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Abstract

In transient line synthesis, there are a variety of ways of specifying inhomogeneous
media such that simple electromagnetic waves, such as TEM waves, can pfc;pagate in the
medium. In the simplified situation considered here, we have a two-dimensional problem

which uz = z, and eitﬁer the formal electric field or formal magnetic field has only a u3
component while the remaining field has only a u; component with both field components
a function of u; only. The uniform TEM wave then propagates in the u, direction. Two-
dimensional lenses can then be specified and these lenses are suitable for launching TEM

waves on two parallel perfectly conducting plates.
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Abstract

In transient line synthesis, there are a variety of ways of specifying inhomogeneous
media such that simple ele'ct.romagnetic waves, such as TEM waves, can propagate in the
medium. In the simplified situation considered here, we have a two-dimensional problem

‘ in which ug = z, and either the formal electric field or formal magnetic field has only a us
component while the remaining field has only a u; component with both field components
a function of u; only. The uniform TEM wave then propagates in the u, direction. Two-
dimensional lenses can then be specified and these lenses are suitable for launching TEM

waves on two parallel perfectly conducting plates.
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1 Introduction ’ ‘ .

The study of inhomogeneous TEM plane waves which propagate on ideal cylindrical
transmission lines with two or more independent perfectly conducting boundaries leads
to the study of lens transition regions. These types of inhomogeneous media can be used |
to define lenses for transitioning TEM waves, without reflections or distortions, between
conical and cylindrical transmission lines. While there are practical limitations (e.g., the »
properties of materials used to obtain the desired permittivity and permeability of the |
medium) perfect characteristics are not really necessary. The differential geometric ap- |
proach to the design‘of lens transitions was initiated by C. E. Baum (see [1,2,3,4]}, and in |
essence it is a scaling method. This method creates an equivalence between two classes of
electromagnetic problems. The first EM problem, called the formal problem, has a simple
geometry and medium and simple wave. The second EM problem, which is the real world
or lens problem, consists of a more complicated geometry and medium and known wave. .
Thus the differential geometric scaling method transforms an EM problem by a coordina.te,j
change, and is a method that is well known in mechanics and fluid dynamics. ‘

In Section 2, formal operators and fields are introduced along with Maxwell’s equa~
tions. In Section 3, the case of two-dimensional TEM waves is discussed. In practice,;
there will be many possible ways to choose coordinates to form an orthogonal coordina,t'.e:
system from which one can extract the scale factors and specify the properties of a lens
medium. In Section 4, the differential geometric concepts that are needed to specify a.j
lens are introduced and the key results are discussed. In Section 5 several examples of;
two-dimensional lenses are given. These lenses might be appropriate for launching TEM‘
waves between wide perfectly c'onducting parallel sheets. Regions corresponding to thej

condition 2 > 1 should be excluded. Finally, in Section 6 our results are summarized.




‘ 2 Formal Operators and Fields and Maxwell’s Equa-
tions

As in [1] we consider an orthogonal curvilinear coordinate system. (uy,us, us) with unit

vecfors 11, 1,, 13, with line element
(d€)? = hi(dui)® + h3(dua)® + h3(dus)® . (2.1)
The scale factors are given by

ar\*? oy \? 3z \? .
2 __ - == | = 3 2.2
h; (au,.> +<8u,-) +'<8u;> ,1=1,2, . (2.2)

where (z,y, 2) are rectangular Cartesian coordinates, and the &; are taken as positive. We

define, as in [1], the following: ,
By 0 O hihs O O

(a{’j) = 0 h2 0 (,3,‘1]') = 0 hlhg 0 (23)
o ' L0 0 h 0 0 Iyh
: hoh
. —hL3 - hOh 0
(wa) = | o Bl o
Lo o Ik
hs

= (a;)7" (Big) = (Bij) - (us) 7"

With respect to the u; coordinates, gradient, curl, and divergence are

1 1 7T 1 7
Fahs 'l Fihsi? Thg

2.1 8f > 9 3 3
Vf = ; B—a——l VxX= ur Dy Dus (2.4)
hi1 X1 ho X5 hs X3
- 1. 3 o 2]
V.Y = P {6—u1(h2h3Y1) + %—z(hﬁsyz) + %(hlhﬁ@)} .

