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Abstract 

I In efficiently characterizing the surface response Of electrOmagn+ 
: scatterers one  often uses the singularity expansion method (SEM) whd-w 
3q scattering calculations or from experimental data. This is particularly 
'jcient at intermediate and  lower frequencies (or intermediate and  later 
Z?S) . This note discusses another technique to speed UP convergence, Par- 
'-U'arlY at lower frequencies. Defining a  set of quasi-static modes,  these 
' be  incorporated into 'SEM via mod ified pole series. 
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Abstract 

In efficiently characterizing the surface response of electromagne- 
tic scatterers one often uses the singularity expansion method (SEM) whether 
from scattering calculations or from experimental data. This is particularly 
efficient at intermediate and lower frequencies (or intermediate and later 
times). This note discusses another technique to speed up convergence, par- 
ticularly at lower frequencies. Defining a set of quasi-static modes, these 
can be incorporated into SEM .via modified pole series. 

singularity expansion method (SEX), scattering, magnetic fields 



I. Introduction 

In'experimental characterization of the surface response of electro- 

magnetic scatterers one often uses CW illumination in an anechoic chamber 
[2]. This data can in turn be used to obtain SEM parameters (natural frequen- 

cies, natural modes, and coupling coefficients) provided sufficient samples 

for surface position, direction of incidence, and polarization are available 

[9, 10, 111. One also needs a sufficiently wide band of frequencies for this 

purpose. 

At low frequencies (small compared to first, natural frequency) 

quasi-static concepts apply. One can define a small set of quasi-static modes 

which are quite adequate for characterizing'the response in this region of 

frequencies. One might then separately measure the auasi-static response, 

perhaps in a facility specially designed fop this purpose [4]. 

The quasi-static modes can be combined with the SEM response to give 

what might be termed a modified pole series [S, 141. This form of expansion 

is developed and discussed herein. 
. . 
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II. Ouasi-Static Modes 

As a first part of this development consider the response of some 

scatterer, approximated as perfectly conducting, at zero frequency. This 

leads to what is usually referred to as the static or quasi-static response. 

As a practical matter what is important is that the object dimensions be small 

compared to the radian wavelength x of the electromagnetic fields. It is well 

known that the scattered far fields under such conditions are dominated by the 

induced dipole moments (electric and magnetic) through polarizability tensors 

[15 (section 1.4:1.4)]. Here however, we are concerned by the surface current . 

and charge densities. Let us then construct an appropriate set of quasi- 

static modes for the surface-current and surface-charge densities. For this 

purpose let us consider the perfectly conducting scatterer with surface S and 

of finite size (contained within a sphere of finite radius) as illustr_tated in 

fig. 2.1. 
where "r 

The outward-pointing unit normal vector is designated as ls(Fs) 

s is a position on S. 

A. Surface-charge-density modes 

Consider the special problem that there is a qu_ai-sfatic incident 

electric field in, say, the x direction. Let the surface-charge density be 

designated as p, (0) ('Fs) in normalized form, i.e.,- if the x component of the 
incident electric field is Ex then 

(2.1) 

as the response surface-charge density. Similarly there are, quasi-static modes 

for response to both y and z components of the incident electric field. Note 

that in this form the ,quasi-static surface-charge-density modes are 
dimensionless. 

The surface-charge density at zero frequency (s = 0) is then written 

as '. 

(2.2) 

where the vector surface-charge-density mode is 
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Figure 2.1 Perfectly-Conducting Finite-Sized Scatterer. 



;s(o+“,s) = lxp~O)(“,) + fyP~O)(fs) + Izp~O)(Ts) (2.3) 
X Y Z 

The direction' of the quasi-static incident electric field is designated by the 
unit vector fe, so that 

t = Eofe 

Then the zero-freauency surface-charge density is 

~~($0) = ~~~~~~ l s 
go) (Fs) 

Note that O(O), p(O), p(O) can all be separate a x Y Z 
ly ca lculated and/or 

measured in appropriate experiments. If the scatterer of interest has'various 

symmetry properties, these can be used to define the center of coordinates and 

align the coordinate axes to cast the quasi-static surface-charge-density 

modes into some simplest canonical form. 

