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Abstract 

Duality is an important concept in electromagnetics involving a symmetry in 

the equations between electric and magnetic parameters. Using the combined 

field, one has a compact form for stating various electromagnetic theorems. 

In this paper this is first extended to a dual equivalence principle in which 

electric and magnetic surface currents are interchanged on a surface with a 

corresponding interchange of electric and magnetic fields. Then we consider 

production of electrostatic and magnetostatic fields using electric potential . 

and electric surface current density respectively to make the two fields have 
the same spatial distribution in a volume. 
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I. Introduction 

By duality we mean the symmetry in the Maxwell equations between the 

electric and magnetic fields and between other electric and magnetic parame- 

ters. This duality (as in Section 2) can be used to define combined fields, 

currents, etc. which are particular linear combinations of dual parameters 

E51. The combined field can be used to generalize the usual reciprocity and 

4 . 
e 

Poynting vector theorems [4]. It furthermore simplifies the consideration of 
the Babinet principle and the definition of complementary (dual) planar struc- 

tures 131. 

This paper extends the concept of dual electromagnetic structures to 

include devices intended to produce certain electromagnetic field distribu- 

tions. In particular we consider sources on a boundary surface S which pro- 

duce dual electromagnetic fields in the enclosed volume V. First, we consider 

the general dual equivalence principle involving both electric and magnetic 

surface currents on S. Then restricting our attention to only electric 

boundary conditions (potentials or electric surface currents) on S we find 

conditions on these for dual electric and magnetic fields in V. Explicit 
formulas are exhibited for special cases involving circular cylinders and 

spheres. 
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II. Dual Equivalence Principle 

Write the Maxwell equations in the combined-field form Cl] 

[v+$] o+q gq = qj Z J 

2 
q 

7 2 + qj Z. g (combined field) 

s z; +qj+ 
Q Z. Jh (combined current density) 

q = 4 1 (separation index) 

j = + Gi (unit imaginary) 

z. 5 F .(wave impedance of free space) 

- c =.q& 
(speed of light in free space) 

sj 
pq = p + z. ph (combined charge dens; ty > 

(combined continuity equation) 

(2.1) 



As in Figure 2.1 let there be some closed surface S 

(outward) 7, with position r’ taken as r’ on S. The 
S 

is taken as 

with unit normal vector 
boundary condition on S 

* 
/+ \ is(;,) x [iiex’(GiJ - iZ~‘“‘(fsj] = qj Z. ifsq(rs) 

3 
% 

(combined surface current density) 
(2.2) 

_ 

with ‘lex” meaning exterior and rrinlt meaning interior. The + and - subscripts 

on ;t s indicate limits being taken from the exterior and interior respectively. 

The interior volume is designated V. 

The field equivalence principle constructs a solution of the Maxwell 

equations of the form 

gq(G,t) = 
/ 

2iinc,(f.t) for r’ f V 
ij for r'C$VUS 9 - 

where ,+tinc) is any solution of the free-space Maxwell equations with no 
q 

currents (electric or magnetic) in the V S. This is a compact statement 

of the Love field equivalence principle for fields interior to a volume C61. 
Writing out the above boundary surface currents we have 

;linc) ; 
S ( ) 

s,t = - Ts ‘+s 
( 1 

x ;(inc) 
( 1 
; 

8 

yy;,,t) = qs) x W)(Gs,t) 

(2.4) 

:a 
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Figure 2.1. Dual Equivalence Principle 

In our discussion of the generalized Babinet principle, the concept of 

a complement or dual (designated by a prime) can be related to the original 

quantity as C31 

r’ 
q 

= - qjr 
(2.5) 

This shows the interchange of electric and magnetic parameters (duality) to be 
simply thought of as multiplication by the unit imaginary. Except for con- 

stants this shows that 

(electric parameter)’ - + (magnetic parameter) 
(2.6) 

(magnetic parameter) I - - (electric parameter) 
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Now take the dual of the field equivalence principle so that 

i 

$(inc)’ + 
~;(r’,t) = q, (r,t) for GE V 

0 for r’ &V 

;(inc)’ ; 
i 1 

s,t = $I i G 
s s ( 1 

x $(inc)’ 
( 1 

;t; 

% 
d 0 9 

(2.7) 

Zi(r’,t) = - qj Zq(rt,t) 

