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Abstract

Given the natural frequencies of an object (electromagnetic
atterer) in free space, one can consider how they are changed
the presence of another object in its proximity. This note

considers the case that the second object is symmetrical with
respect to the first with a plane of symmetry between them. A
perturbation of the natural frequencies is found which is
applicable to an intermediate range of spacing between them.
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1. Introduction

In the SEM literature there is some peculiar behavior of ~

the natural frequencies of an object when it is placed in the

presence of a perfectly conducting plane [2,3,6,9,11]. Specifi-

cally we are referring to the spiral behavior of the natural

frequencies as the distance of the object from the ground plane

is varied. Thinking that the interaction of the object with its

image ought to be weak, at least under some conditions, the idea

occurred of some kind of perturbation analysis, such as is used ~

in quantum mechanics.

Generalizing the problem let us consider an object with

its mirror object, i.e. let there be two objects symmetrical with

respect to a plane. A symmetry plane implies that the electro-

magnetic scattering divides into two non-interacting parts,

denoted symmetric and antisymmetric. The antisymmetric part also

applies to the case that this symmetry plane is replaced by a :

.

,,,,,”,,

perfectly conducting plane with no mirror object present.

This paper discusses the SEM-pole parameters under the ●
conditions of such symmetry. Separating terms according to those

for a single object and for the

objects, perturbation theory is

formula for the perturbation of

derived.

interaction of two symmetrical

next applied. An approximate

natural frequencies is thereby

.
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II. SEM Poles

.

.

Write the SEM form of the surface current density on a

finite-dimension, perfectly conducting object in free space as

I~~(~s,t) = EO =p(sa)na~s (?s)esatu(t-tO)

a a

+ other SEM terms + noise

If~(?,s) =EO ; (s )rI~ [s-s ]-le
-(s-sa)to

s p a asa a
a

.

.

to

Sa

~a

fp(s)

EO

7?s

+ other SEM terms + noise

turn-on

natural

natural

,
time

mode (appropriately

coupling coefficient

present

Laplace

fp(t)

scaling

purposes)

transform of

constant for

(2.1)

normalized)

as class 1 for

incident waveform

incident wave (in V/m)

coordinate on the surface S of the object

The coupling coefficient qa

incident fields (plane wave

locations and natural modes

fields.

contains information concerning the

or otherwise) . However, pole

have nothing to do with the incident

Now the interaction of incident fields with the scatterer

can be formulated as an integral equation of the form
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<;>=

(2.2)

symmetric product (integration of

common spatial

dyadic kernel

incident-field

with multiplication in this case in the

are various forms of integral equations

coordinates over S)

related quantity

dot-product sense. There

that have been used

involving incident electric fields, magnetic fields, combinations

of these, etc. In each case there is a different dyadic kernel

in the integral equation.

For present purposes we use the impedance or E-field

integral equation

(2.3)

.

●

where as is some ‘lsourcellelectric field, such as an incident

field or some specified field such as at an antenna gap. Note

that both ~s and & are tangential to S.

This impedance kernel is connected to the dyadic Green’s

function of free space as

.

?S(Z~) = unit normal to S at ?s
(2.4)

(outward pointing for oriented (or two-

sided) surface]

6



It is convenient to define

components tangential to S

(i.e. ? = ?~). For fields

on S

the impedance kernel in

dyad at ?s

terms of

via ?S when dealing with fields on S

away from S this part is conveniently

dropped, i.e. just SV080 is used.

The scalar Green’s function is given by

Go(?s,?:;s) ‘Y

Y:=—

c = (ILoeo)+
Vo $

()zo=~

(propagation constant)

(speed of light)

(wave impedance)

from which we obtain the dyadic Green’s function

(2.5)

(2.6)

7



Here we have included the integration near ? = ?: as given by

Yaghjian [8]. This is not the only form it can take, but it is o

not important for present considerations. The transverse dyad in

(2.4) removes this term. The integration in (2.3) is a PrinciPal

value integral with a small disk removed at ?&.
.

Summarizing the formulas for the pole terms for the case -

of first-order poles [10,12~17,18] we have for natural frequen- .,,,
.-

cies and modes

<i(?s,;&;sa) ; ?~ (2:)> = 3
a

sa s natural frequency (2.7) ‘“’”

7s (?&) ~ natural mode
a

In terms of the moment method [16] which matricides such an

integral equation this can be solved for the natural frequencies

and modes, but this is not our concern here. Similarly the o
coupling vectors can be solved from

(2.8)

In this case where we are using the symmetric impedance kernel

the coupling vector and natural mode are the same, but in general

they need not be the same. We can normalize the natural modes

via
.

