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Abstract
A conical transmission line can be used to launch and terminate a wave on
a cylindrical transmission line. Better. results are obtained for a relatively

long conical line than for the shorter line. A multiple conical transmission

line assembly can be usad in some cases to improve on the characteristics of
a single conical line.
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I. Introduction

A cylindrical transmission line is often used to simulate a free-space -

plane electromagnetic wave because of the TEM wave which is the principal
propagation mode on the structure. There are various types of cylindrical
transmission lines which also have the property that the field distribution

is nearly uniform over a significant part of their cross sections, thus making
a good approximation to a free-space plane wave.ls2 This TEM mode ideally
exists for all frequencies, but for frequencies such that the radian wavelength
is of the order of, or less than, the cross section dimensions of the trans-
mission line other modes can also exist. In many cases, we would like to be
able to launch fast rising pulses on such structures, with a rise time signifi-
cantly shorter than the tramsit time across the cross section. So the problem
is how to launch such a wave (either a fast pulse or a high frequency sine wave)
on such a transmission line without launching other modes as well. Similarly,
we would like to be able to terminate such a wave on the cylindrical transmission
line without introducing other disturbinces.

One approach to this problem, which 1is used in the ALECS-I simulator at
Kirtland AFB, is to match the cylindrical transmission line with two transmission
lines (one on each end) which have the same cross section shape as the cylindrical
transmission line but which gradually and uniformly taper to much smaller cross
section sizes.S At these smaller cross section dimensions it is easier to launch
and terminate the wave. Actually these uniformly tapered transmission lines are
conical transmission lines. We define a conical transmission line as two or more

‘separate conductors (assumed perfect conductors) which can be generated (geometrically)
by lines which all pass through one point (the apex). In a simple medium a TEM

mode exists in spherical coordinates (centered about the apex) wicth fields in the
angular directions only. The idea is then to match the field distribution on the
conical transmission line to that on the cylindrical transmission line, thus

achieving a smooth transition. This technigue can be used with various types of
cylindrical transmission lines and is illustrated in figure 1 for parallel plate

types of cylindrical transmission lines.

Still, the conical transmission line is not a perfect solution. The wavefront
on the conical line is spherical as compared to the planar wavefront desired on
the cylindrical transmission line. Thus, in launching the wave on the cylindrical
transmission line there is some time dispersion across the cross section of the
cylindrical transmission line. Conveniently, this time dispersion can be reduced
for a given cross section (of the cylindrical transmission lipe)by lengthening
the conical tramsition.

A further possible improvement in the wave launching structure is to use
multiple conical transmission lines, matched to the field distribution oun the
cylindrical transmission line. In this case ecach conical transmission line launches
a part of the wave, covering some fraction of the creoss section of the ecylindrical
transmission line. All the conical lines have the same transit time and are
driven simultaneously from separate sources or from one or more sources connected
through additional transmission lines to the inputs of the conical iines. Such

1. Lt Carl E. Baum, Sensor and Simulation Note XXI, Impedances and Field
Distributions for Parallel Plate Transmission Line Simulators, June 1966.
2. Lt Carl E. Baum, Sensor and Simulation Note XXVII, Impedances and Field
Distributions for Symmetrical Two Wire and Feur Wire Transmission Line
Simulators, October 1966.
3. Ralph E. Partridge, Sensor and Simulation Xote I, EMP Testing Facility,
Feb. 1964. '
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A. TWO PLATE

B. THREE PLATE

FIGURE |. EXAMPLES OF MATCHED CONICAL AND CYLINDRICAL
TRANSMISSION LINES.



multiple conical transmission lines might also be used to terminate TEM waves

on the cylindrical transmission line, with each conical line terminated in its
characteristic impedance. The multiple conical transmission lines can further
reduce the time dispersion in launching and terminating plane waves on cylindrical
transmission lines.

