
Sensor and Simulation Notes

Yote 308

October 23, 1987

Design of Two-Dimensional EM Lenses Via

DiRerential Geometric Sca3ing
: .-.>&=,

A. P. Stone
;, +$

C. E. Baum 1....<<

University of New Mexico . Air I?orce. W’capons Laboratory
~ .:J,, :-+

Department of Mathematics and Statistics Kirtland Al’”B, New Mexico 87117
; -:-:-.”

.ilbuquerquc, ~;ew Mexico 8’7131
...”.-*.-:.-.,

: ?.:

Abstract

In transient line synthesis, there are a variety of ways of specifying inhomogeneous - ----

media such that simpIe electromagnetic waves, such as TEM waves, can piopagat e in the

medium. In the simplfied situation considered here, we have a two-dimensional problem
:,:,-
--

which ZL3 = z, and either the formal electric field or formal magnetic fieId has only a U3
-..

component while the remaining field has only a U2 component with both fieId components

a function of U1 only. The uniform TEM wave then propagates in the U1 direction. TWO-

dimensional lenses cm then be specified and these lenses are suitable for launching TEM

~vaves on tw-o parallel perfectly conducting plates.
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Abstract

In transient line synthesis, there are a variety of ways of specifying inhomogeneous .

media such that simpIe electromagnetic waves, such as TEM waves, can propagate in the

medium. In the simplified situation considered here, we have a two-dimensional problem

in which U3 = z, and either the formal electric field or formal magnetic field has only a us

component while the remaining field has only a U2 component with both field components

a function of U1 only. The uniform TEM wave then propagates in the UI direction. Two-

dimensional lenses can then be specified and these lenses are suitable for launching TEM

waves on two paralIel perfectly conducting plates.

TENfwaves, inhomogeneous metiia, electric fields, inagnetic fielcis
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1 Introduction

> The study of inhomogeneous T13M plane waves which propagate on ideal cylindrical

transmission lines with two or more independent perfectly conducting boundaries leads

to the study of lens transition regions. These types of inhomogeneous media can be used

to define lenses for transitioning TEM waves, without reflections or distortions,” between

conical and cylindrical transmission liies. While there are practical limitations (e.g., the

properties of materials used to obtain the desired permittivity and permeability of the

medium) perfect characteristics are not really necessary. The differential geometric ap-

proach to the design of lens transitions was initiated by C. E. 13aum (see [1,2,3,4]), and in

essence it is a scaling method. This method creates an equivalence between two classes of

electromagnetic problems. The first EM problem, called the formal problem, has a simple .

geometry and medhun and simple wave. The second EM problem, which is the real world

or lens problem, consists of a more complicated geometry and metlum and known wave. e

Thus the dHerential geometric scaling method transforms an EM problem by a coordinate,

change, and is a method that is well known in mechanics and fluid dynamics.

In Section 2, formal operators and fields are introduced along with Maxwell’s equa-

tions. In Section 3, the case of two-dimensional TEM waves is discussed. Tn practice,

there will be many possible ways to choose coordinates to form an orthogonal coordinate

system from which one can extract the scale factors and speci& the properties of a lens

medium. In Section 4, the differential geometric concepis that are needed to specify a

lens are introduced and the key results are discussed. In Section 5 several examples of,

two-dimensional lenses are given. These lenses might be appropriate for launching TEM

waves between wide perfectly conducting parallel sheets. Regions corresponding to the

condition h > 1 should be excluded. Finally, in Section 6 our results are summarized.
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2 Formal Operators and Fields and Maxwell’s 12qua-

tions

As in [1] we consider an orthogonal curvilinear, coordinate system. (UI, U2,us) with unit

vectors II, r2, 13, with line element

(all)’ = h:(du,)’ + h;(du’)’ + h;(du3)’ . (2.1)

The scale factors are given by

“=(%)2 +( E)2+(E)2’= ’,23 ~
(2.2)

where (z, y, z) are rectangular Cartesian coordinates, and the hi are take? as positive. We
●

.

define, as in [1], the following:

‘ ‘%’)=”k :2 !1” ‘pi’)=E”:h3 :hl

‘l=FLJ

(7i j)

= (%j)-’ “ (A,j) = (Pi,j) “ (@,j)-l .