= - qj JLinc’(Fs,t) 
q 

Thfs says that if one interchanges the sources on S as 

jlinc)’ ;t 1 j(inc) 
S 1 1 $t = y- 

0 hs ( ) GSA 

(2.81, 
z(inc)’ ; 

hS 
( 1 

S,t = - z. 3y(s+s,t) 

The resultant fields are similarly interchanged as 

B*(r’,t) = z. d(r’,t) 

The fields are still zero outside S, but are the dual (or complement) of the 

original fields inside S. 
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III. Electrostatic and Magnetostatic Boundary Value Problems 

Instead of having electric and magnetic surface currents on the 

boundary we are normally dealing with electric currents for magnetostatic 

problems and electric charges for electrostatic problems. (Note that by use 

of electric dipoles and magnetic dipoles (loops) one can have both electric 

and equivalent magne.tic currents to approximate the required distributions for 

the field equivalence principle as in the PARTES concept Cl].) In the more 

traditional form of static devices, say for producing uniform electric or 

magnetic fields, fields are produced both inside and outside of S and only 

electric current or charge is used. 

For the electrostatic problem consider a potential function oe (O) (;). 

On the boundary surface we have 

This naturally divides into two problems 

,y (;) for r’EVlJS 

*Lex)(;) ‘for r’ $ V 

@(in) ;t = ,(ex) 3; = @CO) ; 
e ( 1 S e 0, S e ( 1 S 

The electric field is 

iz(r’) = - v e,(G) 

On S one can also specify the tangential electric field as the boundary 
condition as 

(3.1) 

(3.2) 

qGs) = itt(Gs) ’ i(Ets) = - vs”;o)(r+s) 

(3.4) 

is (9 is (9 = transverse dyad 
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where V is 3 
this form so 

has no assoc 

the surface gradient [I 01. Note that it is important that 2s take 

that it is associated with a conservative potential function and 

iated magnetic field. This is related to the fact that 

V x b(G) = - V x VQ,[r’) 0 6 for Gc$ S 
[ I 

(3.5) 

is gs . 
0 c 

OS x gs Gs ( )I = is(Gs) l [is x I,,y (G,)]] = 0 

For the magnetostatic problem consider two potential functions 

for ;t E v 

for ;& VUS 

(3.6) = 

These are not in general equal on S. The magnetic field is 

with the boundary condition that 

f&) l itps-) = is(;s) d$+) C.3.8) 

i.e. that the normal component of the magnetic field is continuous through S, 
and that 

T&) l [P)(sJ - Px) (q] = is&) x 3,(F) (3.9) 

i.e. that the tangential component of the magnetic field is discontinuous 

through S by an amount related to the surface current density. 
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As in Figure 3.1 consider some contour Ch, the boundary of Sh, and note 

li(r’) l dtn = 
J 

j(g) 9 i 
‘h 

dSh 

‘h 

= - l I is X ii( l dti 
i 

(3.10) 

Now the gradient of a potential function has zero curl, implying zero 

current. This requires the two potentials as in (3.6) for the two regions 

with no currents. In crossing S there is a discontinuity between the two 

potential functions 

(0) r’ Qh ( 1 s p Qh (in) (G._) - 0y ps+) (3.11) 

In traversing the contour Ch it is the discontinuity in the potential function 

which gives the enclosed current (since the contour integral of a gradient of 
a potential function is the difference of the potential between the end 

points). Hence we have 

= - $ [i#,) x  zs  (:s) l dzi] 

‘i 

The normal H’ continuity in (3.8) becomes 

i$,) l v(p) (q = i$,) l VP) Ps+) 

(3.12) 

(3.13) 
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\ vllnsidel 
i... .I ,... ::::&::: 1 .:...7:... 

Figure 3.1., Magnetostatic Boundary Value Problem 

. 
0 

l 
while the tangential H' discontinuity in (3.9) becomes 

vs%zy(;‘,) = Tt( ;s)  l [ , ,y  (Gs -) - os;eX) (bs+ j] 

(3.14) 
= is(:,) x Z,(;,) 

So this says consistent with (3.12) that the surface current density can be 

derived from the surface gradient of a surface potential function. Note that 
Cl01 

vs  l ; ,(s,) = vs  l I; ,(;,) x  v,~;“‘(iy] 

= 0 
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* 
a For a magnetostatic problem this zero-diver gence condition is required to give 

zero electric field. 