1I. The Conical Transmission Line

Consider the coordinate systems in figure 2. The origin of the spherical
coordinates (p, 8,¢) is taken as the apex of a conical transmission line. The
Zz axis is taken as an axis of symmetry, where appropriate. The conical trans-
mission line then has two or more conductors, the surfaces of which are described
as functions of & and ¢, but not of p. As developed by Smythe’ the TEM solution
has potential functions for the fields of the form

W(8,0) = u(8,8) +v(8,9) = £, (2e3*tan($) (L

Multiplying by eijkp where the propagation constant k is of the form

k =1 /-juu(otjue) (2)

(where typically, but not necessarily, we take ¢ = 0 and k = w/c where c is

the speed of light in vacuum) then gives wdves propagating in the + p direc-
tion with the field strengths varying as 1/p and surfaces of constant p (spheres)
as surfaces of constant phase.

From the form of the TEM solution of equation 1, an equivalent cylindrical
transmission line can be developed as in Smythe. If we make a coordinate trans-
formation of the form

xl

220c0s¢tan

7| (3)

and

8
5) {(4)

(wvhere z, is a constant to be used later) then the complex potential function
of equation 1 becomes

y 2z sin¢tan

Xl+' [} ]
w(8,¢) = fl("—‘]'y—') = £ (x"+y") (5)
z, 2
In this form the potential functions on the equivalent cylindrical transmission
line can be found by the well-known procedure of conformal transformatiom. If
cylindrical coordinates (r,¢) are used instead. of cartesian cocordinates for the
equivalent cylindrical transmission line, the transformation is of the form
2z tanFi
o

2 (6)

o =0 (7

r

Note that the ¢ coordinate is the same in both the spherical and cylindrical
systems while the © coordinate maps only to the r coordinate. To complete
the transformation to the equivalent cylindrical line we can also map p to

z' as

4. W. R. Smythe, Static and Dynamic Electricity, 2nd ed., 1950, p. 479.
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(x ,y,2) ARE
COORDINATES FOR -
EQUIVALENT CYLINDRICAL I r
TRANSMISSION LINE. !
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FIGURE 2. EOORDINATE SYSTEMS FOR CONICAL TRANSMISSION
INE.



p =2z (8)

so that propagation on the equivalent line is in the + z' direction in the
TEM mode.

This fact of an equivalent cylindrical transmission line can be used to
solve for both the impedance and field distribution of the conical transmission
line. Mapping to the cylindrical line we can try to solve this problem; or,
we may use a cylindrical line which is well known for its impedance and field
and potential distributions, and transform it back to an equivalent conical trans-
mission line for which, then, the impedance and field distribution are also known.
Note that the choice of the direction of the z axis from the conical apex is
arbitrary, meaning there is more than one equivalent cylindrical transmission
line for each conical transmission line and vice versa. As an example, consider
the transmission line formed by two circular cones described by constant 6 = 61
and & = 62 (0 < 61 < 62<ﬂ). 'This transforms to an equivalent coax with radii

°
r, = Zzotan(f—) : 9)

and 62
r, = Zzotan E-J (10)

which then gives the well-known result for the impedance,;zc, of

4

r tan(ig)
= Z_ 2V Z. — 2
Zc Co2n ln(rl) am In 91 " (11)
t:Em—2
where the wave impedance is given by
1/2
z = [~ (12)

ot+jwe

Referring again to the coordinate sketch in figure 2, there is a
geometrical procedure for obtaining the equivalent cylindrical transmission
line. Consider the intersection of the conical line with a sphere of radius
z5. The (x', y') or (r,¢) plane is a projection planme which is perpendicular
to the z axis (intersecting at z = +z,) and tangent to the sphere. Then
consider a projection point at z = -z, . Construct a line through the
projection point and a point of interest on the sphere. The intersection
of this line with the projection plane is the mapped point on the plane from
the sphere. Continuing this for all points of interest on the sphere maps
the conical line (and the potential functions) to the equivalent cylindrical
line. This geéometrical procedure is consistent with the mathematical trans—
formation of equations (6) and (7). Note that the angle of the projection
line with respect to the z axis is 8/2 and the .normal distance from the
projection point to the projection plane is 2zo. Conveniently, for small 6,
the p = z, sphere and the projection plane are approximately the same
surface, and the geometric distortion in the transformation is small.
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IITI. Matching Conical and Cylindrical Transmission Lines