With respect to the u; coordinates, gradient, curl, and divergence are

/ h,X1 h2X2 h3X3

(2.3)

(2,4)

The Xi are called physical components of % which has the representation

li?=~Xii’i. (2.5) .
i=l
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Fomnalvectors andoperators may redefined as follows. These objects are denoted by ;

attaching a prime to the usual symbols. Thus, for vectors (J3 and H) which are subject to

curl we define

The X; are the covariant components of %. The contravariant components of a vector ~

[vectors such as 6, ~, ~ subject to diverence) are given by

F = ~yii =hzhsYlil + hlh3Y2i2+ h1h2Y3i3. (2.7)

The formal operators are then defied by.
.

(2.8)

Maxwell’s equations are given by

Vxl? = -g

V“.L3 = p

(2.9)

together with the constitutive relations
I

5= (.S~,j) . i?

*
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and continuity equation

V. Y=-g. ”

The matrices (C~,j) and (~~,j), which describe permittivity and permeability, are as-

sumed frequency independent and thereby real valued and may be dependent

The equations above can be expressed in terms of the ui coordinates. Formal

netic quantities are defined by

l?’ = (Cq,j)“ -E

1?’ = (Cii,j) . 1?

E; = hiEif H~=hiHi, i=l,2,3.

Since ~, ~, and ~ arise in divergence equations, we deike

on position.

electromag-

(2.10)

(2.11)

(2.12)

then Maxwell’s equations and the above equations lead to definitions of the formal per-

rnittivity and permeability. These are

(~,j) = (Pi,j) “ (&i,j) “ (%,j)-’
(2.13)

(A)j) = (A,j) “ L%,j) “ (@,j)-’

5
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and hence if (&i,j), (p~,j) are diagonal,

Maxwell’s equations can now be expressed in terms of formal fiekl.s and operators as:

3 Two-II imenskmal

ap]V’. J = –—
at .

TEM Waves

(2,15)

,.

e

If, in our (ul, Uz, us) coordinate system we let us = z (and hence h3 = 1) and suppose’

that either the formal electric field or formal magnetic field has only a U3 component ~

while the remaining field has only a U2 component with both components a function of ~~,
I

only, then we have a uniform TEM wave which propagates in the U1 direction. Thus, for’

example, if the electric field is parallel to the z axis, we assume

where

(3.1)’ “

I

,.
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and @oj@o~A> and EL are all independent of the coordinates u;.

Similarly if the magnetic field is parallel to the z-sxis the wave is assumed to be of the

form

2= Ejog(t – uJc’) i2
* = H:og(t– ~1/c’)i3

where

(3.3)

(3.4)

and E;o>H;o& ~ d S!zare all independent of the coordinates.

Note that when the electric field is parallel to the z-axis perfectly conducting planar

sheets can be placed perpendicular to th~ axis and used as boundaries for the TEM

wave. Likewise when the magnetic field is in the dmect ion of the z-axis, the electric field

is perpendicular to surfaces of constant U2 and hence perfectly conducting sheets can be

placed along the surfaces of constant U2 and used as boundaries for the TEM wave.

Let us also note that for the constitutive parameters that

[&ij) = C[tiij)

(P4j) = /.L(6~j)

with zero conductivity.’ Thus we have an isotropic, but generally inhomogeneous,

The formal constitutive parameters are given by matrices

(&~j) =

&loo

0 <20

0.0 <!)
7

(3.5)

medium.

(3.6)
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(p:j) = o p; o

0 0 p;

and since the formal SeIds have only one comp orient, only one entry in each of the matrices

(3.6) will be significant. Since the ~ and p; are assumed to be independent of position the

medium is homogeneous. Moreover we also have

-.

where

since hg = L

Thus from the equations (3.5) through (3.7) we obtain

83
E—

= hlhz
[3.8)

= PW2P— hl

when the electric field is parallel to the z-axis. On the other hand, when the magnetic

field is in the z-dnection we have

(3.9)

We next note that once am orthogonal curvilinear coordinate system [ul, U2) has been

chosen the scale factors hl and h2 are determined. Thus if the formal comtitutive pa-’

ramet ers are assigned their free space values the permittivity e and permeability ~ are

a
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e known. Since we must require c > COand y > MOwe may have to exclude certain spatial

regions from consideration. These details are discussed in the next section. Specific exam-

ples of two-dimensional lens appropriate for launching TEM waves between wide perfectly

conducting parallel sheets are given in the following section.

