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I. INTRODUCTION .

Figure 1 shows the geometry of the antenna which is being analyzed. It
consists of two wires in a configuration similar to a rhombus, with a CW
source at one vertex and a matched termination load at the other vertex. The
wires are supported by a dielectric cord stretched between two poles. The
mechanical design allows the wire separation at the poles, denoted by Za, and
the wire height at the poles, denoted by b, to be varied. The CW source can
drive the illuminator in either a common mode or a differential mode. In the
common mode both wires are driven with the same voltage, and the electric
field produced in the region of interest between wires and ground, referred to
as the working volume, has predominantly vertical polarization with respect to
ground. In the differential mode the wires are driven with voitages of
opposite polarity, and the electric field in the working volume has a strong
horizontal polarization with respect to ground.

One of the main objectives of this analysis is to determine optimum wire
heights and wire separations, for both the common and differential modes, .
which produce the most uniform fields in the working volume of the antenna.
Such volume has a transverse section of size 2A x B, as shown in Fig.l.
Another objective is to determine the expected electromagnetic field
distributions, and the characteristic impedances at these optimum wire heights
and separations. To this end four different cases are investigated. These
are illustrated in Figure 2. Case 1 considers the common mode excitation with
a test object near the ground. Case 2 considers the common mode excitation
with a test object above the ground to better apprecximate in-flight
conditions. Case 3 considers the differential mode with the test object near
the ground, and Case 4 considers the differential mode with the test object

above the ground.

The analysis presented in the following sections builds on the analysis
originally performed by €. Baum (Ref. 1). Section II gives an overall
description of the mathematical model. Section III describes the optimization
study performed to determine optimum values for wire heights and separations
for the four cases mentioned above. Section IV describes the impedance .

calculations, and Section V presents field calculations.
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II. DESCRIPTION OF THE ANALYTICAL MODEL

Given the configurations presented in Fiéures 1 and 2 the problem of
determining the electromagnetic fields inside the working volume fis
approximated by the ideal static problem(s) of finding the electric (magnetic)
field due to two parallel infinite line charges (currents) separated by a
distance 2a and located above a perfectly conducting and infinitely extended
plane at a height b. Such an approximation is adequate provided the
frequencies of interest are sufficiently low so that higher order modes can be
neglected. In addition, the reflections and scattering originating from bends
in transmission lines and load terminations are not described by this model.
The analysis simplifies the three dimensional problem by assuming a two-
dimensional, quasi-static, transverse electromagnetic (TEM) approximation.

The solution to this problem can be obtained by the method of images and is
well documented in the literature (see, for instance, Ref. 2). Figure 2 shows
the four cases being considered, two using common mode and two using
differential mode excitations, together with the Cartesian coordinate system
introduced to describe the two-dimensional analysis.

In the common mode excitation the configuration of the antenna i.e., a
and b, are chosen in such a way that the electric field in the wohking volume,
which is predominantly directed along y, is made to be as uniform as
‘possible. For the differential mode the electric field has a large component
directed along x. For this type of excitation, a and b are therefore chosen
to maximize the uniformity of the x-component. These relevant components of
the electric field are given by the following expressions obtainable from the
potential presented, for instance, in Ref. 3, in conjunction with the method

of images.

E = g { _Y"b ? + y-b -
YoAmeg (x-a)® 4 (y-b)¢  (x+a)? + (y-b)°
Ag%fb 5 - 2y+b 2} (common mode) (1)
(x-a)™ + (y+b) (x+ta)™ + (y+b) '
and
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Eo= ol | x+3 _ X=2 R
X fmey (x#a)? + (y-b)% (x-a)% + (y-b)?

2x+a 5+ 2x-a 2} (differential mode) (2)
(x+a)” + (y+b) (x-a)® + {y+b)

where g is the charge per unit length of the 1ine and €5 T 8.85 x 10'12 F/m is
the vacuum permittivity. The ratio q/(2weo) can be related to the source
power W of the transmitter; the reader is referred to Section IV for this
detailed derivation.