The X; are called physical components of X which has the representation
3
=1
o \




Formal vectors and operators may be defined as follows. These objects are denoted by

attaching a prime to the usual symbols. Thus, for vectors (E and fj!') which are subject to

curl we define

3 3 .

X = ZX:T,=Z}L$.K,1, (2.6)
=] i=1

X = hX;.

The X are the covariant compohents of X. The contravariant components of a vector Y _

{vectors such as D, B, J subject té diverence) are given by
Y = ZYzfs =‘h253Y1i1 + hihsYals + hrhzﬂi’s . (2.7)

The formal operators are then defined by,

3 af! -
v' ! —_ ____1‘.
r=xi
I, I, I,
VxX = |2 2 2 (2.8)

du; Oug Jus
Xy X X3

ay] 38Y] aYv!

1, 9%z | OXs

[ 7
vy - 81!.1 Buz aus )

Maxwell’s equations are given by

~ 8B
v = =
x B 3t
= - 0D
v = J+ —=— 9
x H +6t (2.9)
v.-D = g
V-B = 0

together with the constitutive relations

D = ()-8

by

I
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and continuity equation

The matrices (g;;) and (u:;), which describe permittivity and permeability, are as-
sumed frequency independent and thereby real valued and may be dependent on position.
The equations above can be expressed in terms of the u; coordinates. Formal electromag-
netic quantities are defined by

B = (o,5) - B

B = (a,) B (2.10)

E: = hE;, H: =hH; ,t=1,2,3.
Since E,ﬁ, and J arise in divergence equations, we define
B' = ()-8

D' = (8D
T

J' = (Biy)
B = -”-1-’;—2_523,- | (2.11)
hihoh
D = -—17;2'—3 ;i
hihohs
g o= Mafahs g
; s J,

If we require
B = () B
B o= (uy)

then Maxwell’s. equations and the above equations lead to definitions of the formal per-

(2.12)

mittivity and permeability. These are

(el;) = (Big) - (&03) - (u5)7?
(wi;) = (Big) - (#g) - (i)™t

(2.13)




and hence if (e;;), {#;) are diagonal,

() = (mg) - (&)

(2.14)

(2.15)

(i) = (vs) - (beg) -
Maxwell’s equations can now be expressed in terms of formal fields and operators as:
- 3B
1 y _. YT
VIXE = 5t
- D'
7 - |
VIxH = J+ e
\vZ 5: = 5
V'.B =0
.5' = (51'3) . E,
B = (:“':;) -H'
3p'
v.J = L.
ot

3 Two-Dimensional TEM Waves

If, in our {uy,us,us) coordinate system we let ug = 2 (and hence hg = 1) and suppose’
that either the formal electric field or formal magnetic field has only a us componenti
while the remaining field has only a u; component with both components a function of u;,

|
only, then we have a uniform TEM wave which propagates in the u; direction. Thus, for

example, if the electric field is pa.rallel to the z axis, we assume
E' = By F{t—us/Ts
H' = H, flt—u/c)1;

where

= ih
E:’,,0 = — -é,—s—Hgo

|

(3.1)

i

(3:2)




¢ = 1/\/u’25’3

and Ej , Hj ,uh, and &} are all independent of the coordinates u;.

Similarly if the magnetic field is parallel to the z-axis the wave is assumed to be of the

form
E = Eyg(t—u/d)1 (3.3)
H = H;g(t—u/c)1s
where
B, = \%m, (5.4

€2
¢ 1 \/;’3_5’;
and Ej , Hj ,us, and &) are all independent of the coordinates.