(2.4) 

(2.5) 

. . i 

B. Surface-current-density modes 

Let there now be a quasi-static magnetic field in, say, the x 

direction. Let the surface-current density be designated as J, "(")(Ts) jh 
X 

normalized form, i.e. if the x component of the incident magnetic field is H, 

then 

HX 
+Hx;Lo+fs) 

X 
(2.6) 

as the response surface-current density. Similarly there are quasi-static 

modes for response to both y and z components of the incident magnetic 

field. Again the surface-current-density modes are dimensionless. 

The surface-current density at zero frequency is then written as 

i&;r,O) = ik l JlO’(?,) 

where the dyadic surface-current-density mode is 

(2.7) 

._ 
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(2.8) 

ic inci The direction+of the quasi-stat 
unit vector 'h' so that 

k= 

dent magnetic field is designated by the 

Ho'h (2.9) 

Then the zero-frequency surface-current density is 

i&,0).= Holh l $')(Fs) (2.10) 

- An alternate formulation is to consider the surface magnetic field 

and define modes as a . 

fi(O)(F ) = 
X S 

-T,(F,) x ;I”‘(+r,), ;+,, = ls(Fs) x p(“r,) (2.11) 
X X 

Y Y Y Y 
Z Z 

Z Z 

, . ‘ 
+ 

where 1S is the unit normal vector' (outward pointing) on S as in fig. 2.1. 

Defini'ng . 

K(O)(‘,,) = Px$O)(“rs) .+ lylipS) + ‘z%!o’(“s,- 

we have 

@)(“r )‘= $(fs) x J4”’ (F,) , ii”’ (+rs) = f,(PJ x dO)(“r,) 
S 

In this form the quasi-stati'c surface magnetic field is 

ii ( i$o) = Hofh l fi(‘) (Ts) 

(2.12) 

(2.13) 

(2.14) 

where the magnetic field is defined just outside S. 
+ 

Note that one should be careful concerning Js. If S is degenerate 

in the sense that some portion is collapsed so that both sides are "outside" 
then (2.11) must be interpreted as for the surface-current density on one a 

side, not the sheet current density involving both sides. , 



0 C. Some comments 

While one is typically interested in the response of the scatterer 

to an incident plan: wave, $he results of this .section do not require such. 

In a plane wave 1, and lh are orthogonal, but these results are more 

general. 

On S the equation of continuity is 

vS 
l ;s(Ts,s) = -qs,s) 

With zs bounded as the complex frequency s -f 0 then 

vS 
. Js("rs,O) = 0 

implying 

vs l Js 
-i(o)(p,) = 0 

X 

(2.15) 

(2.16) 

(2.17) 

Y 
Z 

Thus the quasi-static surface-current-density modes are divergenceless or 
solenoidal, - and thus not in effect the same modes as the quasi-static surface- 

charge-density modes. 

In a previous paper [3] the question of possibly dividing the 

surface current density according to the surface divergence (giving p,) and 

the normal component of the surface curl (giving equivalent magnetic current 

density k) has been considered. This has been suggested as a means of 

cateqorizing eigenmodes and natural modes [9]. In the present context since 

the auasi-static surface-current-density modes have zero divergence and are 

thus magnetic modes with non-zero normal surface curl. The surface-current- 

density modes corresponding to non-zero Ts("r,,O) must have zero amplitude at . 
s = 0 and are not the quasi-static surface-current-density modes considered 

here. Viewed another way the quasi-static incident electric and magnetic 

fields are independent of each other, (0) 

0 

and 7(O) 

and so the amplitudes of the p, *modes 

‘S 
modes are unrelated to one another. 
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III. Modified Pole Series a 
In order to assure a more rapid convergence of an SEM expansion (in 

terms of poles) at low frequencies it may be advantageous in some cases to 

first pull out the zero-frequency (quasi-static) term, which is of course the 

exact result at zero frequency. If l(s) is a meromorphic function then we 

may expand it as 

t(s) = 1 R,(s - s,)-1 + entire function 
a 

(3.1) 

where only first-order poles are assumed for this simple analysis. 

