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Abstract

This paper extends the available analytic solutions for a periodic array of wave launchers. These solutions

are based on the high-frequency approximation of the multiconductor transmission-line equations. The

examples here are for some profiles of the characteristic-impedance matrix (2 X 2) for two mnductors (plus

reference). Comparing the solutions for different profiles one can begin to optimize the profile.

transmission lines, waveguides
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‘o 1, Introduction

A recent paper [1] considers a special case of a unit cell of a periodic array of wave launchers. This is

based on a two-wire (plus reference) transmission-line model. Using the general results of [4] the high-

frequency or early-time solution is obtained via a matrix first-order differential equation. The matrix solu-

tion (known as the matrizant) can be written in closed form (common mathematical functions) for the par-

ticular case of the characteristic-impedance-matrix variation along the transmission line chosen there [4].

Note that given a specified 2 x 2 matrix (within certain realizability restrictions) one can determine the

dimensions of the wave-launcher unit cell including the position and size of the launcher plates within the

cell [2].

The present paper extends the solutions available for various profiles (dependence on the longi-

tudinal or z coordinate) of this characteristic-impedance matrtx. Treating the square root of a matrix (in the

appendices) explicit expressions for the symmetric 2 x 2 case are found. These are used to express the

general results for the matrizant via a quadrature (section 5). Here the general constraint that the two con-

ductors join at the end of the wave launcher (apetiure plane) is applied. The initial condition of a step volt-

age on conductor 1 and no voltage on conductor 2 is also applied.

(e Sections 6 through 8 consider specific profiles. First the previous case in [1] is readily solved using

the present general expressions. This involves a rather simple normalized characteristic-impedance matrix

of the form

(1(%?M)= ‘ (Cl

(1.1)

c = normalized spatial coordinate

Second we make the upper left element (self impedance of conductor 1) a function of C with a quadratic

variation as

(1.2)

CY>o

and find the general solution for the early-time voltage at the aperture plane. Some improvement is found,

a

Third we investigate a hybrid wave launcher consisting of a first section which is a decoupled transmission-i
line transformer with

3
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Where v is some function of ~ varying from a to 1. This is followed by a wave-launcher section of the

form in (1.1) where ~ =1 corresponds to ~ .=O. It k found that the ratio of the ear[y-time voltage at the

aperture plane to the voltage at the aperture plane to the source voltage can be made 1 provided

.

●)
(1.3)

(1.4)

4



.

[o Il. General Properties of the High-Frequency Solution

The high-frequency behavior of Iossless multiconductor transmission lines consisting of (perfect)

conductors in uniform media takes the form in retarded time of [4]

(VI(z)) = (@n,m(z))”(vn(o)) (2.1)

where the matrizant is the solution of the first order matrix differential equation

$(%4+=(’%,A4)”(%7J4)

(Al,m(o))=(kn)

(An,m(z))=+[$(zcn,m(z))] (ycn,m(z))

‘-j(zc.m(z))”[j(yc-(z))] (2.2)

Here the characteristic impedance matrix is frequency independent, and hence so is the matrizant

(@n,m(z)) which k arealfunction of the real coordinate. The voltage vector (Vn(Z)) can also be a function

/

‘a of frequency through (Vn{O)), but we ignore this trivial aspect here. For later purposes

a vector step function and (Vn(Z)) gives the initial amplitude of the propagating step.

As discussed in [4], the matrizant has certain properties:

J:Y((&m(z’)))~z’

det(#n,m(z))=e

tr((An,m(z))) = trace of (An,m(z))

= ~An,n(z)
n=l

‘$1ip((An,n(z)))

2+ ((&~(z)))= eiwnvalue of (An,n(z))

Also with the sufficient condition that

(Vn(0)) is taken as ,

(2.3)

5
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(&m(4)= i ~p(z@z,m)p
p=l .

tfp(z) =

(dn,m)p=

scalar functions of z

constant NxN matrices, every pair of which commutes

then the matrizant can be written as

~ ]dp(z’yz’(dn,m)p

(&m(z))=e~=l o

p jdp(z’)dz’(dn,m)p

.~ #

p=l

An example for N = 2 is given in [1] for which the above

. evaluated in closed form.

(2.5)

decomposition applies and the integrals can be

.
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‘o Ill.

via

Normalized High-Frequency Solution

As in [4] the foregoing is extended by normalizing the voltage vector (or combined voltage vector)

(zcn,m(z))=(zcn,m(z))~
(Ycn,m(z))=(ycn,m(z))~

where the square root is taken in the positive sense as in appendix A. Note that assuming reciprocal

media all the above matrices are symmetric. Define a normalized voltage vector as

(WJO = (Ycn,m(z))”(vn(z))

Then (2.1) is transformed to

(Wn(z)) = (Qz)).(w n(o))

(a where

(@%m(z))=(Ycn,m (Z)) ”(on,m(z))”(zcn,m (o))

(fDn,;(o)) = (In,m)

The corresponding matrizant differential equation is

$(@n,m(z))=(cn,m(z))”(@n,m(z))

(cn,m(z))=-;[f(Ycn,m(z))](zcn,m(z))+;(zcn,m (4)[:(Ycn,m( 4)]

‘+(ycn,m(z))[$(zcn,m( z))]-+[$(zcn,m(z))](ycft,m‘z))

Symmetric matrices in (3.1) imply

(%?Z(z))=-(%Z(#

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

m i.e., this matrix is skew symmetric as well as real. Since the diagonal elements are zero we havei

7
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li-((cn,m(z))) = ~cn,m(z) = o
n=l

= Lp((%m))
n= 1

X~((Cn,m(Z))) = eigenvalue of (Cn,m(z))

o b

.

