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Abstract

A conical transmission line can be used co launch and terminate a wave on
a cylindrical transmission iine. Better.results are obtained for a relatively
long conical line than for the shorter line. A multiple conical transmission
line assembly can be used in some cases to Lnprove on the characteristics of
a single conical line.

—.



I. IntraducCion

A cylindrical transmission line is often used to simulate a free-space
plane electromagneticwave because of the TEM wave which is the principal
propagation mode on the structure. There are various types of cylindrical
transmission lines which also have the property that the field distribution
is nearly uniform over a significant part of their cross sections, thus making
a good approximation to a free-space plane wave.~~z This TEM mode ideally
exists for all frequencies,but for frequencies such that the radian wavelength
is of the order of, or less than, the cross section dimensions of the transm-
ission line ot!lermodes can also exist. In many cases, we would like to be
able to I.aunchfast rising pulses on such structures,with a rise time signifi-
cantly snorter than the transit time across the cross section. So the problem
is how co launch such a wave (either a fast pulse or a high frequency sine wave)
on such a transmission line without launching other modes as well. Similarly,
we would like to be able to terminate SUCh a wave on the cylindrical transmission
line without introducingother disturbances.

.-

One approach :0 tii.sproblem, which is used in the ALECS-I simulator at
Kirtland AF13,is to match the cylindrical transmission line with two transmission
lines (one on each end) which have the same cross seccion shape as the cylindrical
transmission line but which gradually and uniformly taper to much smaller cross

3 At these smaller cross section dimensions ir is easier to launchsection sizes.
and terminate the wave.’ Actually t[~eseuniformly tapered transmission lines are
conical transmissionlines. !Jedefine a conical transmission line as two or more

“separate conductors (assumed perfec~ conductors) which can be gencraced (geometrically)
by lines which all pass through one point (t!~eapex). In a simple medium a TEIvl
mode exists in spherical coordinates (centeredabout the apex) with fields in the
angular directions only. The idea is then to match bhe field distribution on the
conical transmissionline co that on the cylindrical transmission line, thus
achieving a smooth transition. This technique can be used with various types of
cylindrical transmissionLines antiis illus~rateciin figure 1 for parallel plate
types of cylindrical transmission lines.

Still, Ci}econical transmission line is not a perfect solution. Tl~ewavefront
on tileconical line is spherical as compared to the planar wavefron~ desired on
the cyiinarical transmission line. Tlms, in launching the wave on the cylindrical
transmission line there is some time dispersion across the cross section of the
cylindrical transmissionline. Conveniently, this time dispersion can be reduced
for a given cross section (of the cylindrical transmission line]by lengthening
the conical transition.

A further possible improvement in the wave launching structure is to use
multiple conical transmissionlines, matciiedto Lhe field distribution on the
cylindrical transmissionline. In this case each conical transmission line launches
a part of the Wave, covering some fraction of the cross secLion of the cylindrical
transmission line. All the conical lines have the same transit time and are
driven simultaneouslyfrom separzte sources or from one or more sources connected
through additional transmission lines to the inputs of the conical Lines. such

1. Lt Carl E. Baum, Sensor and Simulation Note .XXI,Impedances anclField
Distributions for Parallel Plate Transmission Line Simulators, June 1966.
2. Lt Carl E. Eaum, Sensor and Simulation Note .XYJII,Impedances and Field
Distributions for SymmetricalTwo Wire and Four Nire Transmission Line
Simulators, Occober 1966.
3. Ralph E. Partridge, Sensor and Simulation Xote 1, E!tPTescin~ Facility,
Feb. 1964.
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A. TWO PLATE

0, THREE PLATE

FIGURE 1. EXAMPLES OF MATCHED CONICAL AND CYLINDRICAL
TRANSMISSION LJNES.
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multiple conical transmissionlines might also be used to terminate TEM waves
on the cylindrical transmissionline, with each conical line terminated in its
characteristic impedance. The multiple conical.transmission lines can further
reduce the time dispersion in launching and terminating plane waves on cyltidrical
Transmission lines.