Now an alternate representation, assuming l(s) is analytic near 

S = 0, is 

y(s) = 5(O) + 1 R,[ (s - sa)-l -t s,l] + entire function 
a 

(3.2) 

In this form any remaining entire function must also be zero at s = 0. Note 

that the inverse. transform of "g(0) (a constant) is just a delta function 

NMt), so such a term has been removed from the remaining entire function. 

This form of an SW representation has. proven useful in representing 
the input admittance (with :(O) = 0) of a thin-wire antenna [l, 7, 81. In 

peneral this is a very useful form for synthesizing equivalent circuits in 

which the elementary circuit modules corresponding to poles should have either 

zero admittance or zero impedance at s = 0 [S, 141. Note that (3.2) is not 

appropriate if there is a pole at s = 0. As discussed in [5, 141 there are 

simple asymptotic forms of admittance and impedance of various types of ' 

finite-size antennas (in free space) limited to a positive constant times s-l, 

1, or s. Similar behavior applies near s = 03, being just a .positive 

constant in typical cases. -This severely restricts any allowable entire 

function for the case of antenna impedance or admittance. 
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A more general form of (3.2) involves a time shift as [6, 13, 141 

-st 
?j(s) = e %(O) + Ce 

ha- s)to 

a 
R,[(s - sa)-l + sa-l] 

+ entire function (3.3) 

This form can also be applied in (3.1) without the 5(O) term pulled out. In 

time domain (3.3) gives 

g(t) = wu Lot - toI + Ce 
'atO 

R,[e 

sa(t - toI 
u(t 

a 
- to) + s,ls(t - to)1 

+ entire function (transformed) 

to 5 turn-on time (3.4) 

0 

Note that in this form the residues have not changed since if s = s the 
a 

corresponding expqnential is one. 

This shifted form is not appropriate for input admittance or 

impedance since passivity requires that current and voltage begin 
simultaneously at the port.. However, it is quite appropriate for representing 
the response of a scatterer to an incident field. Clearly to should be at 
least as early as the response (say surface current density) begins, so as to 
minimize the necessit,v for an additional entire-function contribution. Note, 
of course, that 3s) can be a vector or dyadic function, and depend on 
spatial coordinates as well as s (or t). In this context to can depend on 
coordinates on S. While this establishes how late we might choose to there is 
another question concerning how early we might choose to; this question is 

discussed in [12] based on the minimum to allowed such that the pole series 
converqes to a finite value for all times. If in addition we require to to be 
chosen independent of angle of incidence and polarization, then one is led to 

a concept of a minimum circumscribing sphere containing the scatterer, the- 

center of this sphere being the origin of coordinates, or the position the 

leading edge of the incident wave passes at t = 0 [12]. In this context to is 
-a/c where a is the radius of this sphere. However, this result is limited to 
a class of scatterers for which 2a is the maximum linear dimension of the 
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scatterer. While this establishes some limits on to it does not in itself 

necessarily eliminate an -additional entire function. 
e 

. 
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e IV. The Incident Wave 

In section 2 it was pointed out that the quasi-static modes were 

excited in proportion to the quasi-static electric and magnetic fields (for 

surface charge denisty and surface current density respectively). This is 

quite general for various forms of incident fields. 

For various applications the incident fields are in the form of a 

plane wave. Referring to fig. 2.1 we have a set of orthogonal unit vertors as 

. 