<js(2J ; j~ (?s)> = 1 (2.9)
a a

,

However, other normalizations can be chosen at convenience, such

as the commonly used one of setting the maximum magnitude (or ~

some Gther convenient magnitude) to 1.

8
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The coupling coefficient (class 1) is then computed

Ta =

<Ys (?J ; is(? ,s )>
a sa

from

(2.10)

Note that the spatial variables have all been integrated out,

leaving rIadependent only on the incident wave (or “source”

field) conditions (for s = sa in class 1).

9



III. Symmetry and SEM-Pole Paraineters

As discussed in [7] the presence of an electromagnetic

symmetry plane allows the natural modes to be organized into two

sets according to their symmetry

fig. 3.1 let there be a symmetry

plane. This kind of symmetry is

ok mirror symmetry which has the

properties. AS indicated in

plane P taken as the {x,y)

also referred to as reflection

formulas

.. .100.

= w
(3.1)

Y?y + 22 I
z

= position or coordinates

E mirror position or mirror coordinates

For each position ? at say a conductor another conductor is at ~
+
rm? etc. This is readily generalized to include matrix permit-

tivity, permeability, and conductivity [4], but the above is ~

sufficient for present purposes. Note in fig. 3.1 the illustra- !

tion is for the case of two objects symmetrical with respect to

P, which will be important later. However, the general results
also apply to a single (connected) object with a symmetry plane.

With respect to P the fields and surface current density

can be decomposed into two parts, designated symmetric and

antisymmetric, as

O

..

.“

.-

●
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(1)

Symmetry Plane P
— ———

{L

—. .— —
(Possible perfectly x Y
conducting plane)

h

L

Figure 3.1 Two objects symmetrical with respect to a plane.
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where the upper sign corresponds to symmetric (subscript sy) and ,

the lower sign to antisymmetric (subscript as).
,.

The original ~

fields etc. can be reconstructed by merely adding symmetric and ‘ ,..

antisymmetric parts.

The surface-current-density natural modes can be divided

similarly into two kinds with the property

7s (?)=dl”~ s (?m)
Sy , Sy ,
as,a as,a

(3.3)

a= (~~,a’ ) = natural mode index set

The modes can then be constructed with the property that they

each fit into one of two categories, symmetric and antisymmetric.:

The associated natural frequencies can then be designated by this’ ●
decomposition as s Note that not all the natural frequen- ‘Sy “

as,af

ties need be distinct; there can be cases of degeneracy, such as

when higher order symmetries are also present.

The coupling coefficient is

~ Sy
as,al

(3.4)

12 ●



<T~ (?J ; il~ (2#sy )>
Sy Sy ,a’,a’ as as

<7s (? )a; 21(?s,?&; s ) ; ? (:&)>
Sy , s Sy,al ‘Sy
as,a as as,af

.“

Note here that the incident or source field also decomposes into

symmetric and antisymmetric parts, each of which contributes only

to its corresponding type of coupling coefficient.

13



IV. SEM-Pole Parameters for Two Objects Symmetrical with

Respect to a Plane

Consider first that there is only one object present on

one side of

as object 1

define some

P and not touching P. As in fig. 3.1 designate this

with surface S1. For later use it is convenient to

effective center of this object as ?C so that

Zc =h (4.1)

If desired one can also choose

(XC,YC) = (0,0) (4.2)

but this is arbitrary.

Using a superscript 1 to designate SEM parameters for this

case we have

(4.3)

●

✎

●

where the integration (?& in this case) is over S1 as designated

by the subscript on the symmetric product. The coupling coeffi-

cient is now

Jl)
a (4.4)

.

Note the introduction here of a presubscript on the symmetric

product in the denominator to denote integration of the first

spatial coordinates over S1 while the postscript handles this

function for the second spatial coordinates.

o14



Now of course the symmetry in fig. 3.1 makes it arbitrary

which object is labelled 1111’and which “2”. Then (4.3) and (4.4)

can be rewritten with 1 + 2. Since the coordinates of object 1

are transformed to object 2 by the reflection dyad in (3.1) we

have

J2) = S(l)a a

Now define an unperturbed nat~ral mode over both objects

as

‘sSy
as ,a’

As one can verify, this mode satisfies (4.3) with

Jo) = s(l) = S(2)
al a a

(4.6)

(4.7)

provided the fields at one object from the other can be

neglected.

coefficient

Under a similar assumption the unperturbed coupling

can be computed from

-(0)

15



Note that since the integration is only over object 1, then as in

(4.6) it does not matter whether a symmetric or antisymmetric

mode is used. Note the similarity to (4.4), except for the

introduction of the symmetric and antisymmetric parts of the

electric field.

