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1. Introduction ‘1“.!
12 ”,;”-. m

A previous note K2~ has; co~si:d:red planar distributed sources for

radiating transient pulses. Under suitable approxim~ti’ens, this can be

analyzed as what is referred to as an aperture antenna [4]. By assuming an

appropriate distribution of the tangential electric field on the aperture the

fields throughout space are expressible by integrals over the aperture.

In order to simplify the results aridmaximize the f~elds one can restrict

consideration to what is called a focused aperture [4]. This separates the

dependence of the fields at the observer into separate spatial and frequency

terms. This also allows for a convenient representation in time domain.

After developing the general theory, explicit integrals are given for the

spatial coefficients for the two frequency terms for the electric field and

the three frequency terms for the magnetic field. Then the case of circular .

aperture, focused on the axis of symmetry, with a uniform tangential electric

field is considered, resulting in closed-form expressions valid at any

distance from the aperture.

II. Electromagnetic Fields from Arbitrary Aperture Fields in a Plane

The basic equations for electranagnetic fields from those on a half plane

(z = 0) are well known [3, ,4]. In particular let us consider that the

tangential electric field on the source plane S’ (i.e., 2’ = O) is

specified. Let the?’ coordinates be those on S’, i.e.,

+1r =(x’, y’, o) (2.1)

Furthermore, let ~ be the coordinates of the fields away from S’ as

? = (x, y, z) (2.2)

Then as in Figure 2.1 we have some assumed tangential field distribution on S’

. as

tt (x’, y’, o; t) = (Ex, (x’,y’, O; t),,Ey,(x’, y’, O; t), 01
t

+(x’, y’; t)

2 ,.

m
(2.3)
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S’ is defined

by %(x’, y’,@-

Figure 2.1. Electromagnetic fields from a source plane S’.
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In addition, there is a z component of the electric field on S’ which, how-

ever, does not appear as a source in the traditional equations.

at some position ~-we wish to compute the fields. Define

F- W= [(X-X’)* + (y-y’)* + z*]l/*

Laplace-transform (two-sided) variable

complex frequency

s
–a free-space propagation constant
c

1
—s speed of light
.hloEo

. .

Z. zrl’o—s wave impedance of free space
‘o

.

.

(2.4)

.

. .

.-

(lur half space of interest (z > O) is considered free space with zero

conductivity, permittivity Co, and permeability PO.

The electromagnetic fields are computed as from an equivalent set of

magnetic current sources on S’ which give a vector potential [1, 3].

(2.5)

The scalar potential of a magnetic current distribution being zero, we have

t -s7!

B=poh=v xx, h=lJoy=vx?i (2.6) ,.-,
—’
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a Then we have

.

t (7,s) ‘~ r ~([~z x ~~(x’,y ’;s)] x ~R] e-yRdS’
S’R -

7’?(7,s) ‘~{vxr~[~’fzxi~ (x’,y ’;s)3x~R] e-yRdS’}
o S’ R

In component form, we have for the electric field

1 ~ l!YL~e ~
:X(?,s) ‘— -YR ~I(xI,yI,

2Tr~, ~2 “S) dS’
Y

The magnetic field components are somewhat more complicated as

. .

m ,
1 - “ReY ~-(x-X’ )(Y-y’) ~(yR)2 + 3YR + 3] ~~(x’,y ’;s)

iix(F,s) =— (—. Zmuos s, ~3 . R2

(2.7)

(2.8)

+ [2YR + 2 - ‘Y-Y’)2+ ‘2 [(yR)2 + 3YR + 3]] :; (X’ ,y’; S)} dS’
R2 J

[(yR)2+ 3yR + 3] :; (X’,y ’;S)ij(?, s) = +4,$ {(x-x’:$-y’)

-~2yR+2- (X- X’)2+ zz [(YR)2 + 3YR + 3] EL (x’,y ’;s)} ds’

Rz ‘ (2.9)

1
iz(?,s) =—

e-yR {-(Y-;’)Z i-(y~)~-t’3YR + 3] i; (X’,Y’; S)
(—2ruos S, R3 R

+ (X-x’)z [(YR)2
Rz + 3YR + 3] i~(X’,y’;S)} dS’

5
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Note that one can think of the fields from an aperture as those from an array 4
of magnetic dipoles. The electric field has R-l and R-2 contributions and the

-1, R-2, and R-3 contributions.magnetic field has R

In time domain one also has explicit formulas by making the association.