With the transformations just discussed it is possible teo calculate
the impedance and field distribution of conical transmission lines. Now
consider using conical transmission lines to launch plane waves on cylindrical
transmission lines. If the wave on the conical line is to propagate onto the
cylindrical line without reflection, a first requirement is that the two lines
have the same characteristic impedance. This concept, however, only applies
to transmission lines with wavelengths much larger than appropriate cross
section dimensions but of the order of or less than the length of the trans-
mission lines. Then for conical lines with lengths much greater than cross
section dimensions the impedances should approximately match to launch waves
onto the cylindrical transmission line, at least for wavelengths somewhat
larger than the cross section dimensions. For such frequencies and lower
it would also seem desirable to maintain a gradual transition to the c¢ylindrical
transmission line with the two lines having approximately the same shape cross
sections to maintain the field distribution of the cylindrical lime near the
juncture of the two lines. This may not typically apply for positions far
from this juncture compared to the appropriate cross section dimensions.

For frequencies, with corresponding wavelengths shorter than the cross
section dimensions, however, simple transmission line concepts may not always
apply. For example, matching the characteristic impedances may not be
sufficient. Specifically, the spherical wavefront on the conical line does
not exactly match the planar wavefront on the cylindrical line. Owver the
cross section of the cylindrical line (at the juncture), and external to the
transmission line for distances to which significant fields extend, there
is then a certain time dispersion in matching the spherical wave into a
plane wave. In oOther words, on the cylindrical line a cross section is not
exactly a plane of constant phase. For wavelengths comparable to this
dispersion distance or times comparable to this dispersion time the wave
does not necessarily propagate down the cylindrical line as a plane wave.
This transit time dispersion over cross section dimensions of interest is
than an indication of the rise time characteristics of the wave on the
cylindrical line, say to a step function siznal at the input to the conical
line. We say "indication" because the actual rise characteristics and
frequency response characteristics may be somewhat more complex. However,
to minimize the rise time one can try to minimize this transit time dis-
persion. Note that for this analysis we assume 0 = 0 so that there is no
attenuation of the wave from this paramcter.

To match the two transmission lines let us first make the two impedances
the same. Second, the cross sections of the two lines should be approximately
the same so that the field distribution in the TEM mode on each is approximately
the same and the wave on one smoothly transitions into the other. One way to
achieve these points is to make the conical transmission line such that its
cylindrical equivalent and the actual cylindrical transmission line are one
and the same. Then consider the cylindrical line as parallel to the z axis,
and in some cases the z axis can be the axis of symmetry of the cylindrical
line. Then consider the coordinate systems for the joined, equivalent,
conical and cylindrical transmission lines at a constant ¢ (since ¢ 1is not
varied by the transformation) as in figure 3. On the z axis the transition
point is taken at z = Z s consistent with the previous transformations.
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FIGURE 3. COORDINATE SYSTEMS FOR JOINED TRANSMISSION LINES



Consider the field distributions in the TEM modes on the two equivalent
transmission lines. Ignoring transit time considerations one can find a surface
on which these field distributions match. Designate this surface by (p1,¢,el)

and (rl;¢,zl). The transformation, equation (6), gives

el
rl = Zzotan 5

From the geometry there are also the relations

r =

1 p131n(9

l)
and
r

= 2z tan(el)

1 1

Some useful trigonometric relationships are

A Y
el sin(el;

tan(a-) = l+cos(61)

(61)
2tanl=——
tan(f,) = Z

1 2 51)

and

l-tan 3‘

Combining equations (13), (14), and (16) gives

Pi. 2
z l+cos(el)

and combining equations (13), (15), and (17) gives

2L

2
z, . _.Zl
122¢

for the surface on which these field distributions are equal.
equation (19) as

T L
2z z
o] o]

note that this surface is a paraboloid. We choose to call it
paraboloid.