11● The Conical TransmissionLine

Consider the coordinate systems in figure 2. The origin of the spherical
coordinates (P, 6,+) is taken as the apex of a conical transmission line. The
z axis is taken as an axis of symmetry,where appropriate. The conical trans-
mission line then has two or more conductors, the surfaces of which are described ‘

4 the TEM solutionas functions of 6 and $, but not of o. As developed by Smythe
has potential functions for the fields of the form

w(6,$) = u(e,~) +jv(e,$) =
()fl(2ej@tan} ) (1)

i4ultiplyingby ~~ where the propagation constant k is of the form

(where typically, but not necessarily,we
the speed of light in Vacuum) then gives
tion with the field strengths varying as
as surfaces of constant phase.

(2)

takea=Oandk= u/c where c is
wolvespropagating in ,the~ P direc-
l/P and surfaces of constant P (spheres)

From the form of the TFM solution of equation 1, an equivalent cylindrical
transmission line can be developed as in Smythe. If we make a coordinate trans-
formation of the form

XT II=2zocos$tan$

and

1&Y’ = 2zosin$tan z

(where Z. is a constant to
of equation 1 becomes

In this form the potential

!-

(3)

I
(4)

be used later) then the complex potential function

) = ,f2(x’+jy’) (5)

functions on the equivalent cylindrical transmission
line can be found by the well-known procedure of confortnaltransformation. If “
cylindrical coordinates (r,+) are used instead,of cartesian coordinates for the
equivalent cylindrical transmissionline, the transformationis of the form

r
H

= 2zotan ~ (6)

4=$ (7)

Note that the $ coordinate is the same in both the spherical and cylindrical
systems while the 6 coordinatemaps only to the r coordinate. To complete
the transformationto the equivalent cylindrical line we can also map P to
z’ as

4. l?.R. Smythe, Static and Dynamic Electricity, 2nd cd., 1950, p. 479.
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(x‘,y;z’)ARE
COORDINATES FOR
EQUIVALENTCYLINDRICAL
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CONICAL TRANSMISSION
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‘ z= -Zo

(pROJEcTlONPOINT)

FIGURE 2. COORDINATE SYSTEMS FOR CONICAL TRANSMISSION
LINE.
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p=zt (8}

so that propagation on the equivalent line is in the ~ z’ direction in the
TEM mode.

This fact of an equivalent cylindricaltransmission line can be used to
solve for both the impedance and field distribution of the conical transmission
line. Mapping to the cylindrical line we can try to solve this problem; or,
we may use a cylindrical line which is well known for its impedance and field
and potential distributions, and transform it back to an equivalent conical trans-
mission line forwhich, then, the impedance and field distribution are also known.
Note that the choice of the direction of the z axis from the conical apex is
arbitrary,meaning there is more than one equivalent cylindrical transmission
line for each conical transmission line and vice versa. As an example, consider
the transmission line formed by two circular cones described by constant 8 = 0
and 0 = 62 (0 < el < EJ2<lr).This transforms to an equivalent coax with radii 1

16.I

‘1 u=2zotan ~
and

H

‘2
‘2 = 2zotan —

2

which then gives the well-known result for the impedance,,Z., of

()‘2Zc=~lm—=
‘1

where the wave impedance

H
[ )1

‘2
tan —

~ in 2

(
‘1

tan —
2

is given by

(9)

(10)

.~.

. (11)

(12)

Referring again to the coordinate sketch i]lfigure 2, there is a
geometricalprocedure for obtaining the equivalent cylindrical transmission
line. Consider the intersection of the Conical line with a sphere of radius
Zo. The (x’, y!) or (r,+) plane is a projection plane which is perpendicular
to the z axis (intersectingat z = +Zo) and tangent to the sphere. Then
consider a projection point at z = -z. . Construct a line through the
projectionpoint and a point of interest on the sphere. The intersection
of this line with the projection plane is the mapped point on the plane from
the sphere. Continuing this for all points of interest on the sphere maps
the conical line (and the potential functions) to the equivalent cylindrical
line. This g&ometrical procedure is consistent with the mathematical trans-
formation of equations (6) and (7). Note that the angle of the projection
line with respect to the z axis is 9/2 and the,normal distance from the
projection point to the projection plane is 2Z0. Conveniently, for small e,
Ehe p = Z. sphere and the projection plane are approximately the same
surface, and the geometric distortion in the transformation is small.
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III. Matching Conical and Cylindrical Transmission Lines

