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Abstract

In transitioning a sinusoidal electromagnetic wave from source to radiating

antenna a conducting waveguide operating in the lowest order H mode is often

used. This waveguide can be optimized for its power handling capabilities.

As a common rectangular waveguide the HI ~ mode has geometric properties
9

which allow E-plane subdivision into some number of rectangular guides. This

in turn allows convenient division or recombination of electromagnetic waves. s:.-.-,

This concept is extended to pyramidal horns which can launch the waves from

one or’more waveguides. The E-plane subdivision can be used for designing a

metallic grating which allows passage of the wave while mechanically support-

ing a dielectric sheet separating vacuum from gas regions.

sinusoidal electromagnetic waves, conductors
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1. Introduction

This paper considers some of the aspects of waveguides for transmitting ●
eleck.romagneticwaves from one or more sources to one or more horns for con-

structing a radiating electromagnetic wave at the aperture plane or array

surface (for an array of horns). Such a waveguide/horn system can be an

integral part of a source/antenna system such as discussed in [1].

Beginning with a review of the modes in a perfectly conducting wave-

guide the power handling capability is considered. Constraining operation

to the lowest order mode (an H mode) a dimensionless efficiency factor is

defined. Paying special attention to the usual rectangular waveguide the

various parameters are discussed for the HI ~ mode.
Y

Concerning the lowest order H mode of a perfectly conducting waveguide

it is possible to place perfectly conducting sheets which do not interfere

with this mode. For the rectangular waveguide these sheets are planes. These

can be used to divide the HI ~ mode of one waveguide into the same mode of
*

several rectangular waveguides but with a smaller height-to-width ratio.

Alternatively the same technique can combine the waves in several waveguides

(aS from several sources) into one waveguide provided that the amplitudes and
o

phases of the several waves are properly matched into the single waveguide.

Expanding the waveguide into a horn (a conical waveguide) the electric

field can be reduced to go from a medium of high dielectric strength (such

as high vacuum) to a lower strength medium”(such as air or some other gas).

Noting the electrmnagnetic field distribution in the lowest H mode as in the

waveguide similar conducting sheets can be placed in non-interfering positions

in the horn. One use of these is as a metal grating to support a dielectric

pressure barrier between high vacuum and some gas (such as air or a special

high-dielectric-strength gas). Expanding this special grating back into the ‘

throat of the horn the conducting sheets can be modified via corrugation to

give a slow-wave character to the waves passing between the sheets and thereby

form a lens to modify the phase distribution on the horn aperture.
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II. Modes in Closed Perfectly Conducting Tiaveguides

The basic theory of closed conducting waveguides is now summarized

following [3]. As in Figure 2.1 we have a rectangular coordinate system

+
r = (x,y,z) (2.1)

where the waveguide

section surface (on

tangent vector ic.

with ?
c

x iz as the

cross section is independent of z. Designate the cross-

the z = O plane) as S with outer boundary C oriented with

The unit normal to S

is = iz (2.2)

outward unit normal on C.

The modes come in precisely two kinds (no hybrid modes as on an open

dielectric waveguide). For the H (or TE) modes we have a real valued scalar

‘Wction ‘h,~
satisfying a two-dimensional Helmholtz equation

[v: +k; J $h Jx,y) =0
9 Y

(2.3)

[Tc .iz] ● Vt +h, B(X,Y) =0 on C

B = mode index set

‘he ‘h,~
are real-valued cutoff wave numbers [2]. The fields take the form

*Y

H ‘h,Bz
‘k;,Be ‘h,@(x,Y) (hence an H mode)

‘h,@

*Y

i =kY
‘h,i3ze

‘t ‘h,8
(X,y)

‘h,8 ‘h,B
(2.4)

*Y z

it ix?it
‘h,% T

(X,Y)
= *zh,13 Z

=spe
h,~ h,~

o z x ‘t ‘h,~
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Figure 2.1. Cross Section of Closed Perfectly Conducting Waveguide
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o
Here a subscript *ltt~indicates the transverse part. Various other parameters

are

Y=-+ (free-space propagation constant)

Jv
Zo=$ = 377Sl(free-space impedance)

o

c= 1

d
=3X10’+ (free-space propagation speed)

uoco
(2.5)

yz = y2
+ ‘;,6

= Y2 - kz
‘h,8 ‘h,~ “B

Sp
o Y.— .