In order to visualize the behavior of the fields in a cross section of
the working volume, equipotential and electric field 1ines can be plotted for
any given choice of a and b. The analytical expressions for such curves are
found by constructing conformal transformations in addition to applying the
method of images. According to'Reférences 2 and 3, the expression used to

generate the curves are:

2 2 2 2
! (x +a)” + (y +b) (x —a)” + (y +b)
u =< {Inf ] +1n] 1} (3)
2 (x + a)% + (y - b)° (x - a)° + (y - b)?
< 2b{x + a) 2b(x - a)
= t t t s (4)
v = arc an[(x N a)2 N y2 - b2 arc an[(x - a)2 - y2 - b2]

where the variable u represents equipotentials and v represents electric field
lines. In this problem u may also represent magnetic field lines. The +
signs in Equations 3 and 4 apply to the common mode and the - signs apply to
the differential mode.

The above equations have been nurmalized to 1ine charges of values

qg-= izﬁso .




[II. CONFIGURATION'S OPTIMIZATION

The purpose of this section is to investigate how fields vary in the
working volume depending on the choice of a and b, and identify ranges of
values for a and b over which the electric field is reasonably uniform within
this volume for the two identified excitation modes. For simplicity we
normalize all the linear quantities with respect to h, thus defining a' = a/h,
b' = b/h.

To quantify the extent of uniformity we introduce a functional
F(Es,a',b‘,D) which gives the relative error, in the sense of the 2-norm, of
any of the relevant components of the field with respect to the average value

taken within a specified region. In its general form F(Es,a',b‘,D) is defined

as:
1/2
F(Eg,a'sb',D) = {%f (E,(a',b'e) - Egve(a‘,b'))zdg} / Egve(a',b') (5)
D .
where ¢ is either x' = x/h or y' = y/h, depending on the excitation region

being considered, and D may be any of the following one-dimensional domains:
-A/h < x'< A/h ; -C/h < y'< C/h. For the convenience of the reader these
domains are visualized in Figure 3. The variable E(S is Ey for the common mode
or E, for the differential mode. The integration in y is performed over a
domain 2C which is smaller than the maximum height B of the working volume .,

Moreover, Egve is defined as:

Eave - 1’[

5 5 E (a',b',z)de . (6)

D §
Explicit expressions for the 2-norm relative errors which have been

derived for the four cases being considered in this report are shown in
Appendix A. '
As an alternative, or perhaps an addition, to the 2-norm error, an

infinity-norm error can be constructed. The =-norm error is given, in its

general form, by the expression
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E (a',b',e) - Egve(a',b')

6 D EGaVE(al’bl)

(7)

where the meaning of ¢, § and D is the same as in Equation 5. Starting with
Equations A2, A4, A6 and A8 given in Appendix A, Equation 7 was used to
calculate the »-norm for the four cases being considered. The =-norm
functfona]s were maximized within their domain of definition; the maximization
was done numerically. The calculations are presented in the following
sections. The w-norm error provides a rougher estimate of field uniformity
than the 2-norm error in that it is a measure of the maximum deviation from
the average field, while the 2-norm error is a root-mean-square quantity.

For each case the following inequality is always true:

©=NOrm error > 2-norm error

As previously noted the relative error F or P, for any given D, is a
function of two independent parameters:. a' and b'. Given a certain working
volume, and given a relationship between a and b based on some conditions
placed on the field or its derivatives at a given point, the uniformity errors
can be evaluated as a function of either a' or b', only. This allows one to
choose a suitable range of values for a and b (for a given value of h) for
which the errors are at or close to their minimum and the degree of uniformity
of the field at the test object is contained within a few percent error.
Alternatively, a' and b' can be determined in such a way that one of the
errors is made minimum. In the following sections we describe how the field
uniformity may be optimized in terms of the minimization of one of the error
calculations based upon the parameters a', b', for the four cases being

considered in this study.