(13)

(14)

(15)

(16)

(17)

(18)

(19)

Rewriting

(20)

the transition



Call the spherical surface, p = z_, the transition sphere and the
plane, z = z,, the transition plane. TRese are surfaces of constant phase,
in the TEM modes, on the comical and cylindrical lines, respectively, and
these surfaces are tangent at one point (on the z axis), where they are
also tangent to the transition paraboloid. The distance between the
spherical and planar surfaces, divided by the propagation speed, gives
the transit time dispersion im matching the waves on the two transmission
lines as a function of 6 or r. For convenience relate this dispersion
distance to the transition paraboloid which we take as the surface dividing
the two transmission lines. Then on the conical line the dispersion distance
is

I-cos(8,) 2(91)
8007 P17% % % Teos(8) T %™ |7 21
On the cylindrical line the dispersion distance is
2
r ] .
-z -z, = S 2%
bz = z -z, = z, (220 = z tan (2 ) (22)
This definition of dispersion distance, then gives
Lp = Az ; (23)
and the total dispersion distance is
rlz 2(61
dl = Aptdz = EE; = 2z4tan 5 (24)
For small Gl this is approximately
612
dl =z 3o (25)

If 6, represents the maximum 6 of interest, or r, represents the maxinum
r of "interest for significant fields on the resp&ctive transmission lines
(calling these quantities them 63 and r3), the maximum dispersion distance
is then
2
T

d =

8
3. . 2 (3
3 220 = 2zotan ( ) (26)

2

This maximum dispersion distance can then be reduced by decreasing the
cross gsection dimensions of the cylindrical transmission line and/or
increasing the length of the comical transmission line.

Another way to loock at the matched conical and cylindrical trans-
mission lines is to consider some of the approximate rise characteristics
of a wave as a function of position down the c¢ylindrical line. Consider
a step function wave on the conical line which has unity amplitude
(electric or magnetic field) on the z axis at p = z,. The field on the
z axis, at distances far from the transition paraboloid compared to
the cross section dimensions, and for times much longer than transit
times for the cross section and other dimensions of interest, settles
down to unity amplitude on the cylindrical line and to amplitude z,/p on
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the conical line. This is due to the equivalence of the transmission lines,
mapping the potential between the two, and the lack of distortionm in this
mapping in the limit of small & (i.e., p3d8; = dr, at (p1,84) = (24,0)).

For small 6, (i.e., a gradual conical tramsition), this long time field
strength wiil also be nearly unity on the z axis near the transition para-
boloid.

As this step function wave propagates down the conical-cylindrical
structure the initial rise on the z axis has an amplitude of zg/p. This
initial rise is in the form of a spherical wave, with a distribution
characteristic of the conical line. Referring to figure 4 one can see
that the first signal to reach an observer on the z axis must come by
the shortest path from the input of the conical transmission line .
Actually, the first disturbance introduced into the spherical wave, to
convert it into an approximate plane wave, occurs at the p; on the conical
structure corresponding to the smallest r on the cylindrical structure.
For the smallest dimensions refer to the conductors on the respective
transmission lines. Call the distance from the z axis to the closest
conductor on the cylindrical line, r,, together with the corresponding
coordinates, 2zj, Py, and 8,, for the position on the tramsition paraboloid.
The first disturbance (or reflection) in the spherical wave occurs at this
point.

We assume for this analysis that there are no disturbances for
2>z, on the cylindrical line to send reflections back to the observation
peint, at least for times of interest. At the observation point on the
z axis the initial step rise to a value, zo/z9 lasts for at least the
extra time it takes the first reflection to arrive. As illustrated in
figure 4, for z5<z<2z;, the reflection occurs at (rp,zp) and the
corresponding time lag is

1/2 2 1/2

1 2. 2 2

to =7 [zz+r2} + Uz-zﬁ + r, ] -z 27)
For r2<<z2 this reduces to
2 1/2
r
. L 2 o, 2,.2

to ¥ % zyt 22, + [(z z5) +r2] -z (28)

Note that ¢ is the velocity of propagation of the wave, typically the speed
of light in vacuum. For 2z, < z the first reflection to arrive at the
observer comes again from t%e conductor on the cylindrical line closest

to the z axis, and from a point halfway between z = 0 and the observer,
this path being the shortest reflection path to the observer. The time

lag on the reflection is now

1/2 1/2

2
_1),[zf2 _i)f2,.2
e = 2[‘2)+r2] -z —c‘:z +4r2} -z (29)
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FIGURE 4. ?l?EST RI}Z&%CTION PROPAGATION PATHS FOR AN OBSERVER ON
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For 2r2<<z this redgces to

2
2

4

a]

-~ —2—
t = . (30)

(o]

Thus, as the observer moves to larger z not only does the amplitude of the
step rise decrease as z=1l, but also the time to the first reflection decreases
in a similar manner.