Laplace (complex frequency) Domain - Time Domain

e-yR t;(x’,y’;s) - t:(x’,y ’; t - :)

as*— at

S-l -(dt

(2.10)

Substituting the time-domain forms in (2.7) through (2.9) these equations

all converted to explicit time-domain formulae for the fields in terms

time-domain aperture fields.

111: Focused Aperture.

As discussed in various texts [43, one can have a focused aperture.

are

of

By o

this we mean that the ~hase of the.tangential electric. field (source) on S’ is

adjusted such that at some observer at ? = TO the signals from each elementary

position on S’ all arrive with the same phase. Looking at (2.7) it-is the

factor e-yR ~~”,which we need to control. While ~~ qs only a function of the

source coordinates, e
-yR

is a function of both source and field coordinates.

Considering a fixed observer position at ? = To then we have

Let us now constrain at ~.

-yRo .“
e-yR lJx’,y’ ;s) : e Eof(s) tj(x’, y’)

(3.1)

(3.2)

~!jth this choice, then at To all sources (or equivalent elementary magnetic

dipoles) have the same waveform f(t) arriving at the same time at to. The
a
/

variation of the source amplitude over S’ is constrained by a separate factor
,.
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3(x’, Y’) (real) with an overall scale factor E. (real).

Substituting (3.2) into (2.7) through (2.9) gives the fields at the

focus 7.. Note that in the magnetic field equation in (2.7) the curl operator

is”with respect to ?, not ~ In terms of the components the electric field
o“

at 70 is

-yF!o

EX(?o,s) =* ‘o;(s)[,~> 9x(x’, y’) dS’
Y Y

(3.3)

-yRo
Xo-x’ YO-Y ‘

EZ(;o,s) =* Eo;(s) ~ ~ [r gx(x’,y’) +~ gy(x’,y’)] dS’
S’ R

Similarly, the magnetic field is

[(YR)2 + 3yR + 3] 9x(X’,y’)

-YRO
-(xo-x’)(yo-y ’)

~x(~o,s) =~Eo~(s) J {:
. 0 s’ R’

*

.

(yO-y’)* + z;
+ ~2yR+2

R3
R’

~(yR)2 + 3YR + 3]] gy(x’,y ’)} dS’

-YRO
(XO-X’)(YO-Y’)

BY(?oys) =~Eo%) ~,{
R’

((yR)2 + 3YR + 3] 9Y(X’ ,y’)
o

(XO-X’)2+Z:
-[M-

~3
R’

[(yR)2 + 3yR + 3]] gx(x’,y ’)} dS’ (3.4)

-YRO
-(YO-Y’”)ZO

fiz(?o,s) =~z~u s Eo?(s) Q
R5

[(yR)2 + 3yR + 3] gx(x’,y ’)
o

(xO-x’ )Zo
+

R5 [(YR)2 + 3YR + 3]”gy(x’,y’)} d.s’ “

-yRo
After allowing for the delay term e and the source (tangential E)

*
waveform ~(s), note that the electric field has terms proportional to S1 and
so , while the magnetic field has terms proportional to S1, so, and S-l. Then

let us write for the electric field

7
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EX(70,S) =

-YRO .
Eoe (1) a as (2) a2

f(s) {Ux,x T7+ ax,x -#
o

-yRo -
Eoe (1) aas+ (2)<}f(s) {Uy,y R. ~

aY9Y #
o

-YRO .
~z(~o,s) = Eoe (1) (1)] ~aa:f(s) {[az,x + az,y o

+

Similarly, for

Zoiix(?o,s)

the magnetic field

. ,.