Finally, we note that the two-dimensional cases studied in this paper are part of the

more general problem of using a dliferential geometric approach to transient lens synthesis.

In [4] several other cases are ‘investigated. In particular, we may restrict to inhomogeneous

isotropic media with field components in all three coordinate directions. The case of

.inhomogeneous TEM waves with field components in only two directions is also studied in

[4].

4 Differential Geometry

a Recall that a

damental form)

regular surface has associated with it a metric form (called the first fun-

which in the case of orthogonal curvilinear coordinates is just

(CU)2= 9,,(4)2 + g2,(du2)2. (4.2)

In this event we Iet gll = hf and g22= hj where the hl and hz are the scale factors referred

to in the previous section. Some special cases of interest include semi-geodesic coordinates

(hl = 1) and isothermic coordinates (hI = h2). We now discuss these special cases.

The most obvious examples of semi-geodesic coordinates for which the associated metric

form is

((U)’ = (A,)’+ h’(dq’ (4.3)

—
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include orthogonal Cartesian coordinates in the plane and polar coordinates in the plane. I ●
The spherical coordinates on the unit sphere are also semi-geodesic coordinates, since , —

.

(d.!?)2= (dd)2+ sin2(d)(dq$)2 (4.4)

when z = sin(o) cos(~) , ~ = sin(d) sin[~), z = cos (0). The Gaussian curvature associated

with (4.3) is given by

(4.5)

and hence for the unit sphere K = 1. Finally, if (u, v) are semi-geodesic coordinates then

hl = I and h2 = h2(u, v) and so our constitutive parameters have the form

(4.6)

when the electric field is parallel to the .z-sxis, and when the magnetic field’ is parallel to

the z-axis,

& = c;h2 (4.7)

In the case of isothermic coordinates, hl = h2 and examples of surfaces for which the

metric form is

(dt)’ = h2[(du)2 + @v)2] (4.8)

include such surfaces as helicoids and catenoids, and also a sphere with p&rnetrizat ion

given by

4a2u
z

= 4a2+u2+v2
4a2v

Y = @-+u2-+V’

(
Q2 – ~2 – v2

z = )4a2-+u2-+v2 a

10

(4.9)
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● for which

●

(d-l)’ =
16a4

2 + (dv)’) ~
(4a2 + IL2-+ V2) (~du)

The Gaussian curvature for a surface with metric form (4.8) is

K =+(h(h)) .

(4.10)

(4.11)

We note that the metric form (4.8) is obtainable through conformal mappings of the plane.

That is, if p = z + iy is a compIex variable and q = F(p) is a conformal mapping, then it

is easily checked that

(d-t)’ = $ 2((A)’ + (&J)2) (4.12)

where q = 131
du + iv, and hence hl = h2 = – h. In the case that hl = h2, the equations

~–

for the constitutive parameters have the”form

i+3
& =3, (4.13)

P = P;

for 1? in the z-direction, and

(4.14)

for I? in the z-direction.

Ln either of these cases with hl = h2 = h the choice of free space values for the formal

constitutive parameters leads to the restriction that h < 1 since e > So and ~ > W. must

hold. Thus regions corresponding to h >1 would have to be excluded horn considerations.

In the next section, we consider some specific exarnpIes of two-dimensional Ienses. These

examples arise from conformal mappings of the complex plane. We now make some further

observations on this situation.

11
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Ifq=-F[p)=u + iv is a conformal mapping of S c C, the complex plane, to S’ E C, ●
we recall the following facts. First, if we let

,

P =x+iy (4.15)

then

x = f[u, v)

Y = g(u, v)

P = z + iy = f(u, v) +ig(w, v) = G(q)

where G is the inverse of $’. Then
.

“ dp af .dg ag .af
&=z+z3i=rzz

since G is differentiable. Moreover

2 2= (%)’+[i)’=(%)’+(~)z
h2 = —

(4.16]

.

●
(4.17) , .

and h’ = h? = h: with

(U)’ = h’[@u)’ + (dV)’] . (4.18) ~

Moreover, by a direct calculation or from the fact that the Gausskm curvature K vanishes

identically, we have

~’i!n(h) ~ a%(h) = ~
13U2 W 9 (4.19)

(i.e., h(h) is a harmonic function of (u, v)). Thus conformal maps force the condition

that hl = hz. Conversely, if we choose a metric form as in (3.18), for some orthogonal
!

transformation of the form

x = f(u, v] (4.20)

,,.

