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Abstract

This paper considers the situation in which the individual wave launchers in an array are long com-

pared to their cross-section dimensions. A two-wire (plus reference) transmission-line model is formulated

applkable to symmetrical in-line wave launchers. The flat plates of the launchers are chosen such that a

paflicular form of the characteristic-impedance matrix is realized. l%is leads to an analytic solution for the

early-time propagation on the wavefront. From this one finds the transmission and reflection of the wave-
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front of the aperture plane.
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1. Introduction

In synthesizing an electromagnetic wave one can establish the required tangential electric field for

the desired wave (satisfying ihe Maxwell equations) on boundary surfaces [1 ,3]. in practice the source

surface is composed of some set of sources, each sounx involving a set of conductors connected to

switches and related hardware. Each source occupies a pofiion of the surface. For wavelengths large

compared to this portion (low frequencies) the discrete nature or granularity of the source surface is not

significant.

At high frequencies, for which wavelengths are small compared to the portion of the source surface

assigned to an individual source, the picture is somewhat dfierent. As discussed in [2,4] one can

construct each of the sources as a conical wave launcher. Summing the early-time contributions from the

sphericai TEM waves in each launcher one can find the behavior of the early-time or high-frequency field

far from the source array. For simultaneous step-function excitation of the individual launchers the wave

propagating normal to an infinite planar array rises as a ramp function. Comparing to the late-time constant

field a characteristic time tl can be defined for the rise of the distant wave.

His observed in [4]that as the length lof the conical wave launcher is increased (for fixed dimen-

sions 2a x 2b in the aperlure plane) tl +0. However, as I becomes large compared 10a and b there is an

interaction between the adjacent wave launchers before the wave can reach the apenure plane. This a

interaction can produce signals from one launcher coupling into a second launcher and arriving at the

aperture plane very soon behind the initial wave (in a time short compared to a/c and b/c for sufficiently

large J?).

This paper considers a transmission-line model of the coupled wave launchers. This is valid for the

wavelength A>> a,b. if in turn 4>> A, then a transmission-line model should yield useful information.

In [5] the high-frequency behavior of nonuniform multiconductor transmission lines in uniform media

(such as free space) is considered. This leads to formulae for the propagation of a wavefront on such

coupled transmission lines. This has to be interpreted as being limited in that the launcher cross-section

dimensions 2a and 2b are assumed electrically small for present calculations.
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0 Il. Problem Definition

As indicated in fig. 2.1, we have a symmetric conical wave launcher of height 2b, width 2a, and

length 4. There is an aperture plane on z = Oand the wave is launched from a theoretical apex at ? =

(0,0,.1)where the coordinates are

?=(x, y,z) (2.1)

Now the wave launcher on some intermediate cross-section plane -4 c z c Ohas edges at x = tat, y =

~b expanding to x = *a, y = a at the aperture plane. In the illustrat”~n the edges expand in proportion

from apex to aperture plane so as to form straight lines. However, let us allow for our transmission-line

calculations that a’ and b can be chosen in a more general manner so that the edges may have more gen-

eral curved shapes, In general the plates need not be flat either, but for present calculations they will be

chosen to be flat so that b’ is proportional to the distance from the apex.

On each intermediate cross-section plane the array of wave launchers looks as in fig. 2.2. Here the

in-line configuration is chosen. Conveniently, the symmetry of the problem has electric boundaries on the

constant-y planes midway between launchers and in the center of the launchers as

y= mb = electric boundaries

(2.2)

m= O,tl,&,,..

These electric boundaries have electric fieid normal to them, and are used to define voltages in the

transmission-line approximation. Similarly, we have magnetic boundaries on constant x planes as

x = na = magnetic boundaries

(2.3)

n=(), kl, ~,...

These magnetic boundaries have magnetic field normal to them, and are used to define currents in the

transmission-line approximation,

Further note that a wave launcher, say the central one, occupies the space

-asxsa

(2.4)

-b SySb
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Fig. 2,2. Cross-Section Plane and Unit Cell for In-Line Configuration (J! cz e O)
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bounded by these electric and magnetic boundaries across which no energy flows. The rest of the array is

replaced by these boundaries as in (2.4). In this unit cell (orI some cross section) by symmetry we have o

voltages *VI on the two planes and *V2 on the two electric boundaries. The potential difference

between the two plates is 2 VI. On the top plate current /1 comes out of the page and on the bottom the

current goes in. On the top electric boundary (underside) current /2 comes out and goes in on the bottom

magnetic boundary (topside). Noting that 2 VI and 2 V2 are the appropriate potential differences for use in

the transmission-line equations we have for a wave propagating in the +Z direction

(Wl, 2VJ = (Zcn,m) (’I* ‘2)

?~.lm)=z”(’g.lm) (2.5)

JPO
Z*= — = characteristic impedance of free space

‘o

Note that for a nonuniform transmission line we can think of this wave propagating in one direction in the

high-frequency limit as in [5].