+B(l)a as (2) az (3) a3 ~}
—P+$x,ygx,y R. + ‘x,y ~as.

o 0

+0 .
Zo;y(?o, s) = Eoe

(1) a as (2) a2 (3) a3 c
f(s) {By,x~~+$y,x~+f3y,x~ E

o 0

+B(l) a as (2) ~+ 8(3) a3 c}
Y3Y~7+ ‘y,y ~2

——
Y,Y ~3 as

o 0

ZO;Z(FO, S)

where

-y ~. .
= Eoe (1) a as (2) a2 (3) a3 c

f(s) {Bz,x~y+ ~z?x~+ ~z,x ——
R3 as

o 0

a as (2) a2 (3) a3 :] . .
TF+ ‘z,y”~+ ‘lz,y~as

o 0

a z some characteristic dimension of the aperture

(3.5)

(3.7)
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J

6 In this form the ~ and B coefficients are frequency independent and

dimensionless,

The above results are also directly expressable in time domain for the

electric field as

Ex(~o,t) (2) az a ~[t .:)+a (2) <f(t
-%= ‘o{aX,X Roc at——

x,x R2
o

(1) a2 a f[tEy(~o,t) = E. {a ——
Y,Y ROC at

-~] +a(2) ~f(t
Y,Y R2 - +)}

o

Ez(?o,t) =
(1) (l)]&= (E. {[az,x +az,y o2 a ft -Q

‘c)

(2) (2), <f(t
+ [Uz,x + az ,x. R2 - +]}

o

(3.8)

In time domain the magnetic field is
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Note for the time integrals the excitation waveform is assumed to be “-

identically zero before some turn-on time. In (3.8) and (3.9) the utility of m

focusing at 10 is indicated by the simple form the results take in time

domain. If the aperture sources did not all reach ~. at the same time the

three time-domain terms (derivative waveform, waveform, and fntegral waveform)

would be smeared out. This is another way of considering that the fields are

maximized at ~. by focusing.

Now we have the coefficients which depend on to and the spatial

distribution on the source. The coefficients of the derivat

electric field are

ve terms for the

(1)
=+ R+JJ(XO-X’)2ax ,x + (YO-Y’)2 + &19x(x’,Y’) ds

a

(1) ~ Rozo

aY ,Y ‘~ ~~,[(xo-:’ )2+ (YO-Y’)2 +z:]-lgy(x’,y’) dS’ (3.10)
,

‘1) “= ~; ‘; ,f,[(Xo-X’)* + (YO-Y’)2 + Z:]-l(XO-X’) gx(X’,y ’) dS’
‘Z,X , aS

(1)
R

az,y =;j[,[

The coefficients of

electric field are

Xo-x’)2.+(YO-Y’)2 +Z:]-l(YO-Y’) 9Y(X’,Y’) ds’

the terms proportional to the source waveform for the

(2) ~ R:zo 2 2 -3/2
ax,x =z~po-x’ )2+ (yO-J”) + ‘o] gx(x’,y’) dS’

(2) ~ R:zo
.—

‘Y,Y = z~ az ~,[(xo-x’)2 + (ye-y ’)2 + Z:]-3’2gy(X’,y ’) dS’

R2
(2)

az, x = &f ~,[(xo-x’)2 + (YO-Y’)2 + z:]-3’2(Xo-X’) gx(x’,y ’) dS’

?
(2) *2+Z]lL [(XO-X’)2+ (Yo-y )

‘za2& : ‘3’2(Y0-Y’) 9y(x’,Y’) ds’
az9Y

10
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u The coefficients of the derivative terms for the magnetic field are

+1)
x ,x

~~ [(XO-X’)2+(ye-y’)2+ zj-3/2(xo-x’ )(yo-y’) gx(x’,y ’) cis’
= ?lTa2 &l

(1)
= ~> [,[(XO-X’)2+(Y0-Y’)2+Z:]

-3/2
[( Yo-Y’)2+z:] 9y(x’,y ’) dS’flx,y

(1) = 1 ‘O ~ ,(X -X,)2+(Y -y,)2+z21-3/21(x -X,)2+221 ~ ~x,,y, ) ds,
By,x 21Ta2 ~,. o 0 0 0 0- x

(3.12)

# R
Y ,Y =2+$[,UX0-X’) 2+(Y0-Y’ )2+z:]-3’2( xo-x’)(yo-y ’) LJY(X’ ,Y’) dS’

jl)
Z,x = ;$JJ(XO-X’)2 + (ye-y ’)z +.2;]-3/2 (YO-Y’)ZO 9x(x’, y’) dS’

a

.