I
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then we must have

because of the orthogonality,

(’4.21)

and we must also have equations (4.17) valid. Thus if we set

(which is another way of expressing the orthogonality) then
.,

()

2

()

2

(az+l) * =(CP+l) # .

(4.22)

(4.23)

But a2 + 1 # O, since a = &z’ leads to a linear relation between f and g. Thus we must

have

E)z=(32
and as a ‘consequence either

or

af ag’ ~d—=. —
au av

Both sets of equations (4.25) and (4.26) are the

(4.25) holds, then f + igisananalytic function

f– igis an analytic function of u + iv. Hence

(4.25)

af ag ~
z=%” (4.26)

Cauchy-Riemann equations, and hence if

of u + iv. SimilarIy, if (4.26) holds, then

f(u, v) + ig(u, v) = G(u + iV)

and we can then state the following result. If u = constant and v = constant

of isometric coordinates, then all other isometric systems are given by

Re[G(u + iV)] = f(u,V)

InzIG(T.L+ iv)] = g(u, V)

13

(4.27)

form a system

(4.28)



.

-,
r

where Re[G], lm[G] are the real and imaginary parts of an arbitrary analytic function O__

of u-iv. Hence taking /zl = ht = h for any orthogonal coordinates u, u enf~rces the ,

analyticity of the mapping q = F(p), when h satisfies (4.17).

As a concluding remark, if we are given a metric for the plane of the form

(all)’ = h’[(du)’ + [dv)’j (4.29)

for some arbitrary choice of h = fi(u, -u)we cm ask if there is a conformal map q = F(p) =

u + iv for which h = @ ..Since the existence of such a map implies Ln (h) is harmonic indq

u and v, the condition that

a2
~hz(h) + ~v2~u2 —En(h) #

would imply that such a map does not exist. In general,

J and sufficient conditions that an arbitrary set of hi, i =

o (4.30) ‘

one can assert that the necessary

1,2,3 will correspond to a triply

orthogonal set of surfaces in Euclidean 3-space are given by a set of six partial differen-
●

tial equations, which are usually referred to as the Lam6 equations ([5]). Since we are

considering metrics in a pkane~ these equations reduce to a single equation, nsmely

a’ a2 -
—En(h) + ~v’~~z

—i%(h) = O . (4.31)

Since the Gaussian curvature associated with a surface whose metric is

((it)’ = h;(du)2 + h;@v)2 (4.32)

is given by
.

[4.33)

the result (4.31) is not surprising. Moreover the Lam6 equations themselves are obtained’

by using the vanishing of the Riwnann curvature tensor, .Qju, as integrability conditions.

Let us consider some further examples. Let

(dl)2 = e’”[(du)i + (du)2] (4.34)

●
14
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@
and we ask if there is a conformal map p = G(q) leading to this metric form, Since

v%(h) = o (4.35)

d~$~the answer is yes, and so ~ = e’-’ and we have the problem of finding G(q). In this case,

the answer is obvious since we can write

dp . = ~u+iv ~q

q = ‘“e’” =
and so

p= G(q)=e~.

On the other hand, if

(all)’ = (u’+ V’)[(du)’ + (dv)’]

is a given form, then clearly

v%(h) = ;V%2(U’ + 272)= o

and so we have the existence of a conformal map p = G(q) with

(4.36)

(4.37)

(4.38)

(4.39)

and one can then obtain

P = :!?2“ (4.41)

The point is, however, that if we know a conformal map p = G(q) exists for a metric form

(dZ)’ = h2[(du)2 + (dv)’] (4.42)

then

dp

z = h(u, v)

= Jm

‘m
(4.43)

15
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and actuaily obtaining the functions .f and g for which

P = G(q) = .f(%v) + ig(% v)

may present some difficulties,

[4.44)

As a final example, if we have a form

[dq’ = U’[(dU)’ + (d?))’] (4.45)

then V2tn(u2) = –-$ # O, and so there is no conformal .xnap leading to the form (4.45).

