELOW GROUND

PLANE,COVERED WITHINSULATINGDIELECTRIC,& WITHHIGHEXTERNAL

CONDUCTIVITY 89



Iv

IN 1 I ! I I I I II I I I f r ! [ II \ \\ I I I I I Ilj

162 Id 8/*

[1

10° lo!
A.Re Yexi “~.8/0 w[~~ $0 As A PARAMETER

8/ WITH d/a AS A PARAMETERB.Im[YextJvs. ~

FIGURE 44. NORMALIZED EXTERNAL ADMITTANCE OF EXPOSED CYLINDRICALLOOP,

COVERED WITH INSULATING DIELECTRIC,a WITH HIGH EXTERNAL

CONDUCTIVITY
90



2xlo0 I I I I I I I I I I I I I I I I I I I I I I r

10°-
I

‘d/a: 5.m
~2.

~fi

~1.

~ kJ2

10-’L-

2X10-2 III 1 I 1 I III

10-2 10-’ ~lo 10° 10’

.1
0

-.2

-.4

-.6

-.8

-1.0

-1.1

A.MAGNITUDEOF R; VS, ah WITH !(OAS A PARAMETER

I

! I I f I I I I I I 1 I 1 I I I I I I I I J I

102 10-’ !j ‘ “ ,10°

B,PHASE OF R; VS.84 WITH ‘~ AS A PARAMETER

10’

EFFECT OF ADMITTANCESON RESPONSEOF CYLINDRICALLOOP BELOW GROUND

PLANE,COVERED WITH INSULATINGDIELECTRIC,& WITH HIGHEXTERNAL

CONDUCTIVITY: ~ ~O



2x’00r---

2X

r‘/a~2.
I 4

10-1:

102’ f
io-z 10-’

.=

/’— I
#l I 1 I I I I !1 I I 1 I I I !1[

/0°

A. MAGNITljDEOF R&vgVS. 86 WITH ‘~ AS A PARAMETER
.1 I 1 1 I 1 I 1 1 I I 1 I I I I 1 I I 1 I I i 1

0

2.

-.2-

/
-.4-

-.6-

-.8k

-1.o~

-/./+ 1 I I I III I I 1 I I I I I I I t I I f 1 !,

2X10-2 10-i 8’ 10’ ‘“” ‘ 1(
1(J

84 WITH ‘/aAS A PARAMETERB. PHASE OF R:vg VS.

10’

..

2X101

FIGURE46,RESPONSE CHARACTERISTICSOF CYLINDRICALLOOP BELOW GROUND PLANE,

COVERED WITH INSULATINGDIELECTRIC,& WITH HIGHEXTERNAL

CONDUCTIVITY:gc=O
92



2x’00r—————

‘2

A.

Id.:

xI?12’-2I
10 I

yc/ :()
c

.1

.3

I
-1
0. 8/a

MAGNITUDE OF R;vgvs.8/a WITH ‘CL AS A PARAME

i I I I I I i 1’

0
10’

.5

0

.&l

–1.0

–1.5

–2.0

–2.5

—z (-IL

TER

I I i I I I I I I I I I I I I I I i I I I I I

%#,

tasymptotic to -‘/
4

.1

.3

3T/4-asymptoticto-
.

I I I I 4 I I I I I I I I I I I I I I I I I I
d.w

I62 16’ 8/0 I0° 10’

B.PHASE OF R;vgVS. 8/0 WITHgc/rAS A PARAMETER

FIGURE 47. RESPONSE CHARACTERISTICSOF CYLINDRICAL LOOP BELOW GROUND

PLANE , COVERED W

EXTERNAL CONDUCT

TH INSULATINGDIELECTRIC,& WITH HIGH

VITY ‘ ‘/a= 2.0

93



8.

6.
ah

4.

2.

01 I I ! 1 I I 1 I I
o 2. 4. ‘c/= 6. 8. 10!

‘~r WITH ‘/aAS R PARAMETERA. ‘/aVS.

10. \ 1 I I I I i I II J I 1 I } i 11/ I I I i I I III

6. –

%

4.

t

2.

(d I I I I I I Ill I I I I I I Ill 1“ I 1 I I Ill

“ /(’j2 ,()-1
% .