8 

+ + -f + -f + + + + 
1, x 1, = 1,) 1, x 1, = 1,) 1, x 1, = 1, 

where 

1, z direction of incidence 

lp = ;, or is (or some,combination) 

z direction of polarization 

(of the incident electric field) 
An incident plane wave then takes the form 

;(inC)(+) -t 
= E2f2 (t - lid/c) i, + E,f,(t - iIJ/C) i, 

= k [E2f2(t - i&c 

or in frequency domain 
9 -f 

T(inc) -sl "/ - 
(;f,s) = E,e Ior c f2 (s)i2 + Eae 

-sl 
E 

1-r -+/c - 
f3 

,) i, 
+ 

- Esfs(t - l&c 

Y(inc) 
"r s 

, -sl&c - 
H ( , ) = k [ Ep f2w i, 

-slJ/c N 
- Ese f3b) ;,I 

(4.1) 

(4.2) 

(4.3) 

(4.4) 
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where f2 and f,' are waveforms and E, and E3 

dimensions V/m. 

are scaling constants with 0 

Note that as s + 0 the case of a p 

T(inc).+ N _ .T 

lane wave gives 

E IO, 0) = E2f2(0)12 + E3f3 (0)i3 

= EoTe 

W5), 

Y- inc) 3 
H( WV = +- [E2;2(O);3 - E,;, (o)i2j 

0 

= Ho;h 

From this ;, and Th can be determined. In an experimental situation the 
incident wave can be controlled such that, say 

-f + 
1, = 12, E, = 0, E, = E2r;2(0) 

(4.6) 

+ + E2 EO $, = 13, fl, = z, f2 (0) = z, 

Thus the quasi-static fields in section 2 can be easily related to some 

assumed plane wave. 



0 V. Response on Scatterer Surface 

A. Surface-current-density.representation 

Applying the modified pole series as in (3.3) to the surface- 

current-density representation using class-l coupling coefficients gives [13]. 

-f 
J&, s) = Hojh l .J, W) (q,) 

+ 1 ‘F b ) N,& ,ip) 5, (Ts) e 
(Sa’- s) to 

a'p ' a 
{ [ s - s,] -l + g1 } 

, a 

(5.1) 

na (i;,ipl = 
<js (“r ); t(‘“q”rs*sa)> 

a S 

‘3, (Q; & g. $9 $; ; 3, (;;I> 
a 

s)(s=5 
a a 

The detailed formula for calculating the coupling coefficient from an integral 

eauation (as above) is not needed if one is determining na from empirical 

data, as in an anechoic chamber [2]. In this case the n are merely 

empirical parameters, as is to, the turn-on time for an optima: fit to the 

data which may involve various 11, 1 
P' 

and Ts sample's [9]. 

This form can also be carried into time domain as in (3.4). 

B. Surface-charge-density natural modes 

From the continuity equation (2.15) surface-charge-density natural 

modes can be related to surface-current-density natural modes via 

ps (Ts) = - $- vs l 3, (F5) 

a a a 

(5.2) 

13 



Including the speed of light c the ps modes have the same dimensions as the 
-t 

jS 
modes. As discussed in [3j not a71 is modes need have associated ps 

mazes, but may be basically H modes withc(a non-zero normal component 0: the 

surface curl. This parameter (k,) could also be expanded in natural modes as 
above. 

C. Surface-charge-density representation 

Again applying the modified pole series as in (3.3) to the surface- 

charge-density representation gives 

+ up 
a,P 

+ + 
Is,h,(llJp) + ps (+Ts) e ISa - a0 {[s - say + s;l) (5.3) * 

ci 

Note that while the auasi-static part is quite separate from the corresponding 
part of the surface current density, the poles are quite related between 

current and charge via the continuity equation (2.15). 

Similarly this form can be carried into time domain as in (3.4). 
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a VI. Some Comments 

In fitting data on the surface response of scatterers in frequency 

domain (s = ,jw) one is often confronted with limited frequency ranges. If the 
region of concern is the resonance region and,lower, then one would like to 

tailor the representation to most efficiently fit this. The quasi-static 

response miqht be measured separately [4]. This can in turn be combined with 
more:conventional data (as from an anechoic chamber [Z]). At least at the 

lower frequencies this should be an efficient procedure since this type of 

modified pole series is exact as s + 0. 

As one goes up in freauency, successive poles enter into the data. 