I. CASE 1: COMMON MODE - TEST OBJECT NEAR THE GROUND

For the common mode excitation (see Figure 2) it turns out that, when the
relationship a/b = 1//3 holds, the first three derivatives of Ey with respect
to x and y at the point (x = 0, y = 0) are zero (calculations are provided in
Reference 1). According to Reference 1 this criterion was chosen to optimize
the field uniformity in the local region near this point. Indeed the origin
of the coordinate system is a point of symmetry for this excitation mode, and

11




the field is strong there relative to other points in the working volume.
Figures 4 and 5 illustrate the 2-norm errors computed along x and_y,
respectively, for this case. In Figure 4 the variable on the abscissa axis is
a/A, i.e., the ratio of a to the half-width A of the working volume (see
Figure 2}. In Figure 5 the variable on the abscissa axis is b/B, where B is
the height of the working volume. Here A and B are normalization parameters;
the results for the uniformity errors do not change provided A/h, B/h, a/h and
b/h are kept constant. In the Figures presented in this section A/h was
chosen equal to 7 and B/h was 6.7.

Figures 6 and 7 give the »-norm errors along x and y, respectively, and
they should be compared with Figures 4 and 5, respectively.

Once a and b have been determined, it might be interesting-to see how the
2-norm errors vary when the dimensions of the working volume are allowed to
change. Figure 8 and 9 illustrate the resulting 2-norm errors along the x and
y directions when b/h = 9, a/b = 1//3, 0 < A/h < 8, and 0 < B/h < 9., The

variable on the abscissa axis is A/a in Figure 8 and B/b in Figure 9. Figure i

10 and 11 plot the =-norm errors for the same case.

Finally, we report in Figures 12 and 13 the 2-norm errors for different
values of the ratio b/a, other than /3. The plots show that the choice of
b/a is not very critical within the range 1.5 < b/a < 2 to 1imit the
uniformity error at 10 percent.

2. CASE 2: COMMON MODE - TEST OBJECT ABOVE THE GROUND

An optimum field uniformity may be achieved in a small local region near
the center of the test object (i.e. x =.0, y = h) by choosing a' and b’ so
that the first derivative of Ey with respect to y is zero at that point.' By
imposing that aEy/ay = 0at {(x =0, y = h), the following relationship between

a' and b' is obtained from Equation 1

2.2 .
) (8)

402 o - 6%+ 1) +/(6'% + D%+ 8(1 - b
)

Equivalently, solving for b' gives:

b'2 =1 + a’2 + 2a'2 J1 + a'2 (8a)

12
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ommon mode — test object near the ground
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Figure 14 and 15 represent the 2-norm errors along x and y, respectively,
for the case of the test object located on top of a stand at an average height
h. ‘From Figure 15 we see that the error along y can become small (a few
percent), provided b is made sufficiently large. For the plots in this
section A/h = 2 and B/h = 1.8.

Figures 16 and 17 plot the »-norm errors calculated along the x and y

directions, respectively.

Figures 8 through 11, mentioned before, plot 2-norm and =-norm errors as
functions of A/a and B/b for the present case also. The value of b/h and a/h
were fixed at 2.5 and 1.6, respectively, whereas A and B were actually

varying.

Before concluding this part we would like to include the analytical
expressions for the 2-norm error and the «-norm error calculated along the
x-axis for an infinitesimal interval 2e¢ about the point (x = 0, y = h), in the
case when the test object is located above the ground. The 2-norm error is

given by
! 2 %€ 2 5 172
{E'(——xasz y = h) '26} /(Ey y = h) =
. 2 2 2
4(1 - )f3a - (1 -b")] o 41 +b')f3'" - (1 +b")7]
ra'? + (1 b')213 rat? + (1 + 123 ol
{ } —  (9)
2(1 - b') ] 2(1 +b') /20
a8+ (1 -0)° 2+ (1 +00)8
The w-norm error is given by
2
a3 E 2
Y € -
>/ (E _n) o=
382 2 yly = h
41 - 6)32a'% - (1 -4 41 -0[3a'% - (1 +")°
8 + (1 - 05970 a2 e (1w )23 :*
{ } —
2(1 - 5')  _ 2(1+b') "2
a'2+{1—h‘)2 a'l + /1+bl)2
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= l—-{Z-norm error} (10)
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3. CASE 3: DIFFERENTIAL MODE - TEST OJBECT NEAR THE GROUND