‘ ~~o 101
9~

B.‘/aVS. ‘/0 WITH /@ AS A PARAMETER

FIGURE48. DEPENDENCEOF FREQUENCY RESPONSEON CABLE CONDUCTANCEFOR
CYLINDRICALLOOP BELOW GROUND PLANE,COVEREDWITH INSULATING

DIELECTRIC,& WITH HIGHEXTERNAL CONDUCTIVITY:lR;vgl= ~~

94



2 x 10° I I i I I I I I I I I I i I I I i I I I I I 11”

dla ~ 5.
I0° :

Id

I ~ /// I J

—
.- L

L05-J

2 x 162-2 I 1 I I I I [ I I I I I I I I I Il.

10 16’ 8/0 10° 10’

A,MAGNITUDE OF Ry VS. 8/0 WITH ‘/a AS A PARAMETER

.25

0

-.25

=50

–,75

–1 .00 !2 I I I I I I Ill I I I I I 1111 I I I I I I Ill

10 Id 8/0 I 0° L 10’

B.PHASE OF Ry VS.?a WITH ‘/0 AS A PARAMETER L

FIGURE 49. EFFECT OF ADMITTANCES ON RESPONSE OF EXPOSED CYLINDRICAL LOOP,

COVERED WITH INSULATING DIELECTRIC, & WITH HIGH EXTERNAL -

CONDUCTIVITY : 9C:0

95



.2x 10° I I I I I I I I i I i i I i I I

2x

10° _“

I(7_

I62 t I I I I I II I I I I [ I I I I I I I I I 1 IA

Id* d 1+ I 0°
u

A,MAGNITUDE OF RavgVS.%d

.25

0

-.25

–.50

–.75

-I loo

i I 1 I I I I I i I I I I I I I

- asymptoticto- ~/4

I01

I I f I I I I I I I I I I I I t. I I I I I I 1

1(52 16’ . 10° 10’ -8/d ‘ .. ~

8/d‘. ‘“AsE‘F ‘avg ‘s”

FIGURE 50. RESPONSE CHARACTERISTICS OF

WITH INSULATING DIELECTRIC,

CONDUCTIVITY‘ 9C=0

EXPOSED.CYLINDRICAL LOOP, COVERED

AND WITH HIGH EXTERNAL

96



2xlo0 I [ i i IiiI i I I I I 1 I I I I I I I 1 11-

,~o

.1

10-’

2x10-2 I I I I I i

10-2 10-’ 8/a 10° 10’

A MAGNITUDE OF Rw ~ vs.84 WITH ‘qa AS A PARAMETER
.25 I I I I I iII I I I I I JII I I I I I iII

o

-.50 -

-1,00–

-1.50-

-175” I I I I I 1II

102 10-’ 8, 10° 10’

9
‘a

B.PHASE OF Ravgvs.~a WITH $& AS A PARAMETER

FIGURE51.RESPONSE CHARACTERISTICSOF EXPOSED CYLINDRICALLOOP,COVERED

WITH INSULATINGDIELECTRICl& WITH HIGH EXTERNAL CONDUCTIVITY’$0‘Ii)

97

*



ya

o~ t I ! I t I I 1 1 !
o 0.2 0.4 g~, o,6 0.8 1,

B.(SCALEOF A EXPANDED) U ~““ ‘

FIGURE52.DEPENDENCEOF FREQUENCY RESPONSE ON CABLE CONDUCTANCE

FOR EXPOSED CYLINDRICALLOOP,COVERED WITH INSULATINGDIELECTRIC,

AND WITH HIGHEXTERNAL CONDUCTIVITY‘lROvgl=~,

98



! Appendix

Numerical Techniques for Computer Calculations

D. E. Brannon A2C F. Brewster, Jr.
IlikewoodCorporation Air Force Weapons Laboratory

r.

Y’
. .

.:

.,
.

.“

?.
,.
L
=!
7.
2’ ..

99



The numerical results plotted in figures 3 through 38 and 40 through 52
were calculated using the CDC-6600 in the Weapons Laboratory at Kirtland Air
Force Base. Most of the numerical techniques programmed for these calculations
are straightforwardand require no explanation. A description of the methods
used to generate the first, second, and third kinds of cylindrical Bessel
functions, appearing throughoutlthe equations in the test, may be found in a
previously published math note.