What happens for times at and subsequent to the first reflection arrival
is difficult to say. This may depend on several factors, including the
cross section shape of the cylindrical line, the length of the conical line,
and the observation point. For large zo/r3, the case of a gradual transition,
the transition characteristics are optimized. To get a picture of just what
happens for some of the more complicated details, and their practical signifi-
cance, one might measure the response of a particular conical-cylindrical trans-

mission line system,. including, for very large such systems, an electrical
scale model of the same. -

Iv. Multiple Conical Transmission Lines

In discussing the optimization of the conical transmission line as a
wave launcher on a cylindrical transmission line we calculated a maximum
dispersion distance in equation (26) as an indication of the quality of the
match. To optimize the tramsition rj; may be decreased and/or z, may be
increased. For a given cylindrical transmission line rj can be minimized
by centrally locating the z axis on the cross section. If z, is also
limited for some reason, then we have a certain minimum value of d3.

However, there is another technique which may improve the situationm,
namely the use of several conical transmission lines as the wave launching
assembly. This is illustrated in figure 5 with two examples. The basic
idea is to divide a cross section of the given cylindrical transmission
line into a number of separate areas. Lach area is then fed by a separate
conical transmission line. For convenience assume all the conical lines
to be of equal length (but this is not necessary). Then simultaneously
drive the inputs to all the conical lines with the same signal (but
possibly different amplitudes) so that the waves on all the conical lines
arrive at the input cross section of the cylindrical line at the same
time. The conical lines should be arranged and driven such that together
the waves on the conical lines match the TEM field distribution on the
cylindrical line. For a given length of conical tramsition, z,, one
can then reduce d3 by using a multiple conical transition assembly to
reduce the ry associated with the individual conical lines., Alternatively
one might choose a certain d4 and by reducing rj3 allow a reduction in z,.

In figure 5A we have the case of a wide symmetrical two plate trans-
mission line of impedance, Z, driven by two conical lines, each of
impedance, 2Z, in a parallel arrangement. Figure 5B gives another case
in which a symmetrical two plate transmission line of impedance, Z, is
driven by four comical transmission lines, each of impedance Z, in a series-
parallel arrangement. The conical lines can be driven by separate sources
or from a single source. Figure 6 schematically shows some signal feed

13



A WIDE TWO PLATE TRANMISSION LiNE

e

B. WIDE AND HIGH TWO PLATE TRANSMISSION LINE

FIGURE 5. MULTIPLE CONICAL TRANSITIONS
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systems for driving multiple conical tramsition assemblies from a single source.
These feed systems have impedances for pulse matching, without reflection, from
the source to the conical inputs (indicated schematically as loads), with equal
transit times from the source to each of the conical inputs. One must also take
care that the hookup to the conical lines has the proper sequence with proper
polarities. The waves reaching the cylindrical line from the conical lines
must have the right polarities and the network should also pass low frequencies
onto the cylindrical line. The parallel network of figure 6A would be
appropriate for the multiple conical transition of figure 5A. The series-
parallel networks of figure 6C would be appropriate for the multiple conical
transition of figure 5B.

The multiple conical transition assembly can also be used to terminate
waves on a cylindrical line either with resistors for each conical line, or
using the networks of figure 6, with a single resistor. The use of several
conical lines then allows for some flexibility in arrangement of sources and
terminations. If the impedance of the cylindrical transmission line is not
that desired as a load for the signal source more than one source might be
used, arranged to better match the impedances. With different multiple conical
arrangements the conical lines can have impedances higher or lower than that
of the cylindrical line.