For the differential mode excitation the criterion used for obtaining an
optimum field distribution was to determine a' and b' so that the 2-norm error
in Equation A5 or, alternatively, Equation A7 becomes minimum. To accomplish
this numerical minimization we plot a family of curves representing the 2-norm
error along x or y as a function of either a/A or b/B, while holding the other
variable constant as a parameter. Figures 18 and 19 illustrate two such
families of curves when the error is computed along the x-axis, whereas
Figures 20 and 21 provide the error along y. Again, the ratio A/h was fixed
at 7 while B/h was assumed equal to 6.7. Figures 18 and 19 show that the
curves are very flat about their absolute minima. This implies that the.
choice of the actual values of a and b is not very critical within a certain .
range about their minima, especially if one is interested in finding an upper
bound for the allowed uniformity error (for instance 10%). However, we notice
that the minimum error along y is fairly large (= 55 percent) . This can be
explained by the fact that this excitation mode produces an intrinsically
weaker and less uniform field than the common mode does, because of the
presence of the perfectly conducting ground which tends to make the horizontal
E-field go to zero near the ground. Hence, since the horizontal electric
field varies from zero at the surface y = 0 to non-zero values along the y-
direction, this results in large 2-norm errors over the fuselage. Therefore,
the 2-norm error of Figures 20 and 21 should be taken as a worst-case result,

Figures 22 through 25 illustrate the =-norm errors calculated along x
(Figs. 22 and 23) and y (Figs. 24 and 25) and they should be compared with
Figures 18 thro. 3h 21. We point out that the same values of a and b which

minimize the 2-norm errors also minimize the «-norm errors.

Finally, if it is desired to keep a/h and b/h fixed at 12 and 9,
respectively, and vary the dimensions of the working volum® A/h and B/h,
families of curves showing the behavior of the 2-norm and -»-norm errors along .
x and y are presented in Figures 26 through 29,

26
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As a final remark we point out that in this case the choice a = b gives a
small uniformity error and offers the advantage of a complete symmetry of the
structure about both the x and y axis.

4. CASE 4: DIFFERENTIAL MODE - TEST OBJECT ABOVE THE GROUND

When the test object is located on top of a stand, in analogy with what
was already stated for the common mode excitation, an optimum field uniformity
in the differential mode is obtained by choosing a' and b' so that the first
derivative of E, with respect to y is zero at the point (x =0, y =h). From
Equation 2, by imposing that aEX/ay =0 at (x =0, y = h) , the following
relationship between a' and b' is obtained:

1 2 2

a

or 5% =_(a%+1)+2/a0% 51 (11a)

1-b'242/1-17 (11)

We note that it results that b must always be less than h.

Figures 30 and 31 illustrate the 2-norm errors computed along x and y for

this case.

Figures 32 and 33 report the =-norm errors. Figures 34 through 37 plot
the behavior of 2-norm and =-norm errors along x and y when a/h and b/h are
fixed and A/h and B/h are varying. Figure 37 shows that the e-norm error is a
constant equal to 1. This stems from the fact that in this case Eg. 7 becomes
maximum when £ = 0 for any value of B/b, in which case the field component Ex
is zero also, as can be seen from Eq. 2. A similar behavior, although on a
different range of values for B/b, can be observed in Figure 29, for the case
of the test object on the ground.

5. CONCLUSIONS .

We have shown that in all four cases suitable ranges of values for a and

b can be determined where the uniformity error is made small. When the test

object is near the ground for the common mode excitation the ration a/b =

1/v¥3 provides the most uniform field about the center of the antenna whereas
for the differential mode excitation the ratio a/b =1 presents a small

uniformity error and provides a complete symmetry of the antenna.
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differential mode — test object above the ground
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From eq. 11, a/h is 1.5,
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IV. [IMPEDANCE CALCULATIONS