Upper bounds on truncation error when calculating the values of infinite
series representing: (1) the internal admittance of a cylindrical loop, and
(2) the external admittance of an exposed cylindrical loop are derived below.
A general term of the summation in the equation for the normalized internal
admittance (equation (46)) is in the form

(Al)

where $ is the angular gap half width, and Jn(z) the nth order Bessel
functio~ of the first kind. To derive an expression for an upper bound to
the relative error when forming the sum, a limit must be obtained for

where N is the
allowed.

w

x An(z,$o)

n=N

(A2)

order of the term past which truncation of the series is

It can be shown that, for n>>~~

J
n+l(z)
Jn(z)

= z/(2n+l) (A3)

(For the admittances, the summations were carried in every instance until
n= 100IzI + 100.) Then,

An z zJo(n$o)cos(n@o)/n (A4)

Also, for n$o>lO,

lJo(n@o)l<0.8/fi
..

(A5)

1. Lindberg, R. C., “Bessel, A Subroutine for the Generation of Bessel
Functions with Real or Complex Arguments;” Mathematics Note 1, The Dike-
wood Corporation, October 15, 1966.
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and a criterion was set such that N>lO@~lt thereby causing

so that c, the absolute error, can be expressed

a

p

z cos(n+o)
An ~Oe8

3/2$ 1/2
nn=N o

~ ~().*1

so that an upper

(A6)

as

(A7)

E
a

3~2$ 1/2
~0.81zl

J

1
d(n@o), (A8)

n ~$ (n$o)3’2n=N o
0

bound for absolute error may then be expressed as

~<, 1.6421

-- “

The relative error,

where E is an input value

a more

of the
desired E = .oolj. In practice,

(A9)

informative error expression, is expressed

(A1O)

allowable relative error (generally
our relative error was calculated excluding

the zero order term of the summation, because it was more convenient.

A general term in the equation for the normalized external admittance
of an exposed loop (equation (74)) may be expressed as

..
It can further be shown that, for n>~zl(again, n ~ 100IzI+1OO),

(All)

(A12)
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thereby reducing che general term to

An ‘ ~ Jo(n$o)cos(n+o) (A13 )

and the same error criteria apply to this expression as derived for the
calculations of the normalized internal admittance. Here again our relative
error calculations were made excluding the zero order term of the summation.

A slightly different approach was used to obtain an upper bound on
truncation error for the infinite series in equation (25). A general term

summation is performed until n>~zl then

An(z) =
nH’(2~z)
n

preceding argument. The ratio of adjacent

for that series has the form

If the

from a

A
~=

H(2!(z)
Rn =

n
An — 72)(2)ni-2

‘n+2

But, it can be shown that

and the ratio of successive terms then becomes

and therefore, for z fixed and

limit Rn = O.

n+co

Further, R is monotonically decreasing as n+~ .
allow an u~per bound on this absolute error to be

(A14)

(A15)

terms is then

(A16)

(A17)

(A18)

.. .

(A19)

These conditions then
expressed as

.
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~< +J_- %-21 - 1%1
(A20)

where N is the index of the last term (even) taken in the summation, and
where the summation is perf~rmed only over even numbered n. The relative
error is then calctilatedin the normal manner, yielding

(Again we set E =
for short circuit
only sums where n

<E, (A21)

.00L) In practice, our calculation of relative error
current ratio omitted the zero order term and involved
> 2. Because of the very rapid convergence of the T sum,

T.edid not require that n Z

A few general comments
program might be made. Only
calculations practical. The

100IZI +loo.-

about the operating characteristics of the
the high speed of the CDC 6600 made these
technique for forming the Bessels to a limited

number of orders appears in Mathematics Note 1. We required 100,000 orders
for each plotted point in some cases, so our program was necessarily different
from the program in the mathema~ics note. All calculations-gatisfy the
requirement that either the relative error was less than 10 , or 100,000
orders had been calculated per point.

An early series convergence in the sums for T (Figures 3,4) generally
satisfied the error criterion described above in fewer than 20 orders.

formalized internal admittances (Figures 6,7) all converged so slowly -2
that 100,000 orders were calculated for each point, at which time 10°3 ~ e <10 ●

There was a direct connection between the magnitude of the arguments of th~ -
Bessel functions and the relative error,

Nomalized external admittances (Figures 8,9) for the loop below ground
plane involved only the first 2 orders of Bessels.

Another slow convergence was encountered in the calculations for
normalized external admittances for the exposed loop (Figures 10,11),
This time, after calculating 1001000 orders for each point, our relative
error was still of the order 10-3<= <2x10-A.-—

The rest of the quantities
combinations with the quantities
from handbooks. In either case,
was maintained throughout,

&
.

were obtained,.eitherfrom arithmetic
described above or from substitutions
the accuracy we had already achieved
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