The kernel (as in (2.4) and (2.6)) has some symmetry

properties. Since on our object

R= I?s -:&l = @ ● (?s -?Q

iRtR

then a complete interchange between positions and orientations

between objects 1 and 2 is allowed, i.e.

!%?s,?~;s) =f/ . 2(7? ,3 .s) ● g!s s’mm

A similar result holds for El.

(4.10)

Applying (2.7) with operation on the left by the natural

mode gives a scalar relation

16
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@T~ (?~) ; i?(F#2&;ssy ) ; 3S (?:)>1”2 = o
Sy ,a’ Sy
as ,a’ as as ,a’ (4.11)

Note that integration of both r‘s and ~& is over S1 U S2, giving

(4.11) a completely symmetrical form. We can think of the

integration

integration

form (4.10)

in (4.11) as comprising 4 terms by splitting the

according to S1 and S2 separately. In short-hand

can then be written as

o = 1< ; ; >1 + 1< ; ; >2 + 2< ; ; >1 + 24 ; ; >2

(4.12)

Next utilizing the symmetry properties of the natural modes and

kernel, and changing variables by reflection from one object to

the other we have

2<TS (?S);%2S,?:;SSY );;
s (?:)>

Sy ,a’ Sy 2

as ,a’ as ,a’as

(Q” R;R”Z?#&;ssy ).R;*R.TS

a’ as,a’ Sy
as t

= ~<~s (i?s);ii(?s,?&;ssy );js (?:)>l
Sy a,

I

as ,a Sy
as’ ,a’as (4.13)

2<7S (?s);s(;s,;~;ssy );y (?:)>
Sy s 1

,a’ as ,a’ Sy
as as ,a’

=
1
<k~s (Fs)”R;R”2(?#F&s=y )*R;&=~ s (2:)>2

Sy,a’ ,a’as Sy
as as ,a’

= ~<js (;s);2(?s,?:;s Sy a, );?s (?:)>
Sy , Sy , 2

as ,a as’
as ,a

17



Then (4.11) reduces to

—

.

This result

on the left

1.

+ ~<ys (?J;2(?#?&;ssy );~s (2~)>2
Sy 1,a Syas,a’ as as,a’ (4.14)

can also be obtained from (2.7) by dot multiplication .-
by the natural mode and integration only over object

The coupling coefficient formula in (3.4) similarly

reduces using

<Ts (?s);3s (%sts~y )>1U2
Sy Sy ,a’
as,a’ as as

= 2<5s (?s);; (3S,SSY )>1
Sy , sSy ,af
as ,a as as

Combining this with (4.13) (using ~1 instead of ~) gives

~ Sy
as.,a’

I !I’J

●

(4.1!5)

,.
<3S (2s) ; 3s (Zs,ssy )>1

Sy,ai Sy
as ,a’

as=
; 21(;s,?;;:s ) ; ysI<?s (?J

Sy , (2:1)
Sy 1U2

,at as,a Sy
as

,a!
as

(4.16)

18
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v. Interaction of Object and Mirror Object

In (4.14) we have a term involving integration over ?S on

object 1 and ?& on object 2. As the objects are separated to

larger and larger distances apart, the kernel, which is a

function of ?s - ?&, can be approximated using a far-field

approximation as (for R + 00)

!@,?:;s) =i!if(?s,?’s;s) + 0(e-y%-2)

iif(?s,;~;s)‘~ e-yR!?t(?s)”[?- tR1~]”yt(r&)

+ O(e
-y~-21 (5.1)

Note the inclusion of e-YR in the order symbols since s (and

hence y) is complex. Here

(5.2)

Continuing the approximation note that ?~ varies over

object 1 and ?~ varies over object 2. In order to have some

origin for these two sets of coordinates recall, as in fig. 3.1,

that these two objects have some equivalent centers designated as
+
rc and ?Cm, respectively. Then define

;,
=;+?