‘h,~ Y-
— Z. (modal impedance)
Y-

In terms of the jw axis (u real) we have

Y =jk , s = jw , k =-$

Y = jk (guide propagation constant)
‘h,fl ‘h,@

k ‘k ‘h,~ (guide wave number)
‘h,~

1

‘h,@ ‘~’’’h,~ = A (cutoff frequency)
‘h,6

(2.6)

‘h,8 = ~ (cutoff wavelength)
‘h,@

5



.

For the E (or TM) modes we have a real valued scalar function $
e,fi

satisfying a two-dimensional Helmholtz equation

[v:‘k;,B] !Je &f) = O
9

(2.7)

$~,+x’Y) = o on c

Again the k
e,13

are real-valued cutoff wave numbers 12J. The fields take the

form

~y z
z

E= =kzee’fi$
e~e ~,B(x,Y) (hence an E mode)

e,fl

*y z
z

$ =kY z e “B Vt lJe,B(x,y)
e,B e,B

tY_ z

i%t =TY ix$t =-see ‘e$B ?
e,fi z o x ‘t ‘e,fl(X,Y)e,~ e,B z

Various other parameters are

yz = y2 + yz = Y;
e,~

- k2
‘epfi e93 e,f3

SE

Y
o Y.— =

e,tl Yz — Y.Yz (modal admittance)

e,$ e,~

(2.8)

o

(2.9)

.“,

Y. = Z;l (free-space admittance)

In terms of the ju axis we have

6

...—.=.... ——.—, ,— —



o Y= = jkz (guide propagation constant)
e,6 e,~

%A-(%4T<1‘or 04<1

(2.10)

kz =k~ e,~ (guide wave number)
e,~

f
1

= 4 (cutoff frequency)
e,~ ‘X”e,6 Ae,6

a = ~ (cutoff wavelength)
e,kl k

e,~

As shown in [3] there are a set of mode orthogonality conditions which

we summarize as

f

$$ dS=O
‘1 ‘2

;[’t K,] ● p, *v2]ds = o

{[ Hizxit*v”izxvt~v
1
dS=O

s 1 2

Jl
iz x vt Ov,1“[Vt‘v21ds = 0

s

(2.11)

v= ():,6 = index set designating any mode (E or H)
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These results apply for any combination of modes with the sufficient condition

k $k for VI * V2
‘1 ‘2

(2.12),0

Now while this is a sufficient condition there are many cases of waveguides

involving symmetrical cross sections where the degeneracy of equal cutoff wave

numbers for different v1
and V2 does not lead to exceptions to (2.11). So it

is known that (2.12) is often not necessary.

8
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o III. Pwer in Uaveguide Modes

The peak power in a waveguide is

P= f[ ixi*]”izcis
s

=2P
avg

Pavg
G average power

where we have chosen the mode to be

z=O for the integration. Also with

than the cutoff wave number. For H

contribute and (2.4) gives

(3.1)

propagating in the +Z direction and set

s=jw we have assumed that k is greater

modes only the transverse components

Vt *h ~, (X,Y) I x [v IJt h +x,y)]i “ 72 dS
9 f

(3.2)

Similarly for E modes we have from (2.8)

P =k2YoC
J/

[vt Ve ~(x,Y)l x [72 x Vt Oe ~ ~e,~ e,fl s * , (x,Y)]~ ● iz dS

=k2Yo~
fe,6 s \v $t e ~(xJY)12 dS9

(3.3)

Alternate expressions can be found using the relation valid for both

H and E modes [3].

fl Vt $v(X,y)\2 dS
s (3.4)

= k’
f

$: (X,y) dS
‘s
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Iv. Power Handling Capability of Uaveguide in

Now let us consider that the waveguide is

order mode, an H mode. Let the subscript 1~011be

for this mode. Now we have k > k. for this mode

Lowest Order H Mode

being operated in its lowest
o

used to designate parameters

to propagate. As frequency

is increased other modes can also propagate. Let the subscript 111”be used to

designate frequency/wavelength parameters for the next mode (or modes if more

than one have the same cutoff frequency). Then to operate in the lowest order

mode we have

k. < k < kl

f. < f < fl (4.1)

10 > a > Al

Let us define a relative bandwidth for the lowest order mode as

J ‘1 ‘O
‘f fo”q=q

(4.2)

One measure of waveguide optimization is the maximization of this relative

bandwidth, such as for communications purposes. It is known that the lowest

order mode is an H mode as is the next mode, so only H modes need to be

considered to determine both k. and k, [2].