There are limitations in this technique. Consider a multiple conical
transition assembly which is used to terminate a wave on a cylindrical line.
Let there be separate resistors terminating each conical line. Use enough
conical lines such that the cross section dimensions of each conical line
are much less than those of the cylindrical lime. Similarly, let the lengths
of the conical lines be much less than the cross section dimensions of the
cylindrical line. Then the terminating resistors approximate a resistive
sheet which for low frequencies terminates the cylindrical line but for high
frequencies (wavelengths smaller than the cross section dimensions of the
cylindrical line) does not terminate it. With the proper distribution of
the conical lines, and thus the resistors, the resistive sheet has a surface
resistance equal to the wave impedance (377 @ for free space). The wave
reflects off such a sheet with a reflection ccefficient (for the electric
field) of -1/3. Of course, the presence of the very small comical lines
provides complicatioms to this picture, particularly for wavelengths of the
order of the variocus conical transmission line dimensicns.

In a multiple conical transition assembly one might typically use two
plate conical lines. The output of the conical lines are arranged so that
the conductors are along equipotentials for the TEM mode on the cylindrical
line. Thus, the ocutputs of the conical lines do not necessarily form a
regular rectangular array, but some sort of digtorted array corresponding
to the equipotentials on the cylindrical line. Even if the conical lines
are so distributed there is another problem. For conical two plate trans-
mission lines with gradual tapers the field distribution is approximately
that of a cylindrical two plate transmission line. Except for cases of
plate width much greater than plate spacing, a significant fraction of the
electromagnetic energy is not between the plates, but outside. Thus,

3. See reference 1 for these equipotentials for symmetrical two and three
plate transmission lines.
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although we can cover a certain part of the cross section of a cylindrical
line with a two plate conical line of the appropriate impedance, the field
distributions do not quite match. This introduces reflections at the juncture
of the conical lines with the cylindrical line, limiting the multiple conical
transition technique.

There are some special cases which avoid this last problem. Consider a
cylindrical transmission line with the appropriate symmetry such that one of
the equipotentials is a plane extending through the cross section. Examples
of this are the symmetrical two plate and two and four wire transmission lines.
Then one divides these cylindrical lines along this plane of symmetry, driving
each side with a separate conical transmission line. Each conical line has
one conducting plate (or approximation to a conducting plate) for one of its
conductors. This plate ends at the intersection of the symmetry plane with
the input cross section of the cylindrical line. This is illustrated in
figure 7 for the cases of the symmetrical two plate line and the symmetrical
four wire line.

Another way to look at these cases is to first symmetrically match a
conical line to the cylindrical line. ' Then add two conducting sheets
(sandwiched initially as one) along the flat, center equipotential, extending
from the conical input to the input cross section of the cylindrical line
and sidewards to a distance to intersect most of the normal electric field.
Separate the two sheets at the conical input end to produce two separate
conical lines. The field distribution on each of these conical lines then
does approximately match the field distribution needed on the appropriate
half of the cylindrical line. One can feed this type of structure with two
sources, each of half the cylindrical line impedance, or with one source
using a network as in figure 6B. Likewise one can use such a structure to
terminate a wave on such a cylindrical line.

V. Summary

A conical transmission line can be used to launch a plane wave on a
cylindrical transmission line. To optimize the plane wave on the cylindrical
line the conical line can have approximately the same cross section shape
as the cylindrical line and the length of the conical line can be much
greater than the cross section dimensions of the cylindrical line. This
gives a smooth ¢ransition.

One may improve the transition assembly by the use of multiple conical
transmission lines. In some cases, however, this technique may introduce
new problems, while in others it may prove advantageous.

In many cases, it may be desirable to measure the response characteristics
.of a given transition assembly. TFor contemplated very large structures these
measurements can be made on an electrical scale medel.

6. Described in references 1 and 2.
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A. SYMMETRICAL TWO PLATE TRANSMISSION LINE
WITH TWO FEED POINTS.

B. SYMMETRICAL FOUR WIRE TRANSMISSION LINE
WITH TWO FEED POINTS.

FIGURE 7. SPECIAL CASES FOR MULTIPLE CONICAL TRANSITIONS
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