So far our analysis has been concerned with a system of four line charges
of radius equal to zero. However, in practice we are dealing with wires of
finite radius which have equipotential surfaces {i.e., their cross sections
are equipotential lines). From Equations 3 and 4 one finds that the
equipotential Tines associated with a system of four 1ine charges, in the
immediate neighborhood of the charges themselves, can be approximated by
circles, not concentric with the (1ine) charges nor with one another.
Therefore the same field is obtained by replacing four 1ine charges located at
(+a, b) with four wires of radius R located at (%a, % b2 + RZ) for the
common mode, and at (% /az + RZ, +b) for the differential mode, provided a/R
>> 1 and b/R > 1. By integrating the electric field as given by Equation 1
or 2 along any contour starting on the surface of a wire at negative voltage
and ending on the surface of a wire at positive voltage, and by calling V the

potential difference, we found

I PG Te (R/b)%)
"o b(1 - /1 + (R/D)%)

Ry ol /1 e (R0)T) - RI7 v day (g
R [b(1 - /1 + (R/b)%) + RI% + 4a°

+
for the common mode and
VB PRNG 1e8. /14 (R/a)%) - Ry, La(i + /1 + ®/2)%) - R1Z + 4b2} (13)
"o a(l - /1 + (R/2)%) + R [a(l - /1 + (R72)2) + RI% + 4b2

for the differential mode.

We stress that up to this point our discussion was concerned with.
establishing an "equivalence" between a system of four lines of charge * q per
unit length and one of four wires of radius R containing currents I, In
reality there are only two wires above a conducting-plane, the other two being
their images. We now introduce the characteristic impedance (Zé for the
common mode and Zz for the differential mode) of two transmission lines
operating in the TEM mode. For the common mode excitation Zé is the ratio of
the voltage between each wire and ground (given by 1/2 of Eg. 12) to the total
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current 21 = 2qc (c is the speed of light) flowing along the wires. Starting
from Equation 12, approximating the second logarithm for R<<a and R<<b and
normalizing to the vacuum intrinsic impedance ho’ we find

2,1/2
U R 1+ (1+ (R/D)S)IS - R/by ] 2
fg a5 U + = 1n(l + (b 14
¢ T T E (N D R/b) Sn(1 + (b/2))]  (14)
= fél + féZ = Zé/”o

where the nondimensional quantity fé is the characteristic impedance geometric
factor. We stress that this result is equivalent to that previously obtained
in Reference 2 and also to that presented in Reference 4. Equation 14 points
out that f' consists of two independent terms: one, fél’ being a function of
R/b alone and the other, féZ’ being a function of a/b. Figure 38 plots fé for
the two cases of the tst object near the ground and above it. The two
different curves for féz are shown.-

For the differential mode Zg is the ratio of the voltage between the two

wires (as given by Eq. 13) to the current I = qc f]owing along one wire, the
current along the other wire being -I. From Equation 13, normalizing with

respect to Ny We find:

2.1/2
woo_ v _1 1+(1+(R/a)) 'R/a 1 2
£ = 2= = [1n( ) - = 1n(l + (a/b)*) (15)
g T, "W N (1+ /)% s pra @ ]
) fgl B faz = L/

which is in agreement with the results presented in Reference 4.

Again f" is the characteristic impedance geometric factor and it is
plotted in Figures 39 and 40 for the two cases of test object on the ground
and above it. Figure 39 shows two curves: fgl as a function of log (a/R)
(Tower scale) and f"Z as a function of a/b (upper scale). Figure 40 shows two
curves also but now f52 is a function of a, while the value of a/b is

recovered from Equation 11. From the examination of Figures J9 and 40 it
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appears that either féZ or fgz
respectively, for all the values of a and b of practical interest. Therefore,

the ratios a/R or b/R are the critical quantifies to look at for estimating

is a small quantity compared to fg1 or fgl’

the characteristic impedance.

Finally it is useful to relate the voltage to the source power W via the
characteristic impedance, in both cases. When both the voltage and the power

are r-m-s values, we have

y+2
c
for the common mode excitation, where V' = 1/2 V of Equation 12. For the

differential mode it is

Vll2
C

where V" is given by Equation 13. From these equations and from Equations 12
and 13 it is straightforward to show that:

.Tr_g,,."i differential mode (18)
e ‘
TE
0 l#?T—E common mode , (19)
9
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V. FIELD DISTRIBUTION

Figures 41 through 44 show the field and equipotential 1ines for the four
cases considered in this study.