()The geometric-impedance-factor matrix fg is dimensionless, has non-negative eigenvalues,
n, m

and is also used to calculate ●

= inductance-per-unit-length matrix

(2.6)

(c~lJ=’0(’9.J
= capacitance-per-unit-length matrix

This can be calculated by considering one-quarter of the unit cell in fig. 2,2 by use of the electric boundary

on y = Oand the magnetic Eoundary on x = O. This cuts the voltages and currents in half for the quarter cell

so that (2.5) is replaced by

(v,, q =Zo(fgn,m)[:, 4
(2.7)

with the geometric-impedance-factor matrix unchanged.
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As in fig. 2.3 the quarter cell is exhibited with the voltages and currents as in (2.7) except of a rever-

sal in the currents as the wave is propagating in the -z direction: Setting /1/2 = Oand driving the outer

electric boundaries gives a uniform field in the quafier cell (noting the presence of the two magnetic

boundaries). This allows us to find two components of the geometric-impedance-factor matrix as

fg .+
2,2

Applying reciprocity gives

(2.8)

fg =fg =%
2,1 1,2 (2.9)

This leaves fgl , which is determined by setting /2/2 = Oand finding the ratio of VI to the current /1/2 as

in fig, 2.3. One of the dimensions a,b,a’,b’ can be used to normalize the results (as a in (2.8) and (2.9))

giving fgl , as a function of three parameters.,

Collecting we have

f

( )[9
fg = ‘“

n, in b’
x (2.10)

Define a normalized form of this as

(2.11)

F .Z!. f
1,1 b 91,1

This is in general a function of position z along the transmission-line (2 conductors with reference). Let us

define a normalized coordinate as

●
~=;+l

\ so the wave propagates from (= O(the apex) to (= 1 (the apefiure plane).

(2.12)
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Fig, 2.3. GMarter Cell Driven at Some Cross Seotion with No z-Variation of Dimensions
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o 111.Special Case

As a special case let us choose

(3.1)

This corresponds to

b’—=
b c

(3.2)

in which the wave-launcher plates are flat, starting with zero height at ~= Oand filling the full height of the

unit cell at <= 1. The choice of

~l,l(r) = ;fgl ,=1

o is the simplest choice as a constant and makes a’= a at the aperture plane so that the wave launcher

occupies the full width at the aperture plane.

Note that

$(%! m(~))=(: 0

(3.3)

which is a constant matrix, simplifying matters somewhat. In (3.1) the off-diagonal elements ~muld be

replaced by some function of ~which would introduce the derivative of this function in (3.4) as a scalar

multiplier; such a case is not much more difficult than the present one. If, however, one makes F1,1 a

function of J (instead of (3.3)) there are significant complications.

(3.4)
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IV, Matrix Differential Equation

As discussed in [5] the high-frequency propagation on a nonuniform multiconductor transmission

line is given by

(4.1)

where the voltage vector is taken here in retarded time and interpreted as the discontinuity across a step-

rising wavefront. The boundaty condition at ~= Ois

(Vn(o)) = V*(1 , 0)
(4.2)

which indicates a step rising vottage of amount VOon the wave launcher, The second e!ement (i.e., O)

indicates that initially V2 is zero at ~= Osince the height 2b’ of the wave launcher is zero at ~= Owhich

does not influence V2 across the corresponding height 2b between electric boundaries. As the wave

propagates along the wave launcher V2 increases from zero.

Now (q$n,~o) satisfies a differential equation [5]

+(%,rw)= (%, W) “ (@”,fn(c))

(An, fn(~)) ‘{*(zCn,~(())]”~cn,~(g))
(4.3)

(‘“.l~(g))=rc.m(g)r’=zo(’~.lm)
=%’0(%,mu))

= chamteristii impedanm mattfx

●

Note that z has been replaced by the normalized distance J. In integrating the above it does not matter if

we use d~or dz as it merely mrresponds to a change of variable. Similarly, d~could be replaced by df(~ if

f(~ is monotonic and continuous in ~. This corresponds in (3.1) and (3.2) to a more general shape of the

wave launcher. In addition, if f(0) = Oand f(l ) = 1 the same solution at ~= 1 will result.

‘o
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Noting that

q(~n, J 0)) =1- {2

which is nonnegative, we have

(~n,m(o)-’=[1-?]’(’, ;’)

This gives

(‘n m(r))‘j[$(Fn,fn(~))]”(F”, ~(~))-’

=;[l-<’l-’(:;)(’C;’)

=$-r21-’&~)

(4.4)

(4.5)

(4.6)

Since one of the two matrices in the last result is the identity, the two matrices commute.

