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ABSTRACT

The electromagnetic fields from aperture antennas can be represented as
integrals over the aperture electric field. Maximizing the fields at an
observer defines a focused aperture. In this case; the integrals simplify and
the spatial and frequency parts conveniently separate. This makes the results
also conveniently expressible in time domain. '
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T. TIntroduction i. ’
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A previous note [2] has"co%stg@red planar distributed sources for
radiating transient pulses. Under suitable approximations, this can be
analyzed as what is referred to as an aperture antenna [4]. By assuming an
appropriate distribution of the tangential electric field on the aperture the
fields throughout space are expressible by integrals over the aperture.

In order to simplify the results and maximize the fields one can restrict
consideration to what is called a focused aperture [4]. This separates the
dependence of the fields at the observer into separate spatial and frequency
terms. This also allows for a convenient representation in time domain.

After developing the general theory, explicit integrals are given for the
spatial coefficients for the two frequency terms for the electric field and
the three frequency terms for the magnetic field. Then the case of circular
aperture, focused on the axis of symmetry, with a uniform tangential electric
field is considered, resulting 1in c¢losed-form expressions valid at any
distance from the aperture.

IT. Electromagnetic Fields from Arbitrary Aperture Fields in a Plane

The basic equations for electromagnetic fields from those on a half plane
(z = 0) are well known [3, .4]. In particular let us consider that the
tangential electric field on the source plane S' (i.e., z' = 0) is
specified. Let the 7' coordinates be those on S', i.e.,

o= (x', ¥y, 0) | (2.1)
Furthermore, let T be the coordinates of the fields away from S' as
o= {x,y, 2) : (2.2)

Then as in Figure 2.1 we have some assumed tangential field distribution on S'

. as

Eo(x',y', 05 t) = (EL(x', ¥y, 05 8), En(xy y', 05 1), 0

yI

B(x, v’ 1) (2.3)
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aperture

S’ is defined
by ¥/=(x",y’,0).

Figure 2.1. Electromagnetic fields from a source plane S'.



In addition, there is a z component of the electric field on S' which, how-
ever, does not appear as a source in the traditional equations.

Now at some position T we wish to cémpute the fields. Define

[F -1 = [ex)? + (yy)? + A2

=
n

_ox=x' y=-y' z-2'
TR = R Tx "R Ty TR Tz

s = Laplace-transform (two-sided) variable

= complex frequency
Y = %-5 free-space propagation constant (2.4)
C = ! = speed of light

Yugg, .
. W

Z = /—— = wave impedance of free space

(] €4 .

Our half space of interest (z > 0) is considered free space with zero
conductivity, pemmittivity €40 and permeability Mo

The electromagnetic fields are computed as from an equivalent set of
magnetic current sources on S' which give a vector potential [1, 3].

A (F,s) = 5

s'lg%l [[Tz X E%(x',y';s)] X TB] e TRyse | (2.5)

The scalar potential of a magnetic current distribution being zero, we have

LN J
B = "on =y x A, % “oﬁ =v x A (2.6)
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Then we have

E(F,s) = %; é.lg%l'[[Tz x EL(x',y'3s)] x Ty e TRys!
B (F,s) = 2;105 {v £|Y§;] ([TZ X E% (x',y';s)] x TR] e'YRdS'}

-~

e
—
-4
-
w
~—
1]
ay
3| —
—
e
+
—
N
1]
2
X
m
x
L4
<
wn
e
(o
w

e _ 1
E,(T,s) = =

R+l  ~yR [ x-x 1o ', Z'YI WA V. 1
l;?— e [ Ex(x ,y';s) + 5 Ey(x ,y';s)] ds

|
Sl

The magnetic field components are somewhat more complicated as

- _ .R l
o= - 1 e Y '(X'XI)(Y‘YI) 2 c1 ) 1.
. Hx(r‘_,s) 2P S { 2 [(YR)® + 3yR + 3] E)(x R ;s)
(y'yl)2+ 22 2 = i ', 1
+ [2yR + 2 - —-———77————-[(yR) + 3yR + 3]} Ey (x',y';s)} dS
. R
;‘ (-F‘,s) = 21 - f e-‘;R {(X-x')é.\/'y') [('YR)2+ 3'YR + 3] El (Xl’yl;s)
J T S R R J
2, 2 .
Sloyr ez LX) Z rer)? s oavr 4 3] B (xytis)) s
R
~-R .
o 1 e Y -(y-y')z 2 =i ' 1
H (F,s) = [ { [(YR)T + 3yR + 3] E| (x',y'ss)
Z Zﬂuos g! R3 R2 : X ’
(X"xl)z 2 P ) [
+T]—(YR) + 3YR + 3] Ey(x sy ,S>} ds!