+’

s 2 cm=r2
+R

Let

!2=2h= l~c c I-z
m

and as !2+ @ then ?1 and ?2 remain

sions of the object. Furthermore,

(5.3)
“7?

c

(5.4)

bounded by the linear dimen-

setting

19



+
h~ ?C = -h?z‘c= z ‘ ~

a(5.5)

“.

...we have

(!3.6)

Next expand the various terms

R= {131 - ?2 + I?zl”[?l

in (5.1) for large as

= %{1

=%+

L

●

?R =

1-+ o(d)

1

=? z Q,

.

+C=J

{5.7)

●20



Now substitute these large k approximations into 5.1 to

give

Then we have

8(;s,2’;s) =iif (~1,;2,1,;s)+ 0(e-yRL-2)
s ast+=

o
(5.9)

So at this point we have the leading term in the kernel as k + CO.

One could carry out the analysis further and obtain the next term

of order e-Y~2-2 etc. However, the complexity increases con-

siderably.

A related question is the optimal definition of ?C as some

effective center of object 1. As one varies this the higher

order terms are changed considerably. Perhaps one can use these
terms to define ?C. For the present one can use any symmetry of

object 1 (such as the center of a finite length circular cylin-

der) to define ?C.

From (4.14) replacing the coordinates on object 1 by ?1 or
+
ri and on object 2 by ?2 or ?; we have

21



~<;~ (2J;%#?&s
Sy ) ;?~ (?:)>2

Sy ,al Sy
as,a’ as

as ,at

= ~<~s i(?l); f (?1,22rL;ssy,a, );?ssy (32)>2
Sy o
as as as,a’

-~sy 1.
,a’

+ O(e as %-2)

Xsy J?.
,a’

+ O(e as i-2) as~+~

1❑ —s
Ysy a, c Sy
asf as,a’

Here we have shifted our definition of the natural mode to object

1 and 2 coordinates, now taken independent of k.

Changing ?2 + ?; and transforming from object 2 coor-

dinates to object 1 coordinates we have
.

(5.11]

dsz = dsl

22



Then the integral in (5.10) can be

(i?l);e

as ,U’

-Ysy

as

3s (?i)>~
Sy ,al

as

Noting the properties of

are simplified via

This gives

1<7S
Sy ,
as

,a

e

i

Ysy I “[:1z
as ,af

-f?

7s (?2)>2
Sy ,U!

as

reflection matrix

ftf (?l,R”?’)”1’
0

-y’y ,?Z*[21-?21

(~l).e as’a f!f (
o

23

(5.12)

the above formulas

?~
Sy
as

●R”?t(?i)” R
1

● q?’)

(5.13)

= [Z~ + Zi]

(22)>2
,a’



J.

(5*14)

converted to aover S1 and S2 has beenSo the

double

double integral

integral over S1 (i.e. object 1).

Note in (5.14) that only the x and y components of the

tar.gentialparts of the natural modes appear. However, the

natural modes are tangential, further reducing the formula. So

only the x and y components of the natural modes count. The

natural frequency enters in a factor involving the z component of

%1 + ~if i.e. Z1 + Zi= This exponential term is like a general-

ized phase factor over object 1 with its mirror object 2.

that the large exponential factor

pulled out of the double integral

Defining

involving k has already

in (5.10).

Note

been

(5.15)

then (4.14) is reduced to

0= ~ds (21);%??’.sIr lr Sy );3s (i?i)>~
Sy , ,a’ Sy
as,a as as,a’

-Ysy ~
,a’ -Ysy [Z~+Zi]

e as ,a’

41-L!ZIds (?l);e as Y
Sy

~z;

as,a’
‘Sy ,~o
as,a

24 ●



+

1.
-Ly ,a’

O(e as A-2) (5.16)

as’U

Well, now all integration is over only local coordinates on

object 1 and the !?dependence is a separate factor. If desired

the terms in (5.16) can now be written as

o = ~<?sSyw;
as

--YSY ~
-ky [Z~+Z.j-],a’

2(i?~,2i;S
as ,a’

)+ssyvoe as
Sy a, 4TW e ?t

as’ as ,a’ z

-Ysy
,a’

+ O(e as R-2)
+
;3s (?l)>l

Sy
as

(5.17)

where now we have one double integral with various interesting

terms combined in the single kernel.