So we see now that both electrostatic and magnetostatic boundary value 

problems are describable in terms of a potential function on S or its surface 

gradient. While the boundary condition has the same general form there is an 

important difference. The electrostatic potential is continuous through S 

assuming the specified potential on S. The magnetostatic potential is 

discontinuous through S by the specified potential on S. 



IVl Comparison for Circular Cylinder 

In cylindrical (Y,@,z) coordinates we have 

x = Y cos(+) 

y = Y sin($) (4.1) 

The general form of a potential (solution of the Laplace equation) is [9] 

(4.2) 

+ a 
C 

o En(Y) + a;] b f a;] 

where continuity with respect to I$ for 0 5 cp I 2r has been assumed. This 

general form introduces the complication of the 

(modified), especially if 5 is allowed to vary. 

cylindrical Bessel functions 

For the special case of @ independent of z we hav;! 

9= 

c[ 

-m 
a e \J” + a’ e Y 

m,z m*O m9O I 

noting that for m=O only u=e is non zero. With 
orthogonality condition 

cos (ma) I i sin(m$) 

respect to 3 there is the 

1 

=Trl+ 1 
1 [ e,u 

-lo ,u ‘0,m 1 J ‘m,ml’O,rJ1 

f m u for m=m’, u=u’ 
t = 

0 otherwise 
(4.4) 

0 
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The gradient in cylindrical coordinates is 

m (4.5) 

Since @ is independent of z there is no electric or magnetic field in the 

z direction in the respective boundary value problems. The z component of 

the gradient is then not used. Only fields transverse to the z axis are 

considered. 

Let our surface S now be taken as a circular cylinder defined by 

Y = Yo. The electrostatic boundary value problem has potentials 

~(~“)(*,m) = C a 
m,z ’ 

m cos(m$) 

I i 
for 0 5 Y 6 Y e 

m,u 
sin(m$) 

alex)(y,e) = C’al Ymrn E?s[m,“i for Y. 5 Y 
e 

m, u m,g i I 

The boundary condition is 

p($) = @yyYo,,) = @;eXyYo4) 

. ,  I  

Q$) = - vsae 
_ -ad') ($1 

CO)($)) = I 7, g ;$ 
0 

Solving for the coefficients we have 

(4.6) 

(4.7) 

2iT 
a e yom=af ho-“=+ 

m,z 
@p) (4) (4.8) 

m90 
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The magnetostatic boundary value problem has potentials (using b for 

coefflcients) 

‘h (in) (‘P, 4) = c b e yrn 
my0 m,O 

for 0 5 Y < Y 0 

‘h 
(ex+,,$) = c b’ e Y-” 

m, u m90 
for Yo < I? 

The boundary condition is 

OS,?’ ($1 = T$$) l py (Yo- ,  $) 
- vpj Yo+ 9 4)] 

= i,(4) x jsCQ) 
I 

(4.9) 

(4.10) =< 

i$+) = i,(q) ip + iz iz 

where the z,z component of the transverse dyad does not enter the computation. 

Note the use of Y,+ and Y,- for positions just outside and inside S respec- 
tively. Matching the normal magnetic field through S gives 

b m,z Yom = - “;,g Yom (4.11) 
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The potential jump through S is 

o;~)(o) = c [bm, u Yom - “;, u Yom 
m, u 

] 

Solving for the coefficients we have 

2ll 
b e 

mso / 0 

(4.12) 

I co.2 cm+) 

1 sin(m@) i 
d9 (4.13) 

Comparing the electrostatic and magnetostatic problems let us suppose 

that 

l JO) e ($1 = @;O)(o) (4.14) 

Th,en ex,cept for signs arising from definition of the fields from gradients of 

the respective potentials we have 

Electrostatic 

23(o) 

*do) 
e 

(4) (across slot 

in z direction 

!?(Y,$) (everywhere 
inside S> 

Magnetostatic 

i,($) x 3p 

I (conductor (coil) in 
z direction) (4.15) 

s(Yy’,~$) (everywhere inside S) 
reduced to l/2 times 
electric field 
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This is a kind of duality showing that, except for a factor 2, the fields are ’ 

the same. if we imagine the electrostatic problem consisting of Y=Yo as a 

conducting surface with slots across which voltages are impressed, the dual 
problem is that of currents on conductors at the slot positions (with no other 

conductors on S) with the same relative value of currents vs. voltages. Note, 

the sum of the slot voltages around all closed contours on S must be zero (for 

a conservative potential), and similarly for the dual currents. 



