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ABSTRACT

For some applications one desires a uniform quasi-static electric field.

@ Along the lines already well developed concerning magnetostatic fields, in

this case electric potential is specified on a spherical surface. Dividing

the surface on lines of constant latitude (polar angle) the resulting bands

are constrained to have particular voitages. The particular case of three

conducting surfaces with voltages VI, 0 and -Vl is considered in detail with

optimum angles 81 and”T - 01 with e, =63.43°. This makes for a very uniform

electric field near the center of the sphere.

electric fields, spherical surfaces
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FOREWORD

‘Sure there is music even in the beauty, and the

silent note which Cupid strikes, far sweeter than

the sound of an instrument. For’there is a music

wherever tinereis a harmony, order, or proportion;

and thus far we may maintain the music of the

spheres.”

Religio Medici, by
Sir Thomas Browne
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1. INTRODUCTION

Much attention has been paid over the years to the

form magnetic fields. There are the well known Helmholtz

production of uni-

and Maxwell coils

involving, respectively, 2 and 3 coaxial coils optimally positioned on a

spherical surface with optimally specified currents for maximum magnetic-field

uniformity near the center of the sphere [6j. This case has been extended to

an arbitrary number of coils on a spherical surface [51. The criterion of

optimum has traditionally been to make the maximum number or derivatives of

the field zero at the coordinate origin (center of the sphere). A recent

note describes the construction of a Helmholtz coil for scale-model measure-

ments E?].

The dual problem, which has received much less attention, is the pro-

duction of uniform electric fields. For scale-model measurements of surface

charge density on “perfectly conducting” objects it would be useful to have

some comparable kinds of electrostatic uniform-field generators. This note

addresses a certain kind of spherical structure which specifies electric “

potential on a spherical surface to produce a uniform electric field near

the center of the sphere.

9
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II. SLOTTED SPHERE: GENERAL CONSIDERATIONS

As in Figure 2-1 consider a sphere of radius a. On this spherical

surface let us specify a potential V(e). As a practical matter this surface

is constructed of segments of “perfectly conducting” metal with potentials

Vn with

V(e) = Vn for en-l< 0 < en

n=l,2,. N● .,

(3.=0

‘N
=Ti (2.1)

The usual Cartesian, cylindrical, and spherical coordinate systems are also

indicated in Figure 2-1 with

x = Y cos(e) , y = Y sin(e)

z = r cO.3(e)

Y = r sin(e) (2.2)

As a practical matter-(2.1) is approximate in that each 13nis actually

the center of a narrow slot which insulates one conducting segment from the

next. This slot is assumed to be sufficiently narrow that it negligibly

affects the electric field near the center of the sphere. A particular

advantage of this design concept is that by specifying the potential on r=a,

the presence of conductors and insulators outside the sphere (r>a) does not

affect the potential and electric field for r<a. Such

items might include various electric equipment used to

distribution on r=a.

additional external “

enforce the potential
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Figure 2-1. Perfectly Conducting Sphere with I!MrrowSlots at
Constant Latitudes
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In the usual spherical coordinates the solution for the Laplace

equation for the electric potential is expressed as

a= x a rn Y
n,m,g (6,0) + a’ r-n-l ~ (e,@)

n,m,g n,m,g n,m,g
n,m,e

o

Ynm,e(e,o) = P$) (cOs(e))9 0
{% w}

= scalar spherical harmonics

m
~m

P:%5) = (-l)m (1-$2) Q-- Pn(O
dCM

= associated Legendre functions

Pn(,) = P:%) = ~~ [(g’ - I)n]
2n n! dtn

(2.3)

~ Legendre functions

non-negative powers needNow restricting our attention to O S r S a only the

be considered. Furthermore, noting that the assumed axially symmetric geome-

try allows only an a’xiallysymmetric potential we can now write

m

Q= x ar
n

n pn(cOs(e))

n=O

(2.4)

Constraining the geometry (and the potential) to be antisymmetric with respect

to the (x,Y) plane [3] we also have

-,2

Q=
z

ar n pn(c05(e)) (2.5)
n

n=l

m
so that only odd n need be considered.

.
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The scalar spherical harmonics are orthogonal on the unit sphere

[4 (319)] as

T 27

Jf Yn,m,0(9,$) Yn,,m,,O,(O,$I)sin(e) d+ de

00

[[= J + Ie ~-1
2n (n+m)!

l’o,m]~- ‘n,n’ ‘m,mf 10,0’
(2.6)

9 0,0

For our case of axial symmetry we have

o=e, m.o

T 21T

ff

4’lT
Pn(cos(e)) Pn,[cos{O)) sin(e) do dO = —2n+l ‘n,n~

00

%’..

J Pn(cos(e)) Pn,(cos(o)) sin(e) de =& ln,n,2n+l
o

{

1 for n = nt
1 .
n,n’ O for n + n’..

= Kronecker delta

Now solve for the an by noting that

O = V(e) for r=a

This gives

--K

a . ~-n 2rI+l
n 2

f
V(e) Pn(cos(9)) sin(e) d9

o

o
(2.7)

(2.8)

(2.9)
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as the general solution for an arbitrary axially symmetric potential distribu-

tion on the spherical surface.