25



Vr . Perturbation Theory

At this point let us borrow

tion theory which is often used in

While here our derivations are for

readily generalized to other kinds

electromagnetic scattering.

some concepts from perturba- ●
quantum mechanics [13,15].

symmetric kernels they can be

found in integral equations of

Consider two kernels ~(?,~’) and x(?,?’) where the second

is small in some sense compared to the first. The first defines , “

vector modes according to

(6.1)

so, of course, we have assumed that ~ is singular (and will

correspond to an unperturbed natural frequency while ~. cor-

responds to an unperturbed natural mode) . We also have

6.(3 ; m?’) ; 3.(?’)> = o
●

(6.2)

Now let ~ be a perturbation kernel (also symmetric) and ‘

form the problem

where p is the perturbation parameter and

{

O => unperturbed problem
P=~=> perturbed problem

Now expand the vector mode as a power series in p as

(6.3)

(6.4)

26 ●✌



(6.5)

effectively assuming that ~ is an analytic function of p for

sufficiently small p. Note that we have assumed that the

unperturbed natural mode ~. is not degenerate, i.e. that there is

only one natural mode satisfying (6.1) (except for an arbitrary

multiplicative constant).

Substituting (6.5) in (6.3) and collecting by powers we

have for n = O merely (6.2), i.e. nothing new. For n = 1 we have

+ <?l(F);f?(:,;’ );?o(?’)> = o

By (6.1) the first and thir’dterms are zero, giving

<3.(?) ; x(?,;’) ; 3.(2)> = o

(6.6)

(6.7)

So ~ now has a constraint which is our basic perturbation

formula.

27



VII. Perturbation of Natural Frequencies

Expand the kernel ~ near the unperturbed natural frequency
o

as

+ O((As~y )2) as As +0,
Sy

as,a’ as,a’
.

s
Sy ~,

E sat i- AsSy
as’ ,a7as

I -,,,

Note that the unperturbed natural frequency Sal is onlY for

object 1 in the absence of object 2 so that it is not distin- ●
guished as symmetric or antisymmetric.

Now identify ~ + f?in section VI with the kernel in (5.17)

with ~ expanded as in (7.1) giving

F(2~,3.i) ‘ii(?~,?~;Sa,)

G unperturbed kernel (7.2)

-ya,1,
e ‘Ya, [z~+zil

?t [1+ O(Assy )]* salvo 4TCL e z as,a’

-ya,k
+ O(e k-2[1 + O(Assy )1)

as
,a’

.

28
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Looking at these order symbols
e-Y9u~-2. However as R + 00the

general (and interesting) case

we need both small As and small

latter eventually blows up for the

that Re[sal] is negative. What is

required is that this term be small, and this occurs for inter-

mediate L. Let us return to this later and for the moment assume

~ is small and write as an approximation

-ya,1.
e ‘Ya, [z~+zil

f sa,v~ 41-c!Ze ?t
z

(7.3)

The smallness of this term depends on the smallness of both As

and e-yfil-l.

Inserting (7.3) in (6.7) and rearranging terms gives

AsSy ‘ + sa,~o

as,a’

-ya,f,
e

41-c!L

(7.4)

Note that smallness of As is then assured if e-YL~-l is suffi-

ciently small, so their smallness goes together. For convenience

define

va’ (7.5)

z image coefficient

29



Our result then takes the form

-ya,1

As = T Sa,po e
Sy 4rck ‘a’
as,a’

(7.6)

Note that Va, is not a function of !,,the separation

between centers of objects 1 and 2. It is a function of only the

orientation of object 1 with respect to the symmetry plane as

expressed in the numerator kernel and domain of integration. As

the magnitude of vat varies, the size (or “radius”) of the

spiral-like curves in the s plane formed by variation of A (as a

parameter)

around Sal

at natural

spiraling
,’

also changes. The period of this spiral wrapping

is given by a change of 2n in Im[ya~]2. AS one looks

frequencies with larger and larger imaginary parts the

becomes more and more rapid.

Look now at the condition that As be small. Since a

natural frequency should not enter into the right half of the s

plane then we require (for passivity) that

Re[AsSy ] ~ -Re[sa, ]

as,a’

Consider

] Assy all = Isa,ll-Lolva,l e -4m?,
ast

(7.7)

(7.8)

0

0

.

30
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As R is varied this has a minimum at

-Re[ya, ]2 -Re[ya, ]
= e [k _LlJ (7.9)

‘ I!L=Lmin

- Re[ya, ]lmin = 1

At this value the minimum shift in the natural frequency is

V*
As =

Sy , -Re[sa, ]lsa,l ~ Iva,l &

as
,a

min

(7.10)

So for this perturbation solution to have some range

for k around Amin it is necessary that (7.10) give a

small natural-frequency perturbation.