Note that when the electric field is parallel to the z-axis perfectly conducting planar
sheets can be placed perpendicular to this axis and used as boundaries for the TEM
wave. Likewise when the magnetic field is in the direction of the z-axis, the electric field
is perpendicular to surfaces of constant u; and hence perfectly conducting sheets can be
placed along the surfaces of constant u; and used as boundaries for the TEM wave.

Let us also note that for the constitutive parameters that
(i) = (&) (3.5)
(wis) = w(6y)

with zero conductivity. Thus we have an isotropic, but generally inhomogeneous, medium.

The formal constitutive parameters are given by matrices

& 0 0

(€) = |0 & O (3.6)
0.0 &
7




wy 00

(uy) = | 0w O

' 0 0 4

and since the formal fields have only one component, only one entry in each of the matrices
(3.8) will be significant. Since the ¢} and u} are assumed to be independent of position the

medium is homogeneous. Moreover we also have

(i) = elw) (3.7)
() = plwy)
where
ho/hy O 0
(vi5) = 0  hifhz O

0 0 hihs
since hg = 1.

Thus from the equations (3.5) through (3.7) we obtain

& |

g = b (3.8)
_ Byhe

po=

when the electric field is parallel to the z-axis. On the other hand, when the magnetic

field is in the z-direction we have

e by |
- 9)

g I (3.9)
_ uh

b= ks

We next note that once an orthogonal curvilinear coordinate system {u;,u2) has been
chosen the scale factors h; and h, are determined. Thus if the formal constitutive pa-

rameters are assigned their free space values the permittivity € and permeability u are




known. Since we must require £ > ¢4 and u > pg we may have to exclude certain spatial
regions from consideration. These details are discussed in the next section. Specific exam-
ples of two-dimensional lens appropriate for launching TEM waves between wide perfectly
conducting parallel sheets are given in the following section.

Finally, we note that the two-dimensional cases studied in this paper are part of the
more general problem of using a differential geometric approach to transient lens synthesis.
In [4] several other cases are investigated. In particular, we may restrict to inhomogeneous
isotropic media with field components in all three coordinate directions. The case of

inhomogeneous TEM waves with field components in only two directions is also studied in

[4].

4 Differential Geometry |

Recall that a regular surface has associated with it a metric form (called the first fun-

damental form)

(@) = 3 gis{dusduy) (1)

i,j=1

which in the case of orthogonal curvilinear coordinates ié just
(d€)? = gu1(du1)® + gz2(dus)? . (4.2)

In this event we let g;; = A? and g3 = hZ where the h; and h; are the scale factors referred
to in the previous section. Some special cases of interest include semi-geodesic coordinatés
(hy = 1) and isothermic coordinates (h; = hz) We now discuss these special cases.

The most obvious examples of semi-geodesic coordinates for which the associated metric
form is

(d€)? = (duy)? + h*(dus)? (4.3)




include orthogonal Cartesian coordinates in the plane and polar coordinates in the plane. |

The spherical coordinates on the unit sphere are also semi-geodesic coordinates, since

(d£)? = (db)? + sin*(8)(de)” (4.4)

when z = sin(#) cos{¢), y = sin(d) sin(¢), z = cos(f). The Gaussian curvature associated

with (4.3) is given by
‘ ' 18%h

P (45)

and hence for the unit sphere K = 1. Finally, if (u,v) are semi-geodesic coordinates then

hy =1 and hy = he{u,v) and so our constitutive parameters have the form

g = —= (46)

. when the electric field is parallel to the z-axis, and when the magnetic field'is parallel to -

the z-axis,
e = eyha (4.7}
Hs |
o= ==,
ho

In the case of isothermic coordinates, h; = he and examples of surfaces for which thei ‘

metric form is

(d€)? = R*[(du)? + (dv)?] (4.8)'

include such surfaces as helicoids and catenoids, and alsc a sphere with parametrization

given by

4a*u
4a? + u? + v?
4a’v

V= e (£9)

4a2 +u?+v’
. = 4a® —u® — 2 .
T o \da?t+ut4e?)