Note that one can think of the fields from an aperture as those from an array
of magnetic dipoles. The electric field has R'1 and R™2 contributions and the
magnetic field has R'l, R'Z, and R"3 contributions.

In time domain one also has explicit formulas by making the association.

'

Laplace (complex frequency) Domain Time Domain

-yR 1 1 ' ! ' R
e N El(x',y'ss) - ELUX'y'st - Q) (2.10)
3
St 3t
. [ dt

Substituting the time-domain forms in (2.7) through (2.9) these equations are
all converted to explicit time-domain formulae for the fields in terms of
time-domain aperture fields.

111; Focused Aperture

As discussed in various texts [4], one can have a focused aperture. By
this we mean that the phase of the. tangential electric field (source) on S' is
adjusted such that at some observer at ¥ = ?o the signals from each elementary
position on S' a1l arrive with the same phase. Looking at (2.7) it'is the
factor e'YR Eé; which we need to control. While E% is only a function of the
source coordinates, e'YR is a function of both source and field coordinates.

Considering a fixed observer position at T o= ?0 then we have

I - i I I < _
Rz |F, - T'1, R, = |rol = T (3.1)
Let us now constrain at ?0
—~R 5 TRy =,
e YR ?é(x',y';s) = e 0Eof(s) B(x',y") (3.2)

With this choice, then at ?O all sources (or equivalent elementary magnetic
dipoles) have the same waveform f(t) arriving at the same time at ?0. The
variation of the source amplitude over S' is constrained by a separate factor



F(x',y") (real) with an overall scale factor E, (real).

Substituting (3.2) into (2.7) through (2.9) gives the fields at the
focus Fo' Note that in the magnetic field equation in (2.7) the curl operator
is with respect to ¥, not ?o' In terms of the components the electric field

at Fo is
YR, Ra] 2
= - € p + 0 i i 1 ’
E (F,ss) >— E,f(s) _flf—z z 9, (x',y') dS (3.3)
y ST R y
“YRo X_=x' -y'
nd > - e - :LR_t‘] [e] 1 1 ‘yO y 1 1 |
E,(Fyss) = =5— E f(s) g 2 (== 9, (x" ") + —g— 9, (x",y")] ds
Similarly, the magnetic field is
- R 1 i
. o o L ~(xg=x ) (y=y*) o
H (Fg5s) TG E,f(s) é'{ " [(YR)™ + 3yR + 3] g (x',y")
(y.,=y')" + z
¢ 2Rz Z0 [(vR)“ + 3yR + 3]] g {x',y")} dS'
RS R® : 4
-~ e“YRO ~ (Xo'xl)(yo—yl) 2 v
My (Foos) = amis Bof(s) [ : [(YR) + 3yR + 3] g (x'.y")
?‘LR‘*'Z (XO-XI ) +ZO 2 | i t
- [ T - 5 C(yR)T + 3yR + 31] g (x',y')} dS (3.4)
> e’-YRO p -('yO-'yl.)ZO 2 ' ' 1
HZ<FO,S) = ‘2?1:)‘5— Eof(S) é'{__R-S—_—_ [(yR)® + 3yR + 3] QX(X ')
(x =x")z .
# =2 91 (4R)% + 3yR + 3] g (x',y")} dS'
R oY
After allowing for the delay term e and the source (tangential E)
waveform %(s), note that the electric field has terms proportional to s1 and

1

sO, while the magnetic field has terms proportional to st, s9

, and s71. Then

let us write for the electric field




E (Fous) = Ege © F(s) {af(f}( R_:% N aff}( %}
0

- Y _ 'YRO (-!) a as (2) a2

Ey(ro,s) = E.e f(s) {“y,y ﬁg--z-+ ey y E?}
0

> YR .
A PRGNS -
(2) (2) a? ;
+ [az,x + “z,‘y] R—z'} ( .5)
o]