As k + O note that As blows up and (7.8) does

of validity

sufficiently

not apply.

Similarly as 2 + cothe exponential term makes As blow up and

(7.8) does not apply. Of course one can return to (4.14), as an

exact expression, and transform the integration over object 2 to

object 1 via the reflection matrix. This can be solved numeri-

cally but it does not give the simple physical insight as in

(7.6).

Comparing these results to numerical results one can note

the general agreement [2,3,6,9,11]. Specifically note that there

is the spiral behavior for intermediate L. Furthermore for both

small and larger L the trajectories in the s plane deviate from

this behavior considerably. Note as !2increases the spiral is

inward to a minimum radius, and then the spiral is outward.

A

which Vat

special case in which (7.6) does not apply is that for

is zero. Such a case can arise if the natural mode

31



vector has only z-directed currents since in (7.5) only x and y

components contribute to the numerator double integral. An

example of such a case is a thin wire oriented parallel to the z

axis. In such a case one can return to the procedures in section

V and expand to higher order in R and 1. One should obtain a

result similar to (7.6), except one that involves larger powers

of !?in the denominator. Some related numerical results are

contained in [1], and a specific numerical example is presented

in the next section.

●
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VIII . A Numerical Example

As a specific illustration of the ideas, concepts, and

relationships proffered in the previous sections, a simple

numerical example is presented which evaluates several of the

parameters arising from this perturbation solution approach. In

particular, the s-plane trajectories of the dominant mode (half-

wavelength) resonance of a thin, straight wire scatterer in the

presence of its mirror image are presented and discussed. (As
was discussed in an earlier section, for a pair of mirror image

scatterers, the interactions may be decomposed into symmetric and

antisymmetric parts. If the mirror image results from the

presence of a scatterer near a perfectly conducting image plane,

the scattering solution may be represented by the antisymmetric

part only.)

Suppose the objects of fig. 3.1 become two straight, thin

wire mirror image scatterers each of total length, L, and radius,

a, with its respective center at z = ih, and the wire axis making
an angle of @ with respect to the plane of symmetry (image plane)

as shown in fig. 8.1. According to the development of section

VI, the shift in the location of the

case of an isolated scatterer to the

image scatterers is given by (7.4).

(7.4), this calculation requires the

natural frequency from the

case of a pair of mirror-

As indicated symbolically in

determination of the
isolated natural frequency (Sal), the associated natural mode

(?sa,), and the associated residue matrix (El), as well as the
separation of the mirror-image scatterer centers (2h) and the

scatterer orientation with respect to the plane of symmetry ($).

An interesting issue to initiate these calculations and

ruminations concerning specific values and interpretation of

these perturbation parameters is the determination of the “so-

called” image coefficient (vai) as defined by (7.5). This form
of vat is its continuous or analytical definition. It has been
determined that a numerical definition of vat converges (rather

nicely) to a fixed value which depends significantly on the
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appropriate geometrical and

mirror-image scatterers and

electrical descriptions of the

insignificantly on the specific

details of the numerical techniques utilized to arrive at its

fixed value. The Vl,l (along with the accompanying sl,lL/c =

YI,IL) is 9iVen in table 8.1 for the dominant mode pole (sub-

scripts indicate ordering and layering [9] of singularity in the

s-P~ane) of a straight thin wire scatterer parallel to its image

plane for three different ratios of wire length to wire radius as

the number of Moment Method subsectional zones is increased from

10 to 100. As was expected, the value of the image coefficient

converges to a fixed value as the accuracy of the numerical

solution increases. One might consider that the values of Vl,l

for a large number of subsectional zones should be very close to

the “true” analytical value of V1,l. A secondary point of
interest is to note that the value of Vl,l varies approximately

with the inverse of the scatterer shape parameter, 2Rn(L/a).

This simple relationship permits one to determine a value for

v1,l for some specific value of L/a, and then for “thinner!’or

“thicker” scatterers a good estimate of V1,l could be obtained

using the simple logarithmic scale factor.