10




for which
- 16a*
(4a? + u? 4+ v?)

(@) = ((du)® + (dv)?) . (4.10)

The Gaussian curvature for a surface with metric form (4.8) is
K = —=92(tn(h 4.11
- L) . (4.11)

We note that the metric form (4.8) is obtainable through conformal mappings of the plane.
That is, if p = z + ¢y is a complex variable and ¢ = Fi(p) is a conformal mapping, then it

is easily checked that
2
(de)? = l% ((du)? + (dv)?) (4.12)

where ¢ =’u + 2v, and hence hy = hy = ’%’ = h. In the case that h; = h,, the equations

for the constitutive parameters have the form

&

€ = = (4.13)
po= p

for E in the z-direction, and
e = & (4.14)

for ﬁ in the z-direction.

In either of these cases with h;y = hy = h the choice of free space values for the formal
constitutive parameters leads to the restriction that 2~ < 1 since ¢ > &9 and © > up must
hold. Thus regions corresponding to & > 1 would have to be excluded from considerations.
Iﬁ the next section, we consider some specific examples of two-dimensional lenses. These
examples arise from conformal mappings of the complex plane. We now make some further

observations on this situation.

11




If g = F(p) = u + iv is a conformal mapping of § C C, the complex plane, to S’ C C,

we recall the following facts. First, if we let

p=z+iy (4.15)
then

z = f(u,v)

y = g(u,v)
and

p==z+1y = f(u,v) +ig(u,v) = G(g)

where G is the inverse of F'. Then

since @ is differentiable. Moreover

dp
2 _ |22
he =

and h? = h? = h2 with

Moreover, by a direct calculation or from the fact that the Gaussian curvature K vanishes

identically, we have
8%n(h) + 3%en(h) _
du? av?

(ie., £n(h) is a2 harmonic function of (u,v)). Thus conformal maps force the condition

t
that hy; = h,. Conversely, if we choose a metric form as in (3.18), for some orthogonal

'

transformation of the form

z = flu,v) (4.20)‘
y = glu,v)
12

S e

(de)? = R*[(du)? + (dv)?] . (4.18) |

=0, (4.19)



o

then we must have
0f0f  999g _ 4

'l = 4.21
du dv | dudv ( )

because of the orthogonality, and we must also have equations (4.17) valid. Thus if we set

%__ %

=90y _ _0U

a= gﬁ = %i (4.22).
u v

(which is another way of expressing the orthogonality) then

(e +1) (g%)? =(a?+1) (g%)z . (4.23)

But a? + 1 # 0, since a = =1 leads to a linear relation between f and g. Thus we must

- @ e

have

and as a’consequence either

of _dg of  9g

8w~ v and dv = Ou (4.25)
or

o _ 00 L. 9 _ 9

du O and dv  du’ (4.26)

Both sets of equations (4.25) and (4.26) are the Cauchy-Riemann equations, and hence if
(4.25) holds, then f + 7g is an analytic function of u + ¢v. Similarly, if (4.26) holds, then

f — g is an analytic function of u + tv. Hence
flu,v) £ tg(u,v) = G(u + v) (4.27)

and we can then state the following result. If u = constant and v = constant form a system

of isometric coordinates, then all other isometric systems are given by

Re[G(u+1w)] = f(u,v) ' (4.28)
Im[G(u+1w)] = g(u,v)
13




where Re[Gl, Im[G] are the real and imaginary parts of an arbitrary analytic function

of w + iv. Hence taking hy = hy = h for any orthogonal coordinates u,v enforces the

analyticity of the mapping ¢ = F(p), when h satisfles {4.17).