Similarly, for the magnetic field

- -yR_ . ' 2 3
N ) 0 (1) _a as (2) a= , (3)a ¢
Zon(ro’s) B Eoe‘ f(s) {Bx,x R0 —E'+ Bx,x RZ * Bx,x R3 as
. » ) 0
2 3
(1) a as (2) a (3) a° ¢
* 8x,y ¢’ Bx,y ¥ 8x,y _3"a_s'}
0 R R
0 0
. YR, - 2 3
> _ 0 (1) aas, {2)a_ , ,(3)a ¢
Zy y(ro’s) = Eoe f(s) {By,x R, ¢ * By,x R2 * 3y,x R3 as
) 0
falD) aas, (al, (3) 2 o | (3.6)
By.y ®c yoy 52 By,y 33 :
0 R Ro
~ YRy - (1) a as (2) a® (3) S ¢
ZgH,(Tyss) = Ege f(s) {Bz,x R, ¢ T Bz x Y T8z x 23 as
0 0
2 3
(1) a as (2) a (3) a° ¢
* I%z,y T ¢’ Rz,y = * 8z,y —Ea—s'}
0 R R
0 0
where
a = some characteristic dimension of the aperture (3.7)
8



In this form

dimensionless,

the ¢ and g coefficients

are

frequency

independent and

The above results are also directly expressable in time domain for the

electric field
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as
2 R 2
(2) 2~ 3 _ o (2) a
EO{O'X,X_—O_E-BT f(t —} + aX,X-F:Z-f(t -
0
2 2
(1) a° 3 0 (2) a
EO {ay’y ——E-§€-f(t C) + V.Y —§-f(t
0 RO
2 R
(1) , (1) a” 3 _ o
B {[“z,x * %z, ] _;E'gf f(t C
2 R
(2) (2), a 0
[ay y * oy 4] Z flt - =)}
0
, 2 R
(1) (1)y a~ 3 R
o] {[Bx,x * Bx,y] oc at f(t c)
2 R
(2), a 0 (3) (3)7 a“c¢
Phl TR e S
0
2 R
- (1) (1) _a~ 3 _0
= Eo{[By,x + By’yl -—OESTE f(t - C)
2 R 2
(2), a 0 (3) (3), a
+ SLf(t - =) + + =
Byl 7 T - Tyt eyl
0 _ 0
2 R
- (1) (1); a~ _ o
=& {[Bz,x * Bz,y] —;E'Sf'f(t -
? R 2
(2)7 a_ 0 (3) (3), a
* BZ,,Y' R2 f(t ) —E) ¥ [BZ,X * BZ,,Y] -R_
0
9

R
i)
R
il
(3.8)
t | RO |
[ - ae)
(3.9)
t ! RO t
[of(tt - =) at'}



Note for the time integrals the excitation waveform 1is assumed to be
identically zero before some turn-on time. In (3.8) and (3.9) the utility of
focusing at ?0 is indicated by the simpie form the results take in time
domain. If the aperture sources did not all reach ?0 at the same time the
three time-domain terms {derivative waveform, waveform, and integral waveform)
would be smeared out. This is another way of considering that the fields are
maximized at ?o by focusing.

Now we have the coefficients which depend on Fo and the spatial
distribution on the source. The coefficients of the derivative terms for the
electric field are

R z
°‘>{<1>)< = Zrl'%gf [ {x O LN R L Zg]'lgx(x',y') ds'
> a 1
CL(1> = ,—1ROZOJ- [(X _X|)2 + (y _y|)2 + 22]-19 (XI y,) dS' (3 10)
Y,y 2w az g o . 0 0 ] NAREE .
R .
“gli - ?%"% £ [(xg=x)% + (y,y)% + 2] Hxg=x') g, (x'y*) ds’
> ! a ) . N
R
(33 = 5%';§-£,[(XO-X’)% * (yo-y')2 + zg]'l(yo-y') g, (x'sy') ds'

The coefficients of the terms proportional to the source waveform for the
electric field are

22,

S 2—1—}2— [ [0xg=x )2+ (yyy)? + 22172 (k) ds?