Figure 41 refers to the common mode excitation with the test object near
the ground: b is taken equal to 1 and a = b//3 , as required for optimum
field configuration. Figure 42 is for the case of the test object above the
ground. By making b =1 we find from Equation 8 that a is equal to 1.16.
Figure 43 deals with the differential mode excitation for the case of the test
object near the ground. From Figure 18 it was inferred that the
ratio a/b = 1.2 minimizes the 2-norm error (and the «-norm error) along x.
This ratio was used to plot Figure 43. . Finally, when the test object is away
from the ground, from Equation 11 it turns out that if b = 1, the value of a
is 2.3. This value was used to plot Figure 44. From looking at the
equipotential plots one can immediately visualize the field distribution and
get a feeling for the relative intensity of the electric field at various
locations. The actual value of each tube of flux is recovered by multiplying
the difference aAv between any two field curves by the appropriate ratio
of q/(Zweo). Similarly, the value of the voltage difference between
equipotentials is determined by multiplying the total voltage V by the
difference Au between any two potential lines and dividing by 4 x.

When actual field strength values are required, one should use Equations
1 and 2 aleng with Equations 8, 11, 18 and 19. Figures 45 through 48 show the
electric field at (x = 0, y = h) for the four cases which have been discussed
above as functigns of a and b. We stress that the field estimate is based on
a perfect impedance match and perfectly conducting ground. Nevertheless it
gives the reader a rough feeling for the overall field strength and how it can
be expected to vary when the wire separation is changed. Since it might be
required that the field level be within a certain range, these plots permit
one to choose proper values of a and b within a specified range predetermined

by uniformity requirements.
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differential mode — test object near the ground
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As an alternative, a nondimensional expression was derived, relating the
magnitude of the electric field to the voltage source. By observing that
|E|/|H| = n, anywhere for the TEM mode and IV'W/IZI] = Zé or
(VU711 = Zg , we obtain from the equation for the magnetic field of four
Tine currents, at the point (x = 0, y = h)

Hl b _ . [El'b _ b (b - h)/a (b + h)/a
T ‘ng“'lv“_ ‘-;‘5‘ S 7.7 ‘ (20)
1+ (b~ -h") /a 1+ (b° +h%) /a
for the common mode and
IHl b . o JE[ b _ b 1 - 1 [ (21)
: 9 am s % o R sa 1+ (62 + %) /a

for the differential mode. Figures 49 through 52 plot these two functions.

65




common mode
10 Y
b4
s b ] -d—-—&-—bf _.J
x =0, y=h ¢ b
6 - TP7777 777777777 7277 IT T TTTIT I T
test object near the ground

a7 - i

2 -
'/ \\\;><:;iijf object above the ground
) L
0.50 i i

/B

b f

Figure 49. Non-dimensional quantity related to electric field or magnetic field

at the point x = 0, y = h (see eq. 20). B is the height of the
= 6.7 for the object near the ground and 1.8

working volume and B/h

R e e wm L]

for the object above the ground.

)



L9

differential mode — test object near the ground
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differential mode - test object above the ground
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APPENDIX A

In this appendix explicit expressions are derived for the 2-norm error
for the four cases discussed in the body of the note. Starting with Equation

5, repeated below for convenience

Fla',o') = (g [ (a0 e) - EV%(ar 0 ))2 ag} /2 / 628 pt)  (5)

the four expressions are as follows:

1. CASE 1 AND CASE 2: COMMON MODE

NN (a',b')
Fl(a ,b') = DDl P (A1)
1 L 2 1/2
1 ] — ] ] ] ] 1 H
NNl(a b)) = {IT g [Ey(a b'ux!) - DDl(a-,b )] dx'}
L /2 L /2 L /2 L /2
2 _ 1 m D m p’ 2 '
(NN. )T = = | + + + + (DD7) L
I S S Y S S A A B 1
m m p m m p p p
1 Lm L 1 Lm L
+ — [arctan(s—) + arctan(—EJ] + 55— [arctan(z—) + arctan{=2)]
2K k k 2k k k
m m m p p Y
AL - A, L2+ i Ay - A L2+ k2
+ ( 5 ) In( 5 2) + ( 5 ) 1“(‘Eé 2)
a'” + k a'® + k
m m
2 2 2 2
A, - A L™ + k A, - A L™ + k
4 3 m p 2 4 p p
+ ( ) In( )+ ( ) 1n( )
2 2 3 2 2 7, 2
p p
(B, -C, -B, +a'(A, - A,) - 2k.DD,) . L :
bt L 2 ” L 2 m (arctan(zm) + arctan(%—ﬁ]
m m m
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(8, - C, - C - Ay) - 2k_DD,) L '
! 1 4 : 3 1 m 1 [arctaﬂ(gﬂ> - arctan (-E—-H
m m "