With the transformationsjust discussed it is possible co calculate
the impedance and field distribution of conical transmission lines. Now
consider using conical transmission lines to launch plane waves on cylindrical
transmission lines. If the wave on the conical line is to propagate onto the
cylindrical line without reflection, a first requirement is that the two lines
nave the same characteristic impedance. This concept, however, only applies
to transmission lines with wavelengths much larger than appropriate cross
section dimensions but of the order of or less than the length of the trans-
mission lines. Then for conical lines with lengths much greater than cross
section dimensions tileimpedances should approximately match to launch waves
onto the cylindrical transmission line, at least for wavelengths somewhat
larger than the cross section dimensions. For such frequencies and lower
it would also seem desirable to maintain a gradual transition to the cylindrical
transmission line with the two lines having approximately the same shape cross
sections to maintain the field distribution of the cylindrical line near the
juncture of the two lines. This may not typically apply for positions far
from this juncture compared to the appropriate cross section dimensions.

For frequencies, with correspondingwavelengths shorter than the cross
section dimensions, however, simple transmission line concepts may not always
apply. For example, matching the characteristic impedances may not be
sufficient. Specifically, the spherical wavefront on the conical line does
not exactly match the planar wavefront on the cylindrical line. Over the
cross section of the cylindrical line (at the juncture), and external to the
transmission line for distances to which significant fields extend, there
is then a certain time dispersion in matching the Spherical wave into a
plane wave. In bther words, on the cylindrical line a cross section is not
exactly a plane of constant phase. For wavelengths comparable to this
dispersion distance or times comparable to this dispersion time the wave
does not necessarily propagate down the cylindrical line as a plane wave.
This transit time dispersion over cross section dimensions of interest is
than an indication of the rise time characteristics of the wave on the
cylindrical line, say to a step function si~nal at the input to the conical
line. We say “indication” because tileactual rise characteristics and
frequency response characteristicsmay be somewhat more complex. However,
to minimize the rise time one can try to minimize this transit time dis-
persion. Note that for this analysis we assume 0 = O so that there is no
attenuation of the wave from this param~ter.

To match the two transmission lines let us first make the two impedances
the same. Second, the cross sections of the two lines should be approximately
the same so that the field distribution in the TEM mode on each is approximately
the same and the wave on one smoothly transitions into the other. One way to
achieve these points is to make the conical transmission line such that its
cylindrical equivalent and the actual cylindrical transmission line are cne
and the same. Then consider the cylindrical line as parallel to the z axis,
and in some cases the z axis can be the axis of symmetry of the cylindrical
line. Then consider the coordinate systems for the joined, equivalent,
conical and cylindrical transmission lines at a constant 4 (since $ is not
varied by the transformation) as in figure 3. On the z axis the transition
point is taken at z = Zo, consistent with the previous transformations.
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TRANSITION ITRANSITION
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TRANSITION=
SPHERE \ \l
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FIGURE 3. COORDINATE SYSTEMS FOR JOINEDTRANSMISSIONLINES
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Consider.the field distributions in the TEM modes on the two equivalent
transmission lines. Ignoring transit Gime considerations one can find a surface
on which these field distributions match. Designate this surface by (P1,$,(31)
and (rl~$$zl). The transformation,equation (6), gives

J, J.

()‘1‘1= 2zotan —
2

From the geometry there

‘1=plsin(O1)

and

‘1
= zltan(el)

Some useful trigonometric

(13)

are aLso the relations

()‘1 .sin(Ol)
tan—=—

2 Mcos(el)

and

[)
‘1

2tan ~
tan(el) =

()
l-ta.2 ~

(15)

relationships are

Combining equations (13), (14), and (16) gives

Q= 2
z M-cos(el)
o

and combining equations (13), (15), and (17) gives

(14)

(16)

(17)

(18)

(19)

for the surface on which these field distributions are equal. Rewriting
equation (19) as

12 ‘1r)z“y (20)
o

note ;hat this surface is a paraboloid. We choose to call it the transition
paraboloid.