(2) 1 Rgzo 2 2.,-3/2
ty,y =7 7 [T gy )T gl g (yt) s (3.11)

H a 1
22 |

ui?l = §%‘"§'£ [ (xg-x DE s (yo-y'>2 + 251'3/2(x0-x') g, (x',y') ds'

(2) 1 Rg 2 2 | _2,-3/2
%2,y ?}';?‘é,[(xo x)T+ {yyy) T+ z) (¥o-¥') g,(x",y") ds'

10




é The coefficients of the derivative terms for the magnetic field are

R ,
sill = 1“-1—;3 é.[(xo"(')Z + (yo-y')2 + zg]'?’/z(xo-X')(yo-y‘) g,(x",y") as!
R -3/2
sf(lj/ = %;‘g—gluxo-x')? (yy-y "2y 28] [y -y")%s g] g, (x',y") ds'
R
By,))( = ?%a_g ngxo-x')2+(yo y')2+z§]'3/2[(xo-x’)2+z§] g, (x',y") ds’
(3.12)
R
' 2:=3 1 t 1 1 1
8)(,1)), = 'z'nl;% él[(xo-x )2+(y0-y )?+ZO] /Z(XO-X ) (yg=y") g, (x"sy") dS
' R
egli = '—T};QISI[(X -x')" + (yo-y')2 * zg}'S/Z (y,=y")z, g, (x",y") dS'
" |
o Bglj = -z;la—;’ gl[(xo-X' * vy 2w 2272 k) 2 8, (x"y") ds'

The coefficients of the terms proportional to the source waveform for the
magnetic field are '

2
B)((z))( } Z%R_gé [ (xg-x n2 (yy-y )2 4 zg]-z (xg=x" )y, =¥") g, (x',y") ds'
R? |
8>(<2,J)v i _?_;_a_o [12 [0+ (y,my) %+ 2g)™
- 3[(x -x")? (yo-y')2 + ZO]_Zt (Yo‘y')z - Zg]} gy( ') ds! (3.13)
RZ
e A g 7

11




The‘

+

12 12 21-2 1y 2 2 Ly' :
3 (xg=x)" + (yg=y")™ + 2] Tlxg=x")" + o]} g, (x",y") dS (3.13)

(cont'd.)
.)2 2

[ (xg- o + zo]‘2 (xg=x' Myo=y") gy(x'syt) dS°

2"2 ] i | 1
+ 2] ygmy') g (xTsy') dS

§§ 2° [ [(x_-x' 2 4 (yo-y')2 + zgl'z(xo-X') g, (x".y") ds’

2]-5/2

5 é.[(xo'x'}z + {1y + 20 g ) (vgmy') 9, (xuyt) dS!

1)2-_'_ (yo-.yl)z +‘Z§]-3/2

2 02 . 21-5]2 12 4 22 Ly') st
3 (xgmx") + (1gy")7 + 2] [ ygoy ") + 21k gy (xtayt) @St

=3 [, (2 (g% + gy 2™

3 (x -x)2 + (yg-y') 2 + 2217 (xgx)? + 221} g (xtay') dS!
3
'z—f'a—gfs.“xo-“z o gy 2+ 221 Rk (ygy') g (xthy') dS!
:§.R§z0 )2+ (g% + 2275y oy Ly e
w7 Lo Yoy )T+ zg) 7y gyt g, (xFLyt) S
3 Rolo (2 N2 . 21-5/2,. .4 o) s
7 .2 fs‘ (xg=x' )"+ (yg=y")" + 2517 Hxg=x") g (x'hy") dS

12




V. Case of Focus at Large Distance from Aperture

Now Tet Ro/a + o where a {s some characteristic dimension of the
aperture. Specifically let all source fields be zero outside of some radius
on S' given by some constant times a. For this purpose we have coordinates
(cartesian, cylindrical, spherical) as

x = v cos(4), y =¥ sin(¢)

z=r cos(e), y = r sin(s)

x = r sin(e) cos(s), y = r sin(e) sin(s) (4.1)
These are subscripted with O for the observer at ¥ = Fo’

Considering that % and b, are fixed as Ro + =, we have to order (a/RO)'1
for the electric coefficients in (3.10) and (3.11).