The static electric field is given by

(2.10)

For the axially symmetric case there is no @ component. Consider the n=l term

as

‘1
=a

1
r PI (cos(6)) = at r cos(0)

=az1

For this special case we have the corresponding electric field as

$2= -V01=-a17z

(2.11)

(2.12)

which is a uniform electric field in the z direction.

This uniform z-directed electric field is the important term in our

expansion. If all other terms were zero this would be the ideal result. From

(2.7)‘and (2.9), if we were to choose

v
ideal(e) = - a ‘o ‘1 ‘coS(e)) = - a ‘o ‘Os “)

this would give

[

-E. for n=l
a=n

o for n+l

giving an electrie field

(2.13)

.

(2.14)

“ (2.15)
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9
Our problem is to choose V(6) in a way that approximates (2.13) in the

sense of making an= O for as many n*l as possible with emphasis on the values
e

of n near 1 since they are most significant for r near the origin. Viewed

another way the terms for n = 2,3,... give the next derivatives for the

electric field at r=O.

.

●
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III. TWO-SLOT CONDUCTING SPHERE

Now consider the special case of N=2 as illustrated in Figure 3-1

Evidently constraining

02
=IT - e, , v, =-v , V2 =0

3

gives symmetry about the (x,Y) plane so that only n = odd terms in the

potential are included as in (2.5). The electric field willscale with

single independent potential VI, leaving only 61 to be varied so as to

eliminate the n=3 term.

From (2.9) we have

IT
7

a3
= a-3 —

2
f

V(6) P3 (cos(9)) sin(8) d(3

o

‘1
= a-3 7 V

1
J

P3 (cos(e)) sin(e) de

u

so that

1

= a-3 7 V
1 I

P3(&) de

cOs(eq).’

From (2.3) we have

i

1

a3:a
-3 7 v,”; :4

-“+ E2 1COs(el)

Setting this to zero gives

5 COS’ (e,) -’6 COS2 (t32)+ 1 = O

.

(3.1)

the

(3.2)

(3.3)

(3.4)

(3.5)

10

I

I



- ==

a) TOP VIEW

●

Ground Plane-.—— ——. — —.-

2-

b) SIDE VIEW

Figure 3-1. Case of Optimally Chosen Two Symmetrical Slots

.-
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which is solved by the usual quadratic formula to give

Cosqel) = 1, + (3.6)

Neglect the case of 1 which is a degenerate case giving no electric field at

the origin. Thus we have

It may

coils,

sphere

Cos(el) = *= .4472 (3.7)

‘1
= 63.43°

Cot(e,) = ;

be observed that this solution is the same as that for the Helmholtz

the two coils being replaced by slots at the same positions on the

containing the two coils.

Having found the special angle we need

-m
3

al=-z
1

V(e) P1(cos(0)) sin(e) de

o

3
‘1. .

.—
a ‘1

f
pl(cO.s(e))sin(e) de

o

1

; v,.—
f

P,(&) d~

cOs(el)

(3.8)
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3 c’
al=dl T

1

cos(t+)

1=- I- COS2
2a

(61)] = ~ sir-l’(01)

This is a very convenient result wh_ichgives, when compared to (2.14) and

(2.15), the electric field at the origin as

(3.9)

With these results the first error term corresponds to n=5. The fourth de-

rivative is the first non-zero derivative of the field at the origin. This

also corresponds to the Helmholtz-coil case.

Figure 3-1 shows some features of how one might excite the .9Eructure

with t V .
1,

Having a differential source (with small common mode) one would

like to distribute it in some uniform way (equal delays from equal-impedance

sources) around the slot. Figure 3-1 gives an example with 4 connections

around the slot with a set of transmission lines with net parallel impedance

Z for each slot. This is similar to the feed system of the HSD sensor for

D-dot. Other forms of feed structure are also possible, such as rotating the

top and bottom feed structure with respect to each other to achieve a more

uniform illumination with respect to $.
.

13



IV. SUMMARY

We now have our special spherical-bowl design to give uniform elec-

trostatic fields. As illustrated in Figure 3-1 we have something that looks

like some kind of dual of the Helmholtz coils. Note the benefit of having

most of the spherical surface conductors at specified potentials, thereby

shielding the inside volume from external electrostatic disturbances. This

allows us to place our transmission lines and other electrical connections on

the outside of”the sphere to drive the two spherical bowls to f VI in a dif-

ferential sense at low frequencies. Note also that since the (x,Y) plane is

a symmetry plane (antisymmetric) it can be replaced by a perfectly conducting

surface so that one can use only one half of this spherical system (with

single-ended drive) if desired. In this single-ended form this is a FINES

type of simulator for illuminating small penetrations [11.

Let us refer to this type of uniform-electric-field illuminator as

GLOBUS (gradedl_atitudinallyQpen Qowl ~niform~imulator), this-being the

Latin word for sphere.

Another approach to the present problem involves charged rings (thin

strips or wires of small radius) on a spherical surface. Unfortunately this

case does not well shield the interior from exterior charges (scatterers, in-

cluding

similar

left as

leads to the rings). In an idealized sense, though, one can achieve

uniform electric fields near the center of the sphere. This case is

an exercise for the reader.
..
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