From (3.2) the power (peak) in the lowest order H mode is

P. =k2ZoL JI Vt $o(X,y)12 dS
0s

~ Y*[()]kGo” 1 - +

From (2.4) we have the maximum electric field magnitude on S as

(4.3)

(4.4)

o
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Defining a normalizing power density as

~2

P. ~“=—
0

(4.5)

The power can be normalized to give an effective guide area as

P
Ao=~= [1max Vt $O(x,y)l

]-’~o~ IVt $o(x,y)12dS
o s

(4.6)

For some specified peak electric field E. (related to breakdown) then

A. PO gives the power handling capability of the guide (peak, not average).

In maximizing A. note the geometric part involving $.. There is also a

frequency part contained in Go. For a given waveguide size and shape we can

maximize go subject to (4.1). Taking the limit as k+kl we define

(4.7)

Al = ~:X IVt $o(X,y)l]-2 c1 ~lVt $o(X,y)12 dS

Now Al is only a function of the size and shape of the waveguide via $0 and

‘1”

We can define as associated effective length which we wish to maximize

as

Noting a frequency/distance inverse scaling

as
f, 21 !tI

1-1,a— .—
c ‘1

(4.8)

define a dimensionless parameter

(4.9)

For a given desired operating frequency f,

o

we wish to maximize 11 to maximize

the power handling capability of the guide in its lowest mode.
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Combining the above results gives

. 2T
[1 ]{J 1

g
max Vt $O(x,y)l

AIAO ~

-1 ~1
$:(x,y) dS

s

(4.10)

2TrIlf

]{f
1

y

[1
-1

= a; max Vt Vo(x,y)l
c1 s $J:(x,Y)dS 2

s

as several alternate forms of this dimensionless efficiency factor. Maximiz-

ing n, optimizes the shape of the waveguide cross section for maximum power

handling.

In some cases the electric field E. for breakdown may be more important o
on C than throughout S. For example, under sufficiently high vacuum condi-

tions one is concerned about field emission from the waveguide walls. Then

one can replace

max IVt Wo(xJYJl~max IVt $o(x,Y)l
s c

(4.11)

in the previous formulae. To distinguish this case n, might be replaced by

n;.
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o
v. Rectangular Uaveguide

As a common example consider the widely used rectangular waveguide as

exhibited in Figure 5.1. Let the guide be described by

(5.1)

Following [3] the H modes have

$h,n,m = Cos
(y) co, (~)

(5.2)

n = 0 ,1 ,2,3,...

m = 0,1,2,3,...

but not both n = O and m = O

21T.— .
‘h,n,m kh n m 2[(:)2 + (:)’]-~

$s

The lowest order H mode is the HI o mode for which
*

‘h,l,O = 2a

$ ()
ITX

h,l,O = ‘Os ~

‘t ‘h,l,O = - ~ sin ()
TX

ixr

(5.3)

Then it has only an x canponent and it has only a y component, both with the

sine variation as above going to zero on the side walls.

13



b

/
/

/
/

/ 1.————.

/
/

/$

l——.

-/—

——— ——-

‘\
\

\
A

——.

‘\ \

1\\\————1

J+j,o MODE

Figure 5-1. Rectangular Waveguide Cross Section and Lowest
Order H Mode

o
14

.. .



Similarly the E modes have

$ e,n,m
= sin(~) sin(~)

n= 1 ,2,3,...

m=l ,2,3,...