This allows us to write the matrizant solution [5] as

(4.7)
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where the integrals are found in standard tables [6]. The exponential matrices are evaluated using the

series representation of the exponential. First we have

()
91(~ )(: :) 9;=) 1 0

e = e

1
zs[l_f;(’)10

01

{4.8)

Second, noting

9

t :r’c:) (4.9)

then in the series expansion of the exponential the even terms are all sca!ars times the identity, and the

odd terms are all soalars times this other simple matrii giving

92(r) - q~ )

()
92(4 ) -92(~)

e +e 10=
()

+e ‘e ;:
2 01 2

‘89!’)[I+e-g:’)tl3
1 i

=HilWin-l:)
Multiplying out the terms the matrizant solution is

12
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Applying the boundary condition at g= Ogives

(Vn(~))= (@n, m({)) “(vn(o))= ‘~($n,m(~)) “ (1,0)

!

1 1

s: [1+ 4]5(1,1) +[1-;]%(1,-1)
1

(4.11)

(4.12)

At (= 1 this gives

(Vn(l))=*(1, o

0
(4.13)

so that VI and V2 are hth V./ V. This is consistent with the fact that the wave launcher plates meet

the electric boundaries on y= *LJat ~= 1 (i.e., z= 0).
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V. Power Considerations on the Wavefront

The power just behind the wavefront on the quader cell”is

~ = (V”(C)) “ (~~n(c))=(~n(c)) “~cn, #)) “(~n(0)

{~ -’[l-L’T’f_{ ;J)}.(v”[c),‘(Vn( cl) “ b ‘~

=:Z:[I-C2T’[V;-2;V1V2+~:]
-1 1 1

4 1[[
o_

:::’ c

2
=—

1
[1+ g]z+[l - g]=

o

[

1 1

1[

1 1’

-2< [1+/+ [1-(]= [l+(]Z-[1-(]2

.:$- C27{4-4C2}
o

V2
= f+ * function of <

0 (5.1)

So power is consewed along the wavefront as it should be, since in the high-frequency limit there are no

reflections along a smoothly varying multiconduotor transmission line, and the line is lossless.

At g= Othe power is all associated with the wave launcher sinoe V2 and 12/2are both zero. At ~= 1

the situation is more complicated. As illustrated in fig. 5.1 the boundaty condition there is visualized.

Noting that the incident wave has (from (4.13))

V.
-—

“= ‘2– & (5.2)
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Fig. 5.1. Transmission of Wave Through Aperture Plane
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The associated incident currents are

which gives the total current

J;c) /(0
—+*

2
= :2;’[1+ (]-’(v,(c) + V2({))

Taking the limit as ~ -+1

/1 12
—+—=
22 :2=(VI+ ‘2)= ;~~

o

Note that this matches through the interface since

(5.3)

(5.4]

(5.6)

which is the impedance of the wit cell for z >0 where the wave launcher has merged with the electric

boundaries (top and bottom) to form an effective single conductor (plus reference) transmission line with

only one mode of propagation, So Kirchoff’s laws are satisfied at the apetiure plane,

As the wave launcher reaches the aperture plane the wave for y between Oand d is effectively

shielded from that between b’ and b. The power in this “primary” wave is just

V2 V2
P,=++ ;P

o 0 (5.7)

i.e., half the total incident power. This matches through the aperture plane consistent with (5.2) and con-

tinuity of voltage. The remaining power in the “secondaty” wave is o

16



P2=P-P=~P=P1
12 (5.8)

This additional power is trapped between the wave launcher and the electric boundaries (i.e., between b’

and b). Note that at the aperture plane a’ + a allowing no “leakage” into the region of the primary wave.

This secondary wave is refleoted in the -z direction.
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Vi, Concluding Remarks

Considering the character of the solution in this special case some obsewations are in order. First,

this forms a canonical case for which an analytic solution (for the early-time response in the transmiss!on-

Iine approximation) is available. It is not necessarily the best choice for the wave launcher shape, but one

to which others can be compared.

A more optimal shape might be one with

o< f <k
%,12 =-4 a (6.1)

so that for a given VOmore power is launched to compensate for Ihe reflection at z = Oand make the volt-

age of the wave transmitted through the aperture plane closer to VO(as compared to the present case of

V. / V). As positiin is varied from z = -1 to z = Oone can have

with smooth variation in between.

(6.2)

o

[t would also be useful if one could suppress the reflection from the aperture plane since this can

partially reflect from the source at z = -J. Noting in fig. 5.1 that near the aperture plane the secondary wave

(between b’ and b as well as -b’ and -b) is effectively isolated from the primary wave. Then one may place

some absorber material in the space occupied by the secondary wave with minimal impact on the primary

wave. This, however, will Iikeiy only partially remove the secondary wave.
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