°‘>(<1>)< - oz>(<2>)<= 7 cos(ey) 7 é g (x',y') ds'
(1) _ (2 _ 1 1 .

dyy T % x - COS(GO) a2 Jélgy(x ,y') ds

a§1> = aizi = E%-s1n(e ) cos(e ) —%-é gx(x',y') ds' (4.2)
s s a t
(1) _ (2)y _ 1 1 )

A sin(e,) sin(s,) :2- é.gy( ,y') ds

Similarly for the magnetic coefficients in (3.12) through (3.14)

B)((];))( = §' (2) = % B)((:;)( = %}T S'inz(eo) COS(d)O) S']n 0 _;_é l’yl) ds"
o{1) = 3k TeosP(a,) + sin(a) sin’(s) ;% [0 ) a5’ s

13




81) = o [2-30cos(a,) + sin’(e,) sin’(s)]] ;é— [,9,0" sy @S’
813 = 25 [2-30cos(a,) + sin’(s,) sin’(s,)7] —%fs g, (x',y') ds'
(1) 1 2 . 2 2 1 L |
By x = 7 LcosT{e ) + sin"(o, ) cos™(s,) [g (x',y') dS (4.3)
Y, X 27 [ 0 0 {4, ] ?S' X (cont .3
Bifi = 7% [-2+3[c052(60) + sinz(eo) cos ¢ )]l = L é x',y') ds'
B§?l = %%-[-2+3 [cosz(eo) + sinz(eo) c052(¢0)]] 1 é ty') ds!
Biil = %-ngl = %—Bé?i = ?l cos(e ) sin{e,) sin(e) ;%'é.gx(xl’yl) ds'
(}; = %—Biéz = %gsi?; = 5%-cos(eo) sin(eo) cos(¢ ;%—é g (x',y") ds' .
=250 to 0(x3)
as RO 0 RO

Note the common factors in the above. If we choose as a special case a
uni form i1lumination (after focusing) of a circular aperture of radius a, with
a single polarization in the x direction, we have

a {1 for 0 < v' < a

<
!

X 0 forv' > a
g {x',y') =0
L g (xsy') 48" = n
a~ §!
__1_ 1 1 -
2 glgy(x ,y') dst =0 (4.4)

14




These can be substituted in (4.2) and (4.3) to give the usual results for a
uniformly illuminated circular aperture focused at «.

In a more general sense, let the aperture be of area A with uniform
illumination 9y Then

(g (x',y') ds' = A (4.5)
SI

which is a well-known result for uniformly illuminated apertures focused at
infinity.

V. Circular Aperture with Uniform Tangential Electric Field Focused on Axis

Now consider the special case of a circular aperture with uniform
illumination (tangential electric field)

-; W _ (lfor0<v' < oa
9, (xy") = {g for v > a

11}
o

g (x',y")

y (5.1)

Furthermore, specialize the case to-an observer at a distance z, on the z
axis.

The non-zero electric-field coefficients are

2
1 12 |2 |2 2—1 1 ) 1
aii“z‘;‘%-é“ ty'tt ozl g (xy') dS
2 a )
2
z. a Znm
__l___cl l2 -1 [} ] 1
"zl + 20177 w'de'dy
2
4 a
-5 [ [e 2] ey | (5.2)
a o
2 2
ZO

15




2
Zs a2
=— e [1+ ] (5.2)
2a” . Zy (cont'd.)
z3
2 1 2 L a2 29=3/2 i ,
ai?ﬁ?“%fslx py 2w 2875 (xy") ds
L a i .
23 a 2n
170 2 2:=3/2 1 1
o N RS A T
a o 0
23 a
0 12 21=3/2 i
=— [ [¢'" + 2] y'dy
a% o °
3 2
2 a
N
2a” 0
_ 0 2 2.-1/2 -1
-g{[a vzl - 25}
2
z 2
- 0 aq-1/2
- G- 5T
a 2

Substituting these results in (3.8) we have

y z, a2 3 Z,
EX(ZO Z’t) = EO{?—E 2n[1 + ;2] ‘a—t' f(t - -C—)

0
+ (1 [1+95‘1/2 fi - 22 (5.3)
{ -0 22] } . -C } °
0

which is a quite compact result valid for z, > 0. This can be expanded for
small az/zg to give

a2 a2 5 z,
E (z,7,,t) = Eo{Zczo 1+ 0(?)] 5t flt - ) (5.4)
0

? 2
SRR CHIRAE Zoy)

jab]

1
2
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2
as &5 > 0 (5.4)
z : (cont'd.)

This exhibits the usual far-field results (derivative term) proportional to
(aperture area)/z,. In addition for the term proportional to the excitation
waveform there is a leading term proportional to (aperture area)/zg.