As a measure of just how well the perturbation expression

of (7.4) predicts the natural frequency shifts from the isolated

case in the s-plane, a direct comparison of the trajectories as

predicted by the perturbation expressions and the trajectories as

generated from the coupled integral equation solutions are

presented in figs. 8.2-8.9. These data present the (y
l,l)syL

(dominant mode symmetric and antisymmetric poles) for two
as

parallel, straight, thin wire scatterers of four different

length-to-radius ratios (L/a = 200, 400, 800, and 1600, respec-
tively) with the scatterers’ center-to-center separation/length

(2h/L) varying. The “++“ near the center of each of these
spiraling trajectories

mode (half-wavelength)

unperturbed scatterer)

represents the location of the dominant

pole for the isolated single scatterer (or

with the appropriate (L/a) as determined
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by the integral equation solution. In section VI, an expression ~

was given, (7.10), which predicts a minimum AsSy ~,
which occurs ~

asf
at a particular object-mirror object spacing, Rmin. this spiral-

in, spiral-out behavior in the s-plane, seen most clearly for the

“thinnest” wire in figs. 8.8 and 8.9, has been observed, ques-

tioned, and generally discussed since it was first presented in

the integral equation solutions over fourteen years ago [21.

These perturbational results provide quantitative support and

give additional insight into the nature of the complex natural

frequencies of scattering objects in the presence of other

objects.

An additional set of trajectories, figs. 8.10 and 8.11

present similar trajectories (perturbation and two-object

integral equation) of (yl,l)syL for thin, straight, mirror-image

as
wire scatterers each making an angle of @ with respect to the

symmetry plane. Table 8.2 presents the calculated values of the

image coefficient, Vl,l, for L/a = 200 and 20 subsectional zones

as the orientation angle, +, is varied from 0° (parallel scat-

terers] to 90° (collinear scatterers). Again one may observe an

interesting (and simple) functional variation of Vl,l with $.

The value of v1,l appears to fall off approximately as cos2(0).

This follows from the comment made in section V that the mode

vector which is to be used in (7.4) should be the tangential (to

the symmetry plane) component of the actual isolated scatterer ,

mode vector. Since this tangentially-projected mode vector is

both pre-multiplied and post-multiplied in (7.4), it follows that

the Vl,l should decrease as COS2($) for increasing @ from 0° to ,

90”. This same consideration readily accounts for the fact that

Vl,l vanishes for two collinear thin wire scatterers (only the I

first order perturbational solution predicts no frequency shift;

the actual integral equation solution yields small but nonzero

spiraling trajectories for collinear wire scatterers of finite
I

radius).

●
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A final table will conclude the data representing example

calculations utilizing these perturbation expansions and expres-

sions. Table 8.3 presents the V1,2, V1,3, and v1,4 for the first

layer poles, YI.,2L,YI,3L, and Y1,4L, respectively, for a thin,
straight wire scatterer (L/a = 200 and 20 subsectional zones)
with its mirror image each making an angle of $ with respect to

the plane of symmetry. Note that V1,2 and V1,4 vanish for the

case when the scatterers are parallel. This situation holds for
all of the war for the parallel case in which the modal distribu-

tion is an odd function about the center of the scatterer. These
particular modal distributions correspond to the symmetric case

as designated in previous notes [4,7]. The perturbation solution
obtained in (7.4) predicts no frequency shift for these cases.

Since the integral equation solution [2] indicates that a nonzero

shift is incorrect, it is suggested that perturbation expansions

in higher order terms of (e-Yg/k) might yield nonzero estimates

of the frequency shifts in these special cases. Note that for
the nonparallel cases, the V1,2 and V1,4 are determined with the

first order perturbational expressions.
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IX. Some Observations

Having obtained the perturbation of the natural frequen-

cies by the presence of the mirror object one could go on to

consider the perturbation of the natural modes. In classical

perturbation theory the mode is expanded in a set of orthonormal

modes [14]. In general the natural modes do not form such a set

[7]. However, one can form such a set as the eigenmodes of the

integral-equation kernel [5,10,18]. These can in turn be

evaluated at a particular natural frequency Sai and used for this

purpose. Howeverr this requires the computation of this (in

general infinite) set of modes which may be rather laborious.

Note in (7.6) that there are two results, one for sym-

metric modes (minus sign) and another for antisymmetric modes

(plus sign). The case of a scatterer in proximity to a perfectly

conducting ground plane uses the antisymmetric results.

In a more general sense the results OZ (7.6), when applied

to two objects symmetrical with respect to a plane as in fig. ●
3.1, shows that a single natural frequency is split into two

distinct natural frequencies. This situation is analogous to the

splitting of energy levels in quantum mechanics when two identi-

cal atoms form a diatomic molecule. A special example of this

type is the hydrogen molecule ion [13]. Note, however, that

energy levels in such calculations are normally real valued,

while in the electromagnetic scattering problem the natural

frequencies are complex valued.