CaU the spherical surface, p = z , the transition sphere and the
plane, z = Zo, the Cransicion plane. T8ese are surfaces of constanc phase,
in the TEM modes, on the conical and cylindrical lines, respectively, and
these surfaces are tangent at one point (on the z axis), where they are
aLso tangent to the transition paraboloid. The distance b~tween the
spherical and planar surfaces, divided by the propagation speed, gives
the transit time dispersion in matching the waves on the two transmission
lines as a function of 6 or r. For convenience relate this dispersion
distance to the transition paraboloid which we take as the surface dividing
che two transmissionlines. Then on the conical line the dispersion distance
is

‘p = ‘l-zo = ‘d

On the cylindrical line

Az = zo-zl s =zQ

I-cos(el) (12 61
1+COS(61) = ‘Qtan T

the dispersion

()
2

‘1
= zotan2

Z.

distance is

[1‘1-i-

This definition of dispersion distance, then gives

Ap = Az

and the total dispersion distance is

(21)

(22)

(23)

(24)

For small Ellthis is approximately

2
81=2

‘1 07
(25)

If 0, represents the maximum 6 of interest, or r, represents the maxkx.m
r of~interest for significant fields on the resp~ctive
(calling these quantities then f33and r3), the maximum
is then *

‘3&
()

‘3
d3=~

= 2zotan2 ~

transmission line.5
dispersion tiistance

(26)

This maximum dispersion distance can then be reduced by decreasing the
cross section dintensionsof the cylindrical transmission line and/or
increasing the length of the conical transmission line.

Another way to look at the matched conical and cylindrical trans-
mission lines is to consider some of the approximate rise characteristics
of a wave as a function of position down the cylindrical line. Consider
a step function wave on the conical line which has unity amplitude
(electric or magnetic field) on the z axis at p = Zo. The field on the
z axis, at distances far from t!~etransition paraboloid compared to
the cross section dimensions, and for times much longer than transit
times for che cross section and other dimensions of interest, settles
down to unity amplitude on the cylindrical line and to amplitude zo/p on
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the conical line. This is due to the equivalence of the transmission lines,
mapping the potential between the two, and the lack of distortion in this
mapping in the limit of small e (i.e., pldfj = drl at (P1,91)= (zO,O)).
For small e (i.e.,

2
a gradual conical transition), this long time field

strength wi 1 also be nearly unity on the z axis near the transition para-
boloid.

As this step function wave propagates down the conical-cylindrical
structure the initial rise on the z axis has an amplitude of Zo/P. This
initial rise is in the form of a spherical wave, with a distribution
characteristic of the conical line. Referring to figure 4 one can see
that the first signal to reach an observer on the z axis must come by
the shortest path from the input of the conical transmission line .
Actually, the first disturbance introduced into the spherical wave, to
convert it into an approximate plan,ewavej occurs at the P1 on the conical
structure corresponding to the smallest r on the cylindrical structure.
For the smallest dimensions refer to the conductors on the respective
transmission lines. Call the distance from the z axis to the closest
conductor on the cylindrical line, r2, together with the corresponding
coordinates, Z’27’P2*and e2y for the position on the transition paraboloid.
The first disturbance (or reflection) in the spherical wave occurs at this
point.

We assume for this analysis that there are no disturbances for
z>zo on the cylindrical line to send reflections back to the observation
point, at least for times of interest. At the observation point on the
z axis the initial step rise to a value, zo/z, lasts for at least the
extra time it takes the first reflection to arrive. As illustrated in
figure 4, for 22525222, the reflection occurs at (r2,z2)and the
corresponding time lag is

(27)

For r2<<z2

to

this reduces to

(28)

Note that c is the velocity of propagation of the wave, typically the speed
of light in vacuum. For 22 < z the first reflection to arrive at the

Cobserver comes again from t e conductor on the cylindrical line closest
to the z axis, and from a point halfway between z = O and the observer,
this path being the shortest reflection path to the observer. The txe
lag on the reflection is now

t/i[2[(:r+i~’2-j= *[[J+4+~2 -z] (2,)
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FIGURE 4. FIRSTREFLECTION PROPAGATION PATHS FOR AN OBSERVER ON
THE Z AXIS
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For 2r2<<z this reduces to

2
‘2

to’:y (30)

Thus, as the observer moves to larger z not only does the amplitude of the
step rise decrease as z-1, but also the time to the first reflection decreases

in a similar manner.