V. Comparison for Sphere 

In spherical (r,EI,@).coordinates we have 

Y = r sin(a) , z = r cos(8) 
x = r sin(e) cos(~$) , y = r sin(e) sin(+) (5.1) 

The general form of a potential (solution of the Laplace equation) is [9] 

Q = CL 
n a 

n,m,E 
r +a’ 

n,m,E 
,-n-l 

n,m, u I 
Y n,m, u (0, $1 

noting that for m-0 only u=e is non zero. Here continuity with respect 
I~,I#I for all 4n steradians has been assumed. There is the orthogonality 
condition [2] 

lr 

ff 

2?r 
Y n m ,,(e,#) Yn, ,m,,u, (e,$) sin(e) d$ de , f 

9 0 

= *T! (n+m>! , + , 
*n+I (n-m) ! [ [ - ‘0,u 1 1 1 e,u 0,m ‘n,n’ 1 m,m’ 1 u,u’ 

i 

f n m u for, n=n’, m=m’, u=u’ 
= t , 

0 otherwise 

The gradient in spherical coordinates is 

(5.2) 

to 

(5.3) 

(5.4) 
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Let our surface S now be taken as a sphere defined by r=ro. The 
electrostatic boundary value problem has potentials. 

@tin) 
e (r-,6,$) = c 

a rn Y n,m, u 
n m IS(B,$) for 0 5 r I r 

, 9 0 
n,m, u 

,Cex) (r,Q,+) = 
c 

a’ ,-n-l 
e Y n,m,o n m o(6,$) for r 2 r 3 , 0 

n,m,u 

The boundary condition is 

@~“)(O,~) = GCin)(ro,8,$) = OLex) (ro,Q,+) e 

coj a&o+8 @> 
3p,$) = -vsoe ie,+> = -ie f e ae ’ -7 ’ ao~“+e,4) 

6 r sinte) ao 

Solving for the coefficients we have 

(5.5) 

(5.6) 

i. 

l 
n a = a’ -n-l 

n,m,u r. r 
ndw 

(5.7) 

“‘@) ‘n,m,u (O,$) sin(e) d$ dB 

The magnetostatic boundary value problem has potentials (using b for 

coefficients) 

(in) 
‘h b-,8,4) = 

c 
b 

n,m, u 
r” Y n,m,ut9,$) for 0 5 r < r 0 

n,m, u 

(5.8) 
Cex) 

‘h (r,e,+) = 
c 

b’ r-n-l 
n,m, u 

Y n m u(e,$) for r. < r 
, 9 

n,m, u 
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The boundary condition is 

4:‘)(4,@) = OAin’(r -,O,$) 0 - @~ex)(ro+,3,0) 

ir(O,Q) l V4Ain’(ro-,8,$ 
) = ir(e,@) l VQAeX)(ro+,O,$ 

i 

Vs@A0)(8,@) = i+t(f3,$1 l [V@Ain’(r -,e,+) - 
0 V@Aex)(r 0 +,,,I$)] 

= ip,+) x ?pJ,$) (5.9) 

it,(b$) = i&Lo) i&e,@) + 7$(9,@) io(4,“) 

* 

Note the use of ro+ and ro- for positions just outside and inside S respec- 
tively. Matching the normal magnetic field through S gives 

b n 
n,m, u nr =-b’ 0 n,m,a (n+l ) rDn-’ 0 

The potential jump through S is 

b n r n,m,u 0 - b’ -n-l r n,m,a 0 I 
Y n,m, ,(e,@) 

z c 2n+l b 

n,m, u n+l r “Y n,m,u 0 n,m, CJ(~“) 

(5.10) 

(5.11) 
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Solving for the coefficients we have 

b 
n r z - b’ -n-l r 

n,m,u 0 n,m,u o 
(5.12) 

n+l 1 
=2n+lf*mu , 9 

(0) Qh (0,$) Y n m o(e,$) sin(e) d$ cl0 
, , 

Comparing the electrostatic and magnetostatic problems let us suppose 

that 

*;“)(,,l$) = pw) (5.13) 

Then except for signs arising from definition of the fields from gradients of 

the respective potentials we have a difference between the two solutions in 
that the magnetostatic terms are reduced from the electrostatic terms by a 

factor &+. 