There is still the auestion of to. This is a complex question theoretically 

u21- However, to is another parameter which can be chosen for a best fit to 

the data. One should note, however, that the best choice for one set of 

excitation conditions is not necessarily the best choice for another such 

set. One would like to choose to based on some optimum coordinate center, and 

independent of observation position and direction of incidence to the extent 

l feasible. 
While this is an efficient representation in frequency domain, it is 

not necessari1.y optimal in time domain. As in (3.4) there is a series of 

delta functions t8 contend with. However, one can use the SEM parameters 
obtained from using the present representation in any other SEM representation 

(sav, the usual poles) as seems most accurate for the problem at hand. 

15 

. 



REFERENCES: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

F. M. Tesche, "Application of the Singularity Expansion Method to th'e 
Analysis of Impedance Loaded Linear Antennas," Sensor and Simulation'Note 
177, May 1973. 

V. V. Liepa, "Sweep Frequency Surface Field Measurements," Sensor and 
Simulation Note 210, July 1975. 

C. E. Baum, "Measurement of the Surface Curl of the Surface Current 
Density," Sensor and Simulation Note 286, November 1984, and Electro- 
magnetics, 1986, pp. 145-160. 

V. V. Liepa, D, L. Sengupta, and T. B. A. Senior, "Magnetostatic Surface 
Field Measurement Facility," Sensor and Simulation Note 293, June 1986. 

c. E. Raum, "Single Port Equivalent Circuits for Antennas and 
Scatterers," Interaction Note '2.95, March 1976. 

C. E. Baum, "Emerging Technology for Transient and Sroad-Band Analysis , 
and Synthesis of Antennas and Scatterers," Interaction Note 300, November 
1976, and Proc. IEEE, 1976, pp. 1598-1616. 

B. K. Singaruju and C. E. Baum, "A Procedure for Constructing Single Port . 
Equivalent Circuits from the SEM Solution," Interaction Note 377, 
September 1978, and C. E. Baum and B. K. Singaraju, "The Singularity and 
Eiqenmode Expansion Methods with Application 'to Equivalent Circuits and 
Related Topics," pp. 431-452, in V. K. Varadan and V. V. Varadan, 
Acoustic, Electromagnetic, and Elastic Wave Scattering - Focus on the T- * 
Matrix Approach, Pergamon, 1980. 

G. W. Streable and L. W. Pearson, "On the' Physical Realizability of 
Broad-Band Equivalent Circuits for Wire Loop and Dipole Antennas," 
Tnteraction Note 385, Flay 1979, and (same authors) "A Numerical Study on 
Realizable Broad-Band and Equivalent Admittances for Dipole and Loop 
Antennas," IEEE Trans Antennas and Propagation, 1981, pp. 707-717. 

C. E. Raum, "A Priori Application of Results of Electromagnetic Theory to 
the Analysis of Electromagnetic Interaction Data," Interaction Note 444, 
February 1985. 

10. D. A. Ksienski, "Pole and Residue Extraction from Measured Data in the 
Frequency Domain Using Multiple Data Sets," Mathematics Note 80, October 
1984, and Radio Science, 1985, pp. 13-19. 

11. D. A. Ksienski and T. M. Willis, "Numerical Methods of Noise Reduction. 
for Freauency Domain SEM," Mathematics Note 81, October 1984, and 
Electromagnetics, 1984, pp. 393-405. 

12. C. E. Paum and L. W 'Pearson, "On the Convergence and Numerical 
Sensitivity of the SEM f;ole Series in Early-Time Scattering Response," 
Electrqmagnetics, 1981, pp. 209-228. 

16 



6 
. 

T 

0 13. C. E. Baum, "The Singularity Expansion Method," in L. B. Felsen (ed.), 
Transient Electromagnetic Fields, Springer, 1976. 

14. C. E. Baum, Toward an Engineering Theory of Electromagnetic Scattering: 
The Singularity and Eigenmode Expansion Methods, 'in P.L.E. Uslenghi, 
Electromaqnetic Scattering, Academic Press, 1978. 

15. K.S.H. Lee (ed.), EMP Interaction: Principles, Techniques, and Reference 
Data, Hemisphere Press, New York, 1986. 

17 