A =42[(; )2 +(:)21-Ze,n,m k
e,n,m

= ‘h,n,m

Traditionally the rectangular guide is constructed with

b=$

This gives cutoff wavelengths for the next few modes as

‘h,2,0 = a

‘h,O,l = a

(5.4)

(5.5)

(5.6)

A .==
e,l,l = ‘h,l,l ~

.89a

For a given width a (and hence 1~ , o) the height b has been chosen as in

(5.5) so that b is maximized with;u; making Ah o , (=2b) any greater than
?9

‘h,2,0” For this choice we have

~ ‘h,l,O = ~=2
‘f

‘h,2,0 ‘h,O,l
(5.7)

This gives the maximum relative bandwidth for the lowest order mode of a

rectangu~ar guide.
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For this lowest order H, ~ mode with (5.5) we have
*

= max lVt $O(X,Y)I = ~max lVt $o(X,y)l ~
s

J~v~$O(X)Y)12 dS=
s

b (:)’\a S,.2(%) ‘x
o

This efficiency

waveguide cross

wzba.
()z-z

A* =2a, i1=a

[1

fig

‘1=%=7 = .465

can serve as a standard for comparison to o~her shapes of

section.

o

(5.8)



o VI. Placing Perfectly Conducting Sheets in Waveguide Cross Section without
Interfering with a Particular H Mode

For various purposes one may wish to place conductors in a waveguide,

or its extension as a horn. This is applicable to merging and dividing

waveguides and for mechanical strengtheners as we shall see later.

Consider the modes as discussed in Section 2. Note that the E modes in

(2.8) have both an E= and an it and that these have different distributions

over S. One might place a conducting wire on some cross section (at a par-

ticular z) with this wire orthogonal to Vt We ~(x,Y) fOr some eth mode of
9

interest. However this wire cannot in the general case be extended in the z

direction to form a conducting sheet without interfering with this same Sth

mode. To avoid this the sheet must be placed on a COntO~ where VJe,Bis zero

and this contour must also be orthogonal to Vt We ~ (parallel to ?2 x V
$ t ‘e,i3)

on S. There can be special cases of this (such as the E. ~ rotationally
9

symmetric modes of a circular waveguide) but this is not the usual case.

Now the H modes are a different matter. As in (2.4) there is no Ez.

Thus we only need to consider ;t.

o

Then conducting sheets can be extended

arbitrarily in the z direction. In the transverse sense these conductors can

follow contours on S that are perpendicular to ~z x Vt Oh ~, or equivalently

parallel to Vt *h ~. Note that this direction can be exp;essed as a real-

valued vector sin;e the v
h,~

can be expressed as real valued functions on S.

To see this note that with real-valued k: ~ then (2.3) is satisfied by both

‘h,@ and $:,8”
Adding the two Helmholtz ~quations shows that the Helmholtz

equation is also satisfied by Re[$h ~1 (and Im[$h ~1 as well). So Re[$h ~]

can be used as the mode (or any com~lex constant ;imes Wh ~ for that mat;er).
9

+
‘ote also ‘or ‘he ‘h,~ ‘ode ‘hen ‘t is parallel to the conducting sheet

as is H This is another way of looking at the boundary conditions at the
z“

conducting sheet inserted in the waveguide. There can be no normal magnetic

field at a perfect conductor.

As an example consider the rectangular guide as in Figure 6,1, In the

10westorder‘1,0
mode the electric field is purely vertical and the magnetic

field is purely horizontal (including the longitudinal part) as indicated in

Figure 6.1A. The variations of the fields is independent of y with sine vari-

ation with respect to x for the transverse fields as in Figure 5.1. The lon-

gitudinal Hz has a cosine variation with respect to x (see (5.3)).

17
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Figure 6..1. Division of Rectangular Waveguide Operating in HI,0 Mode o
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In Figure 6.1A N-1 conducting sheets are added on planes of constant y

within the waveguide. This gives N waveguides, the heights of which sum to b,

and the widths of which are all a. Now as in Figure 6.lB let these sheets

begin on some cross section to divide the one waveguide on the left into N

waveguides on the right. Then one can make each dividing sheet become two

sheets which are gradually separated so that N separated waveguides are

formed.

lf ‘he‘1,0 mode is propagating from the left, it ,dividesinto the

H1,0 modes of the N waveguides, the power in each guide being proportional to

its height. If desired each of these N guides can be gradually expanded to

the usual height of a/2 for lower losses. This type of matched power divider

might have various applications, such as to feed an array of N radiating

horns.