Let us now change the assumption and require 

@~)(B,$I) = C. s a r n,mtu 0 “Y n,m, cr(eY+) 
n,m, u 

c5.1q1 

with an m u 
(0) as in (5.7) to define Oh (e,$) in terms of Cp ;“+e,$). Then we 

I , 
have 

b =a 
n,m,u n,m,u 

@h ‘in)(r,O,$) = 4’in)(r,e,$) e 
(5.15) 
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and we have 

Electrostatic 

p 
e (e,a) 

@,O) 

Ao(“he,~) e 
(across slot 

around S> 

fi(r,e,@) (everywhere 
inside S) 

Coefficients 
related by 
(5.7) and (5.13) 

Magnetostatic 

I (conductor (coil) 
around S) 

(5.16) 

fi(r , e, 9) (everywhere 
inside S) 

Note that the construction of slots in a spherical bowl or current loops on 

a spherical surface must be such as to preserve conservative potentials. 

It should be noted that these observations can be used to resolve a 

problem in the relating the designs of spherical devices for producing uniform 

electrostatic and magnetostatic fields near the coordinate origin r= . ‘8 The 

desired uniform field is that given by 

n-l , m=O, u=e (5.17) 

for which 

@(in) 
e ideal 

(r,0,$) = an o e r cos(B) = an o e z , , t 1 

(ex) 
‘h ideal 

(r-,8,$) = bn o e r cos(8) = bn o e z , , , 9 
(5.18) . 

;(in) ideal(r,9,$) = V@kin) 
ideal 

he,+) = bn o e iz , 1 
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Now the design problem is to make this the only n=l term (easily achieved by 

rotation symmetry with respect to the z axis, the C, group). For higher order 

n the idea is to make as many as possible for n = 2,3, etc. to be zero with 
emphasis on the smaller n. 

This problem has been solved for the magnetostatic case. There are the 
well-known Helmholtz (2) and Maxwell (3) coil solutions CSI. This has been 

generalized to an arbitrary number N of coils [71. In these cases the coils 
are at constant values of 8 on the spherical surface (rotation symmetry with 

respect to the z axis) and are symmetrically located (with symmetrical cur- 

rents) with respect to the x,y plane. For N coils there are N values of 0 

and N-l currents to specify (one current being arbitrary and scaling the 

solution). This allows one to set,terms n=2 through n-2N to zero. One can 

think of this as setting the first 2N-1 derivatives of the magnetic field to 

zero at the origin. 

For the electrostatic problem let there be slots at the same 9 values 
with voltages across the slots corresponding exactly to the currents in the , 

dual coils. Then for n=2 through n-2N the coefficients a,,, d are zero 

precisely because the corresponding bn,m,(J are zero. The fa6tor of &r 
does not enter, being multiplied by zero. It does not matter whe.ti?er we 

relate @Lo) (9, $1 to 4:” (!,$I) directly as in (5.13) or term by term as in 

(5.14); the terms for n=2 through 2N are absent. The only difference is the 
trivial one for the n=l term for which the bl C e , 3 is reduced to 2/3 of a, C e , , . . 
if (5.13) is used, or no difference if (5.14) is us,ed; this is merely an over- 
all scaling factor. Of course the numerical coefficient of the n=2N+l term 

will be in general different if (5.13) is used which results when the slots/ 
voltages are made to correspond to the coils/currents. 

A recent paper solved the problem of the 2 slots in a bowl and noted 
that the optimum solution corresponded exactly to the Helmholtz coil’C21. 

One can obtain a solution for 3 slots (T.B.A. senior, private communication). 

Comparing this to that of the Maxwell coil t83 one can’note the exact corre- 
spondence. Now we have found that the situation is dual (exact correspon- 

dence) for all orders N. 

22 



. 

VI. Concluding Remarks 

Here we have extended somewhat the concept of duality to the require- 

ments for sources on boundaries to give dual fields in some volume V. The use 

of electric and magnetic surface currents give a direct duality in the form of 

the dual equivalence principle. 

If, however, we restrict ourselves to the situation where the electro- 

static problem involves specifying potential (or tangential electric field) 
on the surface S, and the magnetostatic problem involves specifying surface 

current density on (or potential jump through) S, then the problem is more 

complicated. Depending on the shape of S (particularly if S is a surface in 

a coordinate system for which the Laplace equation solution separates) one can 

construct dual boundary conditions in the sense of giving the same electric 

and magnetic field distributions in V. Various coordinate systems (such as 

prolate spheroidal, oblate spheroidal, ellipsoidal, etc.) might be used for 

this purpose [91. For more general shapes it may be possible to construct 

the dual boundary conditions numerically. 

: ._ -c 
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