@

~(l)

zYY
= +> {,[(XO-X’)2+(YO-Y’)2+Z:]-3’2 (xO-X’) zo,gy(x’-,y’-)dS’ ~

●

The coefficients of the terms proportional to the source waveform for the “

magnetic field are

&2) _ -3 f
x ,x 2T #,[(xo-x’)2 + (YO-Y’)2 + z:]-2 (xo-x’)(yo-y ’) gx(x’,y ’) dS’

B(2) ~ R:
=%7(, {2[( X0. X’)2 + (ye-y ’)z + 2:]-1

X9Y -

- 3[(X0-X’)2 + (yo-y’)z + Z:]-z[(yo-y’) 2 + z:]} 9Y(X’YY‘) dS’
(3.13)

/) 2 2 -11 if {-2[(X0-X’)2
y,x ‘za2 s, + (YO-Y’) + Zo]

.
11
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2 2 + Z:]-2[ (X0-X’) 2 + Z:]} gx(x’,y ’) dS’-!-3[(X0-X’) + (YO-Y’)
(3.13)

(cent’d.)
~z

~(z) = 3 0
Y *Y

~@[(xo-x’)2+ (ye-y’)2+ z:]-2 (xo-x’)(yo-y ’) 9y(x’,Y’) dS’
a

B(2)
-3 R:zo

‘z—
2 ‘z(yO-y ’) gx(xi,y ’) dS’f [( XO-X’)2 + (YO-Y’)2 + Zo]

Z,x a2 S1

~(z)
~ R:zo

=—~po-x’)
2 ‘*(xO-Xl) gy(x’,y ’) dS’2 + (YO-Y’)2 + Zol

Z9Y 2T ~

The coefficients of the.integral terms for the magnetic field are

~3
B(3)
x,x ‘~~~, [(xo-x’ )2+ (ye-y’)2+ z:l-5’2(Xo-X’ )(yo-y’) gx(x’,y’) dS’

a .. .
~3

J3)
‘&~~l{2[(x-x’ )2+ (Y-Y’ )2+ Z21-3)2

m

‘XYY o 0 .0
a .

2 -5q(Y o-Y’) 2 + z:]] 9Y(X’YY3[(X0-X’) 2 + (YO-Y’)2 + Zol ‘)dS’
(3.14)

~2
2 -3/2

(s) =-l 0 ( {-2 [( XO-X’)2 + (ye-y ’)z + Zo]
By ,x *m~sl

2 ‘5/2[(Xo-X’)2 + z:]} gx(x’,Y’) ds’+ 3[(X0-X’)2 + (YO-Y;)2 + q

R3
(3) _ 3 0 2 ‘5/2( Xo-X’)(yo-y ’) 9y(x’,Y’) ds’

,BY9Y
_ ~7fJJxo-x’)2 “+ (YO-Y’)2 + Zol

a

$3) -3 R:zo f [(xo-xl)~ + (YO-Y ) : ‘5/2(ye-y’) gx(x’,y’) dS’‘2+Z]
Z,x ‘Z@- “s‘

&3)
s R:zo

2 ‘5/2(xo-x’) gy(x’ ,Y’) dS’
=—TJJ(XO-X’)2 + (yO-y’)* + ‘o]‘5Y *n a

!@

12



IV. Case of Focus at Large Distance from Aperture

NOW let Ro/a + m where a is some characteristic dimension of the

aperture. Specifically let all source fields be zero outside of some radius

on S’ given by some constant times a. For this purpose we

(cartesian, cylindrical, spherical) as

x = y Cos(+), y =v sin($)

z = rcos(e), Y = r sin(e)

x = r sin(e) COs(+)y y = r sin(0) sin(4)

These are subscripted with O for the observer at ? = ?..

have coordinates

(4.1)

.
Considering that 80 and @o are fixed as R. + CO,we.have to order (a/Ro)-L

for the electric coefficients in (3.10) and (3.11).