As a concluding remark, if we are given a metric for the plane of the form

(d8)? = R2[(du)? + (dv)?] . (4.29)

for some arbitrary choice of & = A{u,v) we can ask if there is a conformal map q = F(p) =

u + 2v for which A =

%g—l Since the existence of such a map implies £n(h) is harmonic in
» and v, the condition that

82
Ju?

would imply that such a map does noi; exist. In general, one can assert that the necessary |
and sufficient conditions that an arbitrary set of k2 = 1,2,3 will correspond to a triply
orthogonal set of surfaces in Euclidean 3-spa.<;e are given by a set of six partial differen-

tial equations, which are usually referred to as the Lamé equations ([5]). Since we are"

considering metrics in a plane, these equations reduce to a single equation, namely
8 a?
—fn(h) + —¢ =0. .
307 n(h) + 307 n(k) =0 (4.31)

Since the Gaussian curvature associated with a surface whose metric is

(d)? = h3(du)?® + K2(dv)? (4.32)

K = hihg [au (hl 611.) + 3 (hz e >] (4.33)

the result (4.31) is not surprising. Moreover the Lamé equations themselves are obta.'med’

is given by

by using the vanishing of the Riemann curvature tensor, R;;i, as integrability conditions.

Let us consider some further examples. Let
(d8)? = **{(du)? + (dv)?] (4.3)

14

—¥én{h) + %En(h) #0 (4.30)



and we ask if there is a conformal map p = G{g) leading to this metric form. Since
Vin(h) =0 (4.33)

the answer is yes, and so

CE%) = ¢ and we have the problem of finding G(g). In this case,

the answer is obvious since we can write

Z_Z R e R ’ (4.36)
and so
p=Glq) = ¢ . . (4.37)
On the other hand, if
(d0)? = (u® + v?)[(du)® + (dv)?] (4.38)
is a' given form, tilen clearly
Viin(h) = %v'—’en(u"’ +v¥) =0 | (4.39)

and so we have the existence of a conformal map p = G(gq) with

d
d—z = VUi + o7 (4.40)

and one can then obtain

=12 4.41
p=3q (4.41)

The point is, however, that if we know a conformal map p = G(g) exists for a metric form
(d€)? = R*[(du)? + (dv)? (4.42)
then

!% = h(u,v)
- (&)
- (&)

15

99 (4.43)

_'_
N
|
e
N——’
[

+
N
Sy
N—’
[




and actually obtaining the functions f and g for which

p = G{g) = f(u,v) + ig{u,v) (4.44)

may present some difficulties.

As a final example, if we have a form
(d€)? = u*{(du)? + (dv)?] (4.45)

then V%in(u?) = ——u% # 0, and so there is no conformal map leading to the form (4.45).

5 Examples of Two-Dimensional Lenses

For our first example of a two-dimensional lens, we consider, as in {1], the conformal

transformation
q = %en[eﬂ’/ ¢ _1q] (5.1)
p = %En[e”q/“ +1].
Then
u = —tn [3291':1:/0. — 2e7%/ @ g (ﬂ> + 1] (5.2)
2 a
Tz/a
v = Zarctan ° sin(my/a) +ak, k=0,%1
7" erz/a cos(my/a) — 1
while
T = —in [eZwu/a +2e™¥/ @ ¢os (E‘v) + l] (5.3)
27 a
. /2 gin (12)
y = —arctan - + ak .
T T4/ cog (W—;’-) +1f

So, for example, v/a = 1/2 maps into T/ — sec(my/a). For a detailed plot, see Fig-

ure 5.1. The transformation describes the potential distribution around a uniformly

16
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Figure 5.1.

Coordinates for First Example
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charged wire grid (in a homogeneous medium) terminating a uniform electric fleld for

z>> 0 (see [1]). As usual, ¢ is a parameter which can be used to scale dimensions.