5 Examples of Two-Dimensional Lenses

For our first example of a two-dimensional lens, we consider, as in [1], the conformal

transformation

t? = :ln[e~P/a – 1] (5.1) ●

while

Then

u
[

~~~ f#Tx/a _ 2e7rz/a
= 27r ‘Os(’%)+’l

[

exxla sin~7rg/a)
v = ~ arclxul

1
+ak, k= O,&l

n- emx/a cos(7ry/a] – 1

[
$ln e2nu/a + ZenU/aCOSx= (3)’11

a

[

()
e7ru/a~~ m

Y arct all T=—

() 1+ak.
T eru/a cos ~ + 1

(5.2) ~

[5.3) ~

So, for example, v/a = 1/2maps into emZ/a = sec(ry/a). For a detailed plot, see Fig-

ure 5.1. The transformation describes the potent ial distribution around a uniformly
*
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charged wire grid (in a homogeneous medium) terminating a uniform electric field for
e

z >> 0 (see [1~). AS usual, a is a parameter which can be used to scale dimensions.

The scale factor h given by ~ is

h2 = 1 –-2e
()

—7rz/a ~Os QJ –27rx/aa i-e . (5.4)

Since those regions corresponding to h <1 are the only ones of interest, we find the contour

for h = 1 from (5.4) by taking

() –7rx/a2COS ~ =e .

. .

In terms of the coordinates (z, y) we find

h2 =
[
l+2f?

()
—7ru/aCOs ~a +-e

J
–2m/a ‘~ .

(5.5)

(5.6)

Thus the condltiop Iv/al < 1/2 will guarantee that h ~ 1 will hold. Hence perfectly

conducting boundaries could be placed on surfaces of constant v. Note finally that as

z + 00, h -+ 1, and so one of the constitutive parameters of the lens is the same as free

space, while the other parameter tends to the free space value as x + co. Hence for z

large in

wave.

our

value the lens materiaI can be shortened without significantly distorting the TEM

second, and last, example of a coordinate system for a two-dimensional lens is

given, as in [1}, by the conformal transformation

,

Thus we have

2a
!7 =

[
—h sinh
7r
2a

P = — arcsinh
7r

u
= :’n[c0sh2(a-cm’(%)]

v =
[ (3%91 ‘2ak

~ arctan coth
r

(5.7)

(5.8)

18
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where k = 0, +1. The transformation (5.7) describes the potential distribution around a

uniformly charged wire grid (in a homogeneous medium) terminating equal but opposite

electric fields for z >> 0 and z <<0, Figure 5.2 illustrates the transformation (5.7).

The scale factor h satisfies

( )1h = \l+e-”ql”l-lj2 = tanh ~ (5.9)

and hence
~ – 2e–Tx/a c~~ ~ + e–2~z/a

h2 = ()

()
y“ ~ e–27rz/a “

(5.10)
1+ 2e–rzlacos

Hence if y = +a/2, the contour for h = 1 is obtained. The minimum value of h will occur

on v = O (for which y = O) and at u = UO,where U. is the minimum u of interest. Thus

h2 =(l+e -=uO1a)-l (5.11)
min

and the maximum e or p can be found horn (4.6) or (4.7). ‘

Since as z ~ co we have

hdl

u+z — 3.n(2) (5.12)

and so as in the first example the lens materiaI can be terminated at sufficiently Iarge z

without significantly distorting the TEM wave.

Figure 5.3 illustrates two-dimensional lens with parallel-plate transmission lines. The

cases of either the electric or magnetic field parallel to the z axis are shown. In both cases

the conductors and medium are cut off before the singularity on the z axis is reached.

Sources to launch a TEM wave might be located at this point. The perfectly conducting

sheets and inhomogeneous medium are stopped on surfaces of constant v. While this would

resuit in distortion of the TEM wave, this distortion is minimized if the sheet separation

is very small in relation to the sheet width.

19
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6 Summary

There appear to be many ways of specifying an inhomogeneous medium such that TEM

waves can propagate in the medium, which can then be used to define a lens for transmit-

ting a TEM wave without reflection or distortion between certain types of transmission :

lines. There may, of course, be practical limitations in the realization of such lenses. Id&

ally, the lens region should be infinite “in extent, and so perturbations can be introduced

into the desired pure TEM wave by cu-tting off the lens. Another limitation lies in the

characteristics of the materials used to obtain the desired permittivity and permeability of “

the lens medium. - Ideally while we desire frequency independence, perfect characteristics
., ,.

, are not really necessary.’ —.

In th’is pa~er we have given several exampks of two-dimensional lenses appropriate for ~
I

launching TEM waves ‘betweek wide p~ec~ly conducting parallel sheets. “ “ - , ‘ ‘-”
,. .1
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