(1)
“aX,x

‘2)=+’COS(fjo) ~@(x’,Y’) ds’
= ‘X,x

.(1) _ (2)
‘Y *Y - ‘X,x = + Cos(eo) + g (X’,y!) dS’

a St Y

(1)
az,x = a~’~ =-#sin(eo) COS(OO) ~f’ gx(x’,y’) dS’

Y a S’

(1) (2)
‘Z9Y = ‘Z,X = ~ sin(eo) sin(+o) ~~lgy(x’,y’) d.s’

asQ+OR. to 0(+)
o

(4.2)

Similarly for the magnetic coefficients in (3.12) through (3.14)

Jl) _ 1 (2) =~ (3)
x ,x -7* X,X 3 ‘x,x ‘~ sin’(co) COS(OO)sin(+o) -#&gx(x’,y’) d-s’

*(1)
= ~ ~cos’(co) + sin’(co) sin’(+o)l

j~lgy(x’,y’) ds’X,y
(4.3)

13



$2)
x9Y

= ~ [2-3[cos2(80) + sin2(eo) sin2($o)]] ~ J gy(x’,y ’) dS’
a S’

(3)
~x,y

= ~ [Z-3CCOS2(eo) + sin2(eo) sin2(~o)J] + { gy(x’ ,Y’) dS’
a’

(1)
By,x = ~ [cos2(eo) + sin2(eo) COS2(+O)] ~ J gx(x’ ,Y’) dS’ (4.3)

a .S’ (cent’d.)

(2)
$y ,x = # [-2+3Ecos2(eo) + sin2(eo) cos2(~o)J] ~ J gx(x’ ,Y’) dS’

a S’

(3)
fly,x

= ~ [-2+3 [cos2(eo) + sinz(eo) cos2’(+o)~]~ j gx(x’ ,Y’) dS’
a S’

/) 1 (2) 1 (3)
,Z,x ‘@z,x ‘T~z,x = ~COS(eo) sin(eo) sin($o) #\, gx(x’,y ’) ds’

$1) _l (2) 1 (3)
z9Y -Vz, y = ?,~z,y = &cos(80) sin(eo) COS(@o) ~~ 9 (x’,Y’) dS’ “

a SI Y

as~+OR. to 0(;)
o

Note the common factors in the above. If we choose as a special case a

uniform illumination (after focusing) of a circular aperture of radius a, with

a single polarization in the x direction, we have

lforO<y’<a
gx(x’,Y’) ~ {~ for y’ > a

gy(x’,y’) s o

---&,gx(xt,y’)d~’ ‘T

j[,9y(x’>Y’) dS’ = O

*

,

(4*4) 9

14
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f

a’ These can be substituted in (4.2) and (4.3) to g’

uniformly illuminated circular aperture focused at

In a more general sense, let the aperture

illumination gx. Then

( gx(X’,y ’) dS’ = A
s,

ve the usual results for a

w.

be of area A with uniform

(4.5)

which is a well-known result for uniformly illuminated apertures focused at

infinity.

v. Circular Aperture with Uniform Tangential Electric Field Focused on Axis

Now consider the special case of a circular aperture with uniform

illumination (tangential electric field)

. .
l{for~<”v’<a “

gx(x’,y’) s {fjfory ’ >a
.

9Y(X’,Y’) = o (5.1)

Furthermore, specialize the case to an observer at a distance Z. on the z

axis.

The non-zero electric-fiel d coefficients are

~2
(1)

=~~( [X’z +y’z +Z:]-lgx(X’,y ’) dS’‘X,x 2’K~z s,

~2

‘ +f:a~’=[y’z + z:]-’ “d’’dy’

z? a
2 -1

=f~[v’z+zo] y’dy ’

Z2 a2

‘:! [V ‘Z:] -ldJ

(5.2)

. 15
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23
(2)

ax,x
= ++f~irx’z + Y’z + Z:]-3’29X(X’3Y’) ds’

a-

Z3
a 27

‘~f~ ~ [~’z + z:l-3/2 y’d~’dy’
00

23 a 2 -3/2 ~,dy,
=>{ [Y’z +2.]

23 az 2 ‘3/2dv=—Za; ~ [~ + Zol

Substituting these results in (3.8) we have

which is a quite compact result valid for Z. > 0.

small a2/z~ to 9ive

‘o+ .0($)] +f(t -~)Ex(zo~z,t) = Eof2cz
o zo

(5.2)
(cent’d.)

*

(5.3)

This can be expanded for

(5.4)

.*

16
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as + o (5.4)
(cent’d.)

This exhibits the usual far-field results (derivative term) proportional to

(aperture area)/zo. In addition for the term proportional to the excitation

waveform there is a leading term proportional to (aperture area)/z~.