●
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~ovl,lTable 8.1 Normalized image coefficient ( *RL ) associated with

the dominant mode pole (yl,lL = ‘1 1=
~ ) as a function

of L/a and number of zones for two parallel,

straight, thin wire scatterers.

L/a Number
of Zones h,lL

200 10
20
30
40
50

;:
80
90

100

4oc~ 10
20
30
40
50
60
70
80
90

100

800 10
20
30
40
50
60
70
80
90

100

-0.2576 + j2.9092
-0.2588 + j2.8946
-0.2584 + j2.8864
-0.2580 + j2.8812
-0.2577 + j2.8774
-0.2!574+ j2.8746
-0.2572 + j2.8723
-0.2570 + j2.8704
-0.2569 + j2.8687
-0.2567 + j2.8674

-0.2264 + j2.9491
-0.2281 + j2.9398
-0.2280 + j2.9342
-0.2279 + j2.9306
-0.2277 + j2.9280
-0.2276 + j2.9261
-0.2274 + j2.9245
-0.2273 + j2.9232
-0.2272 + j2.9222
-0.2272 + j2.9213

-0.2015
-0.2033
-0.2034
-0.2033
-0.2033
-0.2032
-0.2031
-0.2031
-0.2030
-0.2030

+ j2.9774
+ j2.9716
+ j2.9675
+ j2.9649
+ j2.9631
+ j2.9617
+ j2.9606
+ j2.9597
+ j2.9590
+ j2.9584

4.6228 + jl.2232
4.7030 + jl.2542
4.7250 -1-jl.2613
4.7359 + jl.2644
4.7428 + jl.2661
4.7476 -!-jl.2673
4.7513 + jl.2682
4.7542 + jl.2688,
4.7565 -J-jl.2693’
4.7586 + jl.2697

4.0260 + jO.9148’
4.0921 + jO.9377
4.1087 + jO.9426’
4.1167 + jO.9447’
4.1214 + jO.9459
4.1245 + jO.9466,
4.1269 + jO.9472
4.1285 + jO.9475
4.1303 + jO.9479~
4.1314 i-jO.9480

3.5576 + jO.7073
3.6139 + jO.7247
3.6273 + jO.7283
3.6334 + jO.7299
3.6369 + jO.7307
3.6388 + jO.7311
3.6408 + ;0.7315
3.6418 + jO.7317
3.6429 + jO.7319 ~
3.6437 + jO.7321
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Table 8.2
~ovl,l

Normalized image coefficient ( ~nL ) associated

‘l,lL
with the dominant mode pole (Y1,lL = )asa

function of orientation angle ($) with ~/a = 200 and

20 subsectional zones. (Y1,lL = -0.2588 + j2.8946)

d
~ovl,l ~ ~02
4rcL

o

10

20

30

40

50

60

70

80

90

4.7030

4.5475

4.1049

3.4407

2.6486

1.8327

1.0909

0.5037

0.1287

0

+

+

+

+

+

+

+

+

+

+

jl.2542

jl.2102

jl.0856

jO.9011

jO.6854

jO.4681

jO.2752

jO.1258

jOo0319

i o
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Table 8.3 Normalized image coefficients for higher order poles

Vs lj.

o
10
20
30
40
50
60
70
80
90

o
-0.0845 - jO.0328
-0.2910 - jO.1120
-0.5084 - jO.1930
-0.6272 - jO.2339
-0.5964 - jO.2182
-0.4397 - jO.1580
-0.2330 - jO.0824
-0.0643 - jO.0225

o

h,3L

o
10
20
30
40
50
60
70
80
90

-0.4513 + j9.0089 0.5898 + jO.2462
0.4949 + jO.2038
0.2809 + jO.1099
0.0893 -1-jO.0302,
0.0052 + jO.0002
0.0090 + jO.0067
0.0323 + jO.0177’
0.0315 + jO.0158
0.0115 -1-jO.0055

o

Y1,4L

o
10
20
30
40
50
60
70
80
90

-0.4994 + j12.0100
1!

0
-0.0826 - jO.0407
-0.2314 - jO.1117
-0.2845 - jO.1323
-0.2120 - jO.0930
-0.1028 - jO.0411
-0.0318 - jO.0108
-0.0057 - jO.0013
-0.0005 - jO.0000

o
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