The non-zero magnetic-field coefficients are

1) 1 %o 2 2 2 '3/2 ) 2 2 1 ) 1
Bi,x "2 él[x FyT ez TN o+ z0) g (xLy') dS
1 O a 2w |2 7 -3/2 |2 2 1 2 ] ' 1
= §_._?.( [[e'c + zo] [¥'cos(s") + zo] y'ds 'dy
a oo
Zo a ' 2

+ 22]'3/?[w'2 + 225] y'dy'

1
. : = 5— [ [v .
"Ii 2 a2 o o}

2
1% @ 2,-3/2 2
=E—%é [v+zo] [\)+ZZO] dv
1% /2, 2,2 24-1/2
= z.;?-{Z {[a + 7z ] z, fa® + zO] - 22}
2 -1/2 -1
- bz fa? + 2 ] 2,1}
1 Zg 2 1/2 82 -1/2 ( )
= 5= {[1 + = -1+ = 5.5
2 2 [ 22] [ 22] } o
0 0
;2
2 1 %o 2. 42, 2,1 2. 02 2.-2, 2.2 .
oyl =z 8 [ 12 By B T e a0 By B H B} g (') 0
Z2 a 2w
- -z%;’gé - 2ly 222170+ 30er® v 22172 eosP (s )422]} widg ay!
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a
2, 2:-1 12, 29-2¢ 12,52 '
L [-8[y" +z 170 + 3[y" Tz ] [¢'“+2z 1} ¢'dy’

a

2

Zo

a2

52
0 2:-1 2,-2 2

;? 2 {—4[v+20] + 3[v+20] [v+220]} dv
2

ZO

-

a

2

2
[-d4gn[1 + i?_-] + 3en[1 + 9?] + 2?4227 - 237
0 6]

?

Zo -1 a 3 a%4-1
Oz onll + &) - HIL + =1 "= 1 (5.5)
a2 { 4 [ z ] E{ z2 I (cont'd.)

|2 12 2"3/2 |2 |2 2-52 |2 2 1 1
g [-2[ x'“+y +zo] +3[ x'“+y +zo] { [ x +201}?X(X ,y') ds!

+3[w;2+z§]-5/2[w,2co52(¢.)+z§]} w|d¢|dw|

2 2.-5/2; ,2 2
] [g'" + 220

]} ‘{"d\fl
a
%_2_{) [-aly + 221732 3l + 2170 s 2281} dv

1 2 2--1/2 _-1 9 2.-1/2 -1 %0 .2 2--3/2 1 -1
ﬁ-zﬁ-{8{[a +z.] -z, y+6{-[a"+z ] +zoH — [a™+z] -5 75}

2 2..24-3/2 -3
- 42o {[a +zo] -z, 1}
2
z 2 4
o (1 a.=-1/2 1 a - ,-3/2
— 1+ 57551+ 5
a z, z,

18




Substituting these results in (3.9) we have

2 2 z
_ 1% a“41/2 a1-1/2. 3 0
ZoHy(onz’t) = Eyfy 1+ 22] -+ 22] gt f(t -9
0 0

7 C
0 0
2 2 t z
s S 12 LS ETYE fre - 2 ar') (5.e)
0 z Zo -
0

which again is valid for Z, > 0. This can be expanded for small a2/z§ to give

ZH (2T ,t) =EJ_a2_[1+o£)]_3-%(t-fR
oy‘“oz 0t2cz ( 2’4 3t c)
0 Z0
2 2 z
14 a 0
t7 2 [1+ 0.('2—2)] f(t - =)
0 0
2 -2 t z
s[4 03] S f(e - =2 dt')
ZO ZO =0
22
as =5+ 0 (5.7)
Z0

Note in the far field the leading terms (going as zgl) agree for electric and
magnetic fields. As one approaches the aperture so that a/z, becomes not
small compared to 1, even the derivative terms for electric and magnetic

fields have different coefficients (i.e., not related as in a plane wave).

VI. Summary

The case of Section 5 is not the only specific aperturé distribution one
could consider. Considering a focused aperture other distributions of
aperture fields can be fdnvestigated and the coefficients 1in Section 3
determined. Perhaps some other interesting distributions will give closed-
form results as in Section 5.
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