The non-zero magnetic-field coefficients are

(1) _ 1 ‘o
By,x ~m 2/, [x’2+y’ 2+z:]-3’’2[x’2+ z:] ~x(X’,~’) dS’.——

aS

? ‘3/2~qy’2cos2($’)+ z;] Y’d$’dv’
J ~ fa(2=[y,2

=— + Zo]
a 00

=~zo a ,2
.@[~ +.z:]-3’2[y’2 + 2z:] y’dy’ ,

az
‘~+f [V +Z:]-3’2[V+ 22:] dv

ao

=~~{2 {[a2 + z~ll’2 + z: [a* + z~]-1’2- 22.]
a

4z~ {[a2 + z~]-1’2 - z~l]}

(5.5)

22 2 1/2
2 -1/21.;+{[1++] -[1+>]

a z
o

z
o

22
(2)

By,x =+j[, {-2[x’2+y ’2+z:]-1+ 3[X ‘2+y ’2+z:]-2[x’2+z:]} gx(x’,y’) dS’ “

22
a 21T ,2 2 -1 ,2

=++;( ( {-2[Y +2.] + 3[y + Z:]-2[Y’ 2COS2(+’)+Z:]} Y’d$’dv’
a 00

17
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L

~2
2 ~ -2 12+2Z2]} y’dy ’

‘ ;j ~aG4[y ’2+z:]-l + 3[Y’ +2.] [Y o

# ~z

= +j f {-4[V+Z:]-1 + 3[v+z:]-2[v+2z:]} dv
o

2 -1
6z~[[a2 + Zoj - 2;21}

(5.5)
(cent’ d.)

2
‘o -1

‘~{~~n[l +
2 -1$] - $[1 ++1 - 1]}

Z.
o

(3) 1 z: ,2+Y,2 2-5/2 12 2
a2 ~,{-2[x’ 2+Y’2+z:]-3’*+3[x +Zol . [x ‘zo]}9x(x’,y ’) dS’—.

By,x = 2T
. . .

, . .

23
e

=&~~a/2m{-2~Y 12+z2]--3'2+3[YI 2+z~]-5/2[y12cOS2 (4')+z~]} y’d$’dv’
o

a oo -

23
2 -3/2+ 3[Y12 + Zo]

s;+ (a{-4[Y’2 + z ] 2 -5/2[Y’2 + 2z:]} w’dv’
o

ao

Z3 ~2
* -3/2+ 3[V + 2:]-5/2

=*+J {-4[V + z~l
[v+ 2z:]} dv

ao

3 22

1208 2 2 -1/2 -1 2 2 -3/2- 1 -1
‘~~{ {~a +Zol

-z. ]+6{-[a2+z~]-1’2+ z~l+ ~ [a +Zo] ~zo}

2 2 -3/2
4z~ {[a +2.2 - 2;3)}

22 a2 -1/2-31 +<]-3/2}
S+{+[l+Z] - Z2

a Z. o
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Substituting these results in (3.9) we have

e

ZoHy(zo~z,t) = Eo{~~ 2 1/2
{[1 ++1 - [1 +<1-1’2} +f(t ->)

z
o

z
o

2 -12 -$[1+~]+{~~n[l+~l - 1]} f(t -:)
zo z

o

2 -1/2 2 -3/2
+ +$ [1+] - +[1~] } Jtf(t’ -:) dt’) (5.6)

z z -m
o 0

which again is valid for z > 0. This can be expanded for small a2/z~ to give
o

ZoHy(zo~z, t) = Eo{& [1 + 0(<)1 + f(t - +)
o Z.

+;+[1+0(+ f(t -+)
z
o ‘o

++<[1 + 0(+)] Jtf(t’ -+) dt’}
Z. Z. -~

2
as~+O

Z*
o

.

.

(5.7)

Note in the far field the leading terms (going as z~l) agree for electric and

magnetic fields. As one approaches the aperture so that a/z. becomes not

small compared to 1, even the derivative terms for electric and magnetic

fields have different coefficients (i.e. , not related as in a plane wave).

VI. Summary

The case of Section 5 is not the only specific aperture distribution one

could consider. Considering a focused aperture other distributions of

aperture fields can be investigated and the coefficients in Section 3

determined. Perhaps some other interesting distributions will give closed-

form results as in Section 5.
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