Conversely, one can have N waves propagating from the right in the

‘1,0 modes of the N waveguides. Provided the fields arrive at the cross

section where the N guides become one and the fields match between adjacent

guides then one HI o mode propagates out to the left. This requires that

o

s
not only the amplitudes, but phases as well match at this cross section. For

simplicity one might have the heights of each guide on the right as b/N with

equal powers in each of these guides. Then the important issue is to have the

phases of the N waves all match at the interface to the guide to the left. If

the N sources driving the waves in the N guides are all of the same frequency

then phases need to be adjusted in the sources and/or the waveguide delays to

establish the matching conditions.

Note that the N guides on the right are in general curved different

amounts so that the delays in the different guides are perturbed differently

(as compared to a straight waveguide). Symmetry can be used to provide some

exception to this. For example for N=2 one can have a symmetry plane (one

guide being the mirror image of the other) as the two guides are bent away

from each other (E plane bends). The right guides in Figure 6.lB can have

one bend into and the other bend out of the page (H plane bends). This is

an example of rotation symmetry about the axis (x = a/2, y = b/2) of the left

guide. Combinations of various bends and twists of the two guides can be made

19
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subject to the symmetry that rotation by i’raround the object leaves the geom-

etry unchanged. Note that for b = a/2 the two waveguides each have width a o
and height a/4.

Using this 2-symmetrical a by a/4 guide system one could connect the

guides to two sources with identical phases and have the two signals combine

without reflection into the single a by a/2 guide. Such might be two ports on

a single magnetron.

This concept can be extended by dividing a locally straight section in

each a by a/4 guide into two a by a/8 guides. Then proceeding with each pair

as above we have four a by a/8 guides which an be used to combine four signals

without reflection into the single a by a/2 guide. Such might be four ports

on a single magnetron.

20



o VII. Vacuun Interface at Horn Exit

Another application of these non-interfering sheets in a waveguide

cross section is as a grating to support a dielectric sheet serving as a gas

barrier. Suppose for simplicity we consider a rectangular or pyramidal horn

as in Figure 7.1. The horn might be considered as a conical waveguide or a

gradually expanding rectangular waveguide. Care should be taken that at the”

mouth (aperture or exit) of the horn the fields are like the HI ~ mode, spe-

cifically that the electric field is at least approximately per~endicular to

the metal slats (grating) placed across the mouth of the horn.

One purpose of the horn is to expand the power in the waveguide so that

the electric field is considerably reduced at the aperture. If the waveguide

is operated under high-vacuum conditions it can propagate very large electric

fields. In order to bring the power out of the waveguide the fields need to

be reduced if the dielectric medium is air or some high dielectric strength

gas (such as SF6 at one atmosphere). Choosing the aperture dimensions to

avoid breakdown one transitions these back ,tothe waveguide via the evacuated

horn.

Note that at the aperture the wave is ideally to pass through the

grating with no disturbance. Of course there will in general be some

perturbation due to the grating. It may be desirable to avoid resonant

currents on the slats. This can be done by making the slat length an odd

number of quarter wavelengths, or by addition of appropriate impedance

loading.

Variations on the design of the horn aperture are possible as indicated

in Figure 7.2. Begin with a flat dielectric sheet in Figure 7.2A. Note the

metal slats supporting the gas pressure through the dielectric sheet. In

Figure 7.2B one might replace the flat dielectric sheet by some sort of ridged

sheet, both for pressure reasons and dielectric-strength reasons. Figure 7.2C

shows an example in which the grating is not against a single flat surface,

but pushes the center of the aperture out so that the electric field is not

parallel to the dielectric sheet.

21
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DIELECTRIC SHEET
\

DIELECTRIC SHEET
\

-

VACUUM ~ GAS

METAL SLAT

A. FlatDielectric Sheet

VACUUM

METAL SLAT

B. Ridged Dielectric Sheet

DIELECTRIC SHEET

VACUUM
GAS

c. SLOPED DIELECTRIC SHEETS (to Increase Tracking Distance)

Figure 7.2. Vacuum/Gas Interfaces at Horn Aperture
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VIII. Arrays of Horns

For various reasons one may have the electromagnetic wave to be

released into the air (or other gas medium) present on more than one

waveguide. Then one may transition the M waveguides vla M horns with the

aperture surfaces all on a common desired surface such as a plane or sphere.