What happens for times at and subsequent to the first reflection arrival
is difficult to say. This may depend on several factors, including the
cross section shape of the cylindrical line, the length of the conical line,
and the observation point. For large zo/r3, the case of a gradual transition,
the transition characteristicsare optimized. To get a ‘pictureof just what
happens for some of the more complicated details, and their practical signifi-
cance, one might measure the response of a particular conical-cylindricaltrans-
mission line system,.including, for very large such systems, an electrical
scale model of the same.

IV. Multiple Conical Transmission Lines

In discussing the optimization of the conical transmission line as a
wave launcher on a cylindrical transmission line we calculated a maximum
dispersion distance in equation (26) as an indication of the quality of the
match. TO optimize the transition r3 may be decreased and/or ZO maY be
increased. For a given cylindrical transmission line r3 can be minimized
by centrally locating the z axis on the cross section. If Z. is also

. limited for some reason, then we have a certain minimu value of d3e

However, there is another technique which may improve the situation,
namely the use of several conical transmission lines as the wave launching
assembly. This is illustrated in figure 5 with two examples. The basic
idea is to divide a cross section of the given cylindrical transmission
line into a number of separate areas. Each area is then fed by a separate
conical transmission line. For convenience assume all the conical lines
co be of equal length (but this is not necessary). Then simultaneously
drive the inputs to all the conical lines with the same signal (but
possibly different amplitudes) so that the waves on all the conical lines
arrive at the input cross section of the cylindrical line at the same
time. The conical lines should be arranged and driven such that together
the waves on the conical lines match the TEM field distribution on the
cylindrical line. For a given length of conical transition, Zo, one
can then reduce ds by using a multiple conical transition assembly to
reduce the r3 associated with the individual COniCd Iinest Alternatively
one might choose a certain d3 and by reducing r3 allow a reduction in zoo

In figure 5A we have the case of a wide symmetrical two plate trans-
mission line of impedance, Z, driven by two conical lines, each of
impedance, 2Z, in a parallel arrangement. Figure 5B gives another case
in which a symmetrical two plate transmission line of impedance, Z, is
driven by four conical transmission lines, each of impedance Z, in a series-

parallel arrangement. The conical lines can be driven by separate sources
or from a single source. Figure 6 schematically shows some signal feed

13
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A* WIDE TWO PLATE TRANSMISSIONLiNE

B. WIDE AND HIGH TWO PLATE TRANSMISSION LINE

FIGURE 5. MULTIPLE CONICAL TRANSITIONS
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FOR MULTIPLECONICALFEED POINTS
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,

systems for driving multiple conical transitionassemblies from a single source.
These feed systems have impedances for pulse matching, without reflection,from
the source to the conical inputs (indicatedschematically as loads), with equal
transit times from the source to each of the conical inputs. One must also take
care that the hookup to the conical lines has the proper sequence with proper
polarities. The waves reaching the cylindrical line from the conical lines
must have the right polarities and the network should also pass low frequencies
onto the cylindricalline. The parallel network of figure 6A would be
appropriate for the multiple conical Transition of figure 5A. The series-
parallel networks of figure 6C would be appropriate for the multiple conical
transitionof figure 5B.

The multiple conical transition assembly can also be used to terminate
waves on a cylindrical line either with resistors for each conical line, or
using the networks of figure 6, with a single resistor. The use of several
conical Unes then allows for some flexibility in arrangement of sources and
terminations. If the impedance of the cylindrical transmission line is not
that desired as a load for the signal source more than one source might be
used, arranged to better match the impedances.”With different multiple conical
arrangementsthe conical Unes can have impedanceshigher or lower than that
of the cylindricalline.