(B4 + Cl - By # a'(A4 - A3) + 2k DDl)

L
p _m a_
+ kp [arctan (kp) + arctan (kp)l
(B, + C, - C, - a'(A, - A,) + 2k _DD,) L '
PR 1 2 " 2 4 p 1 [arctan (EEJ - arctan (ﬁ}dil
| p p p
DD, = 17-% E (a',b',x')dx’ (A2)
1L,y ‘
1 Lm L Lm Lm
= = [arctan{+—) + arctan(=2) - arctan(==) - arctan ()]
L km ‘ km kp kp

where we introduced

L' =2l/h, L =L"'-a', Ly = L' +#a', k. =1-b", ky = 1 +0b'

A = - ki/rza'(;'z 211,08, = K@l e kb, ¢ - Ko k2"

A, = - kmkp/[Za'(a'z + k§)1 _b'/fa'(a'? + k§)1 x Cy,

B, = kmkp[a'z(QkE - K2) + 4b'k§ +8at/r8(a? + kg)(l + a'%)(a'? + b'?)

Cp = kpko(2at? = p)/0 201+ By atd,

Ay = -lkmkp/[Za'(a‘z £ k37 + b /Ta (@ ? kD)) x Cy,

8y = Kk [a 209k - kD) - 4kl b+ B t/re(a? s G+ at?)(a? v o)
2 bye(at e p' A+ at i),

(]
i}
xR
3
~
‘o
—~
N
a1)
+
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- 2 i ] —_ 1
Ap = - kp/fZa (a'= + k)1, By = kp/(a + kp).
NN, (a',b")
] ] -
F2(a ,b") 00,35 (A3)
1 M 1/2
NNZ(a ,b ) = {m &I[Ey(a 0Ly ) - DDZ(a D )] dy ]'
2M! M! M 2M"
()% = g Tty T T T T
] 1 ] [] ] 1 ] 1
: a + Mm a + Mp a + Mm a + Mp
2 - Q1 - b'P1 M% M Mé M!
’ + 3T [arctan0§r> + arctan(EQJ - arctan(ETQ - arctaQ(EQJ]
(oy)  (op? pp  atfew? o arfy M"2)
+—_— - — = 5 1 n(————) - 1n(
M T R Ry s 7, 2]
m p
20D al2 + M"2 20D, a'2 + M'2
- Pnz ]n( 2 mZ) + MIZ -lﬂ( > m2>"
al + MH al + Ml
P p
1 M!l 1 Mll Ml
DD2 = W.—_——}E‘I Ey(a b,y )dy = L [é Eydy - ‘g Eydy ] (A4)
. . M%Z + a.2 M%Z + a.Z
=.'I_l_—l[DD“ = DDI.] = T T\j]n< ) ]n( )]
o L2 T e TR M52+a'2 Mé2+a.2