The M signals are assumed to be all in phase with respect to this surface. .

There are various ways that one may arrange horns to form a two-

dimensional array. For simplicity approximating the array surface as a plane,

the array may be considered as a periodic structure, a few examples of which

are illustrated in Figure 8.I. Using rectangular horns (a by a/2) we have the

in-line and staggered arrays as in Figure 8.1A and Figure 8.13. Note the

presence of the gratings with parallel slats. A limitation of such an array

is that the HI ~ mode is not uniform across each horn, but has it going to

zero at the ~ts;de~iwalls (walls parallel to the E field direction). ThiS

means that the electric field distribution over the array surface is

(undesirably)nonuniform.

An alternate approach is illustrated in Figure 8.lc. The rectangular

waveguides are transitioned to rhombic (diamond shaped) waveguides with about

a 2 to 1 width to height ratio so that the corresponding dominant H mode is @

effectively excited. These waveguides are then expanded as conical horns with

rhombic cross sections. These horns fill the array plane as in Figure 8.lc.

Noting the symmetry of these diamonds at le~t one conducting slat can be

placed across the center of each and be perpendicular to St. However, off the

gymmetry plane the slats are in general not flat for the lowest order H mode.

In this geometry the distribution of it is such that it is perpendicular to

the diamond boundaries. This gives a smooth transition from one horn to the

next. While the rectangular H, ~ distribution has zero electric field along

each l~sidel~boundary, the corre~ponding diamond distribution crowds this null

into the ‘?cornersi!.

In general there are various details for optimizing horn arrays. The

horn shape and arrangement as above is but one question. Tapering the distri-

bution across the array (say by variation in the horn design, especially near

the edges of the array) is another interesting question. Perhaps other horn

shapes for arrays need to be considered.

24
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Figure 8.1. Horn Arrays with Aperture Gratings
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IX. Lemes in Horns

In designing the horn or array of horns that launches a wave one may be
o

concerned with controlling the phase distribution on the horn aperture(s).
—

This depends on the type of wave (e.g. planar or spherical) that one wishes

to synthesize, and on the uncorrected phase distributions in the horn aper-

ture(s). One can insert some kind of lens in the horn to adjust the phase

distribution in the horn aperture toward some more desirable distribution.

Reflections from this lens should also be minimized since these would reduce

the power radiated.

One interesting kind of lens involves modifications to the grating

design in Section 7. As indicated in Figure 9.1A extend the grating slats

back into the throat of a pyramidal horn. Note that these sheets, if ex-

tended, would have a common apex, the same apex as the pyramidal horn. As

discussed before in the context of the grating slats these sheets (assumed

perfectly conducting) do not interfere with the field distribution of the

‘1,0 mode.

Now modify these conducting sheets so as to create a slow wave

s~ructure [~] as in Figure 9.IB. The magnetic field fitcan penetrate inbo the

grooves (includingon both sides if desired). As the horn expands so that o

there are many wavelengths in the H direction (between the side walls), one

can think of the wave propagating between two sheets as locally a TEM plane

wave. Corrugating the sheets then can be approximately analyzed as a two-

dimensional problem [U]. The top and bottom surfaces of the horn (E plane

walls) can also be corrugated as in a typical corrugated pyramidal horn [51.

By varying the corrugations (depth, width, and/or spacing) along the

length and width of the sheets various propagation speeds (phase speeds) can

be achieved. Thereby the phase at the horn aperture can be controlled to some

extent. Note that one may wish to vary the corrugation parameters slowly so

as to not introduce significant reflections. Furthermore, the conducting

sheets need to be close enough together (say less than a half wavelength at

the horn aperture) to avoid introduction of higher order modes between the

sheets by the effective impedance boundary condition of the corrugations.
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A. Pyramidal Horn with Conducting Sheets (Side View)

4

n u
B. Corrugated Conducting Sheets

Figure 9.1. Corrugated Conducting Sheets in
Eorn Making Slow-Wave Structure
for Lens
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