There are limitations in this technique. Consider a multiple conical
transitionassembly which is used to terminate.a wave on a cylindrical line.
Let there be separate resistors terminatingeach conical line. Use enough
conical lines such that the cross section dimensions of each conical Une
are much less than those of the cylindrical line. Similarly, let the lengths
of the conical lines be much less than the cross section dimensions of the
cylindrical line. Then the terminating resistors approximate a resistive
sheet which for low frequencies terminates the cylindrical line but for high
frequencies (wavelengthssmaller than the cross section dimensions of the
cylindricalline) does not terminate it. With the proper distributionof
the conical lines, and thus the resistors, the.resistive sheet has a surface
resistance equal.to the wave impedance (377 O for free space). The wave
reflects off such a sheet with a reflection coefficient (for the electric
field) of -1/3. Of course, the presence of the very small conical lines
provides complicationsto this picture, particularly for wavelengths of the
order of the various conical transmissionline dimensions.

In a multiple conical transitionassembly one might typically use two
plate conical lines. The output of the conical lines are arranged so that
the conductors are along equipotentialsfor the TEM mode on the cylindrical
Line. Thus, the outputs of the conical lines do not necessarily form a
regular rectangulararray, but some sort of di torted array corresponding
to the equipotentialson the cylindrical line.? Even if the conical lines
are so distributedthere is another problem. For conical two plate trans-
mission lines with gradual tapers t~e field distribution is approximately
that of a cylindricaltwo plate transmissionline. Except for cases of
plate width much greater than plate spacing, a significant fraction of the
electromagneticenergy is not between the plates, but outside. Thus,

5. See reference 1 for these equipotentialsfor symmetrical two and three
plate transmissionlines.
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although we can cover a certain part of the cross section of a cylindrical
line with a two plate conical line of the appropriate impedance, the field
distributions do not quite match. This introduces reflections at the juncture
of the conical lines with the cylindrical line, limiting the multiple conical
transition technique.

There are some special cases which avoid this last problem. Consider a
cylindrical transmission line with the appropriate symmetry such that one of
the equipotentials is a plane extending through the cross section. Examples ~
of this are the symmetrical two plate and two and four wire transmission lines.
Then one divides these cylindrical lines along this plane of symmetry, driving
each side with a separate conical transmission line. Each conical line has
one conducting plate (or approximation to a conducting plate) for one of its
conductors. This plate ends at the intersection of the symmetry plane with
the input cross section of the cylindrical line. This is illustrated in
figure 7 for the cases of the symmetrical two plate line and the symmetrical
four wire line.

Another way to look at these cases is to first syuunetricallymatch a
conical line to the cylindrical Line. Then add two conducting sheets
(sandwichedinitially as one) along the flat, center equipotential, extending
from the conical input eo the input cross section of the cylindrical line
and sidewards to a distance to intersect most of the normal electric field.
Separate the two sheets at the conical input end to produce two separate
conical lines. The field distribution on each of these conical Unes then
does approximately match the field distribution needed on the appropriate
half of the cylindrical line. One can feed this type of structure with two
sources, each of half the cylindrical line impedance, or with one source
using a network as in figure 6B. Likewise one can use such a structure to
terminate a wave on such a cylindrical line.

v. summary

A conical transmission line can be used to launch a plane wave on a
cylindrical transmission line. To optimize the plane wave on the cylindrical
line the conical line can have approximately the same cross section shape
as the cylindrical line and the length of the conical line can be much
greater than the cross section dimensions of the cylindrical line. This
gives a smooth Transition.

One may improve the transition assembly by the use of multiple conical
transmission lines. In some cases, however, this technique may introduce
new problems, while in others it may prove advantageous.

In many cases, it may be desirable to measure the response characteristics
.of a given transition assembly. For contemplated very large structures these
measurements can be made on an electrical scale model.

6. Described in references 1 and 2.
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A, SYMMETRICAL TWO PLATE TRANSMISSION LINE
WITH TWO FEED POINTS.

B. SYMMETRICAL FOUR WIRE TRANSMISSION LINE
WITH TWO FEED POINTS.

FIGURE7, SPECIAL CASESFOR MULTIPLECONICAL TRANSITIONS