The scale factor A given by %g is
h? =1 —2¢~ 7%/ % cog (%) + e—27z/a ‘ (5.4)

Since those regions corresponding to A < 1 are the only ones of interest, we find the contour

for b =1 from (5.4) by taking
2 cos <-7;—y-> = 7e/a (5.5)

In terms of the coordinates (z,y) we find

h? = [1 + 2¢~ /4 cog (%v) + e—27ru/a]_-1 . , (5.6)
Thus the condition |v/a| < 1/2 will guarantee that 2 < 1 will hold. Hence perfectly
conducting boundaries could be placed on surfaces of constant v. Note finally that as
z — 00, h — 1, and so one of the constitutive parameters of the lens is the same as free
space, while the other parameter tends to the free space value as £ — oco. Hence for =
large in value the lens material can be shortened without significantly distorting the TEM
wave.
Our second, and last, example of a coordinate system for a two-dimensional lens is
given, as in [1], by the conformal transformation

qg = g—‘-z-!in [sinh (@)]
s 2a

p = 27;‘3'_ arcsinh [e”q/ 2a) (5.7)
Thus we have
u = Zin [cosh2 (E) — cos? (B—)]
T 2a 2a
v = 27r_a. arctan [coth (E) tan (E-)] + 2ak (5.8)

2a 2a

18




where k£ = 0,+=1. The transformation (5.7) describes the potential distribution around a
uniformly charged wire grid (in a homogeneous medium) terminating equal but opposite
electric flelds for z > 0 and z < 0. Figure 5.2 illustrates the transformation (5.7).

The scale factor A satisfies
h=|1+e /|2 = ]tanh <-27%)l ' (5.9)

and hence )
1—2¢~ 7%/ @ cos (an) +e—27z/a
1 + 2e~72/% cos (%E) +e2mz/a

Hence if y = 4a/2, the contour for A = 1 is obtained. The minimum value of A will occur

2

(5.10)

on v = 0 (for which y = 0) and at u = ug, where ug is the minimum u of interest. Thus

h21 = (1 4 e~™o/3)-1 (5.11)

min
and the maximum ¢ or x4 can be found from (4.6) or (4.7). .

Since as z — co we have

h — 1

 2a
u — T-— ;—En(Z) (5.12)
v — ¥y

and so as in the first example the lens material can be terminated at sufficiently large z
without significantly distorting the TEM wave.

Figure 5.3 illustrates two-dimensional lens with parallel-plate transmission lines. The
cases of either the electric or magnetic field parallel to the z axis are shown. In both cases
the conductors and medium are cut off before the singularity on the z axis is reached.
Sources to launch a TEM wave might be located at this point. The perfectly conducting
sheets and inhomogeneous medium are stopped on surfaces of constant v. While this would
result in distortion of the TEM wave, this distortion is minimized if the sheet separation

is very small in relation to the sheet width.

19
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Figure 5.2. Coordinates for Second Example
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transmission-line conduectors

A. Case 1: E parallel to 2z axis

X

+ransmission-line
conductors

B, Case 2: i parallel to 2z axis

Figure 5.3. Two-Dimensional Lenses with Transmission Lines
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6 Summary .

There appear to be many ways of specifying an inhomogeneous medium such that TEM
waves can propagate in the medium, which can then be used to define a lens for transmit- j'
ting a TEM wave without reflection or distortion between certain types of transmission
lines. There may, of course, be practical limitations in the realization of such lenses. Ide-
ally, the lens region should be infinite in extent, and so perturbations can be introduced
_ into the desired pure TEM wave by cutting off the lens. Another limitation lies in the ;
characteristics of the materials used to obtain the desired permittivity and permeability of |
the lens medmm Idea.lly while we desire frequency independence, perfect characteristlcs :
are not really necessa.ry -

In this pa.per we have given several examples of two-dimensional lenses appropriate for

launching TEM waves between wide pei'fecﬂy conducting parallel sheets.
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