where we introduced i
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M' = either 1/3 or 9/11, M" = either 5/3 or 13/11, M' - b' = Mr:1 s
M' + b' = MI'), M* - b' = M[‘T'l, M' +b' = M;, M* - M' = either 4/3 or 4/11
Pl = 2(2bI2 + aIZ)/[‘bl(blz + aIZ)'I’ Ql = 4b|2/(b|2 + al2)
2. CASE 3 AND CASE 4: DIFFERENTIAL MODE
NN,(a',b")
Fala',b') = == (AS)
3\@ 00,(a"5")
1 L' 2 l 1/2
NN3(a',b') = {-L—rof [Ex(a',b' X' - DDB(a',b‘)] dx'}
(wny)%= L (- ;m/Z 2" ;p/z 2" ;m/Z 2" ;p/z 2
Lm+km Lp+km Lm+kp Lp+kp
1 L m 1 L L
* o [arctan(k ) o+ arctan(?—)] * 5 [arctan(k ) + arctan(E—)]
m . m m p p p
2 2 2 2
U, - U, + 2DD L-+ k u, - U, - 20D + k
2 a'® + k 'tk
m m
2 2 2 2
U4 - U5 - ZDD3 Lm + kp U5 - U2 + 2003 Lp + kp
* 7 Inl=——5) + 7 In{—5—)
p P
Vo =V, =V, - a'(U, - U,) L .
v 2 1 g 2 L [arctan(-gm) - arctan(i—)]
m m m
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Z, -V, -V, -a'(u, -U

) L . '
¢ 2 L 3 L 4 [arctan(-2) - arctan(2)]
K K k
m m m
V, = V. =272+ a'(U, - U.) L \
+ 4 5 i 4 > farctan(-k—m) + arctan(-i—)]
p p p
Z, - V. = Z, - a'(u. +U,) L !
+ 2 > 3k > 2 [arctan (FP') - arctan(i—)]}
p p p
p L
DDy = i+ g E (a' b x")dx’ (A6)
2 2 2 2
1 [1 : km + L 1 k> + L
=[5 1n(E—2) - 5 1n(3—2)]
L 2 k2 + LZ 2 kZ + L2
m m P m
where we introduced: .
1 2 2 112 2 (2 4 2
U1 = (2a'° + km)/[Za (a'“ + km)], V1 = - a'%/(a'" + km)
Z, = [(2a'% + kg) b' - 2a')/[2(a'? + b 2)(1 + a'?)],
l2 l2 2 I2 12
P I N RN SV CI kﬁ) x Z,,
_ ) vy a2 ' 2 2 v a2 2 2 '
Uy = -b /la'(a'® + k)] «x 22 + (2a'" + kp)/[Za (a'™ + kp)], v, = -km/zb R
2 1 b t i t 12 1
Zy= K2/, 7, = T-(2a' + ki)b - 221201+ ar (el v 009,
Uy = b Ta(a? + k)1 x 7, + (2a'2 + kE)/M2a (a'% + i),
2 , 2 2 , 2 2 2 2
Vg = z2a'7/(a' "+ k) - (' 4 kp)/(a' ko) x Z,,
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2 2 2 2 2 2 2
= ] l' ] 1 'I = ] [} + .
Ug {2a'" + kp)/ 2a'(a'® + kp) . V5 a'“/(a kp)
NN4(a' ,b")
p M 172
NNy = [gr—= [ TE (a',b",y") - DD4(a’ b2 dy'}
Ml
[1] ' 1 ] ]
( )2 i} 1 { ZM 2Mp i Zﬂm i 2Mp
4 M“ - Ml |2 + M.,Z a|2 + M..Z a|2 + M|2 aqz + MIZ
P m p
2 - E,b' - H M! M M! M!
+ lax 1) {arctan(;";l) + arctan(g?-) - arctan(;";‘-) - arctan(;?—)]

DDIJ Mll Mll DD ' MI Ml .

-4 _ﬁi [arctan(3$0 - arctanbgg)] + 4 —ﬁi [arctan(z$0 - arctan(;ﬁg]

ll2 I2 ||2 12
E1 Mm + a M'S + 3
= 2_' {111( 2 2) = ]n( 7 _2')]}
M'S + 3 M'S + 3!
m P
1 M“ ] t ] ) 1 M" i MI )
00, = v L E la'b',y') dy' = g M,[(j) E dy' - (j’) E dy'] (A8)
= L [DD“ - DD!]
r‘1ll - 4 4

Mll Mli Ml . MI
= FF—%—MT [arctan{sﬁ) - arctan(sﬁ) - arctan(gﬁ) + arctan(gg)]

where we introduced

MU= MY o bYLMY = M 4 b' LM o= M+ b, M o= Mo+t
m p p m

= 422 ?  v'?).
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