(3,7)

d+%,??+)))=1

This normalized matrizant ha-sspecial properties as seen from

‘(@n,m(z))T (cn,m(z~)o(oqm( z))+(on,m(z))T “(cn,m{z))T ‘(”rzm(z~)

‘(@n,m(z))T (cn,m{z)).(@n,m( z))- (@~m{?))T (GzJz3(Z)) “(”tzm(z))

= ()onJ?a (3.8)

where we have used (3.6) and the transpose of the matrizant equation (3.5). Integrating and imposing the

m )value at z = Ofrom (3.4) gives

(“n,m(z~)T ‘(@n,m{z))=(ln,m)

(“n,m(z))-l ‘(”n,m(z))T

(3.9).

Noting that this matrizant is real valued we now have that it is”unitary [5, 8].

From (3.3) we now have

(~n(z))‘(@tIm(z))“(Wn(o)) = (~n(o)) ‘ (“tzm(z))T

(~n(z)).(~n(z))= (~n(o))”(~n,nz( z))r “(~n,m(z)).[~n(o)]

= (Wn(o)).(wn(o))

l(~n(z))l= l[~n(o~)l (3.1 o)

so that the magnitude of (Wn(Z)) is conserved along the transmission line. This can be interpreted as con-

servation of power in the wavefront since we have

e )
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(%(0))“(%(0))=(%(o))‘(Ycn,m (0))“(Ycn,mw) ‘ (Vn(o))

=(V?J(0))“(Ycn~(o))“(h(o)) =(%(O)) “(~n(o))

=(wn(4) .(wn(z))= (%(4) (Ycn ~ (4).(Ycnm (4).(h(z))

=(vn(z)) . (Ycn,m(z))o(%(z)) =(%(z)) “ (In(z))
(3.11) ‘

The fact that (@~,~(Z)) isunitary (andreaOimpfies various things [5,8]. Asindicated in(3.10) itis

length preserving when dot multiplying vectors. The columns are a set of N mutually orthogonal unit

vectors, i.e., form an orthonomal set. ,Likewise the rows also form an oflhonormal set. The eigenvalues

as in (3.7) all have magnitude 1. Note that in general this matrizant is not symmetric so that there are differ-

ent left and right eigenvectors (which may be complex) forming a biorthononal set as in appendix A.

Defining

we have

A~ (z)= eigenvalues of (@n,m(z))

p=l,2,...,N

AD(z) = 1 for all ~

.

det((@n,m(z))) = H Ap(z) = 1
/3+

P((CDn,m(Z))) = ~ C%n(Z) (r=l)
n=l

Extending to eigenvectors we have

(@n,m(z))(~~(z))P ‘A~(z)(~n(z))P

(LLz))B o(%Jz))= A~(z)(~n(z))P

9
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(3.13)

(3.14)
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Using the unitaw property

(R&))p =Ap(z)(%zm(z))T +%b))p=AP(z)@n(z))p “(%,m(z))

(~n(z))p = Ap(z)(h(z))p “(%,n+f=AP(z) (%,m(+”(h(+p
“ (3.15)

This shows that for each ~1 there is a ~2 (which mayor may not equal PI) with

(RA4)p1= (LzM)p2
(3.16)

A@l(z)= A~~ (Z) = A;2 (z)

with the last relation (conjugate) implied by the unit magnitude of the eigenvalues. So the eigenvalues

come in conjugate pairs.

Considering the eigenvector equation for conjugate eigenvalues as in (3.16) we have

(%Jz)).(Mz))B1 = AB1(Z)(%Z(Z))P,

(%m(z))@z(z));l = A),(z) (%(z)~l
.

= AP2 (z)(~n(z));l

(3.17)

e ~

This shows that we can set

(W)p, = (&(4);2=(w)p2

(w))~l =(W);2=(w))p,
(3.18)

with the second of these coming from doing as in (3.17) with left eigenvectors. So the eigenvectors cor-

responding to conjugate eigenvalues (paired if not purely real) are themselves mutually conjugate. The

roles of left and right eigenvectors are interchanged on interchanging conjugate eigenvalues. Also left

and right eigenvectors are mutually conjugate for each ~.

A special case is that of real eigenvalues for which we can take & =/32 in the foregoing and find

Ap(z) =*!

[Mz))o = (J%(Z))P = a real vector

(W))p “(%(z))p =1= (Ln(z))~ “@n(4)p
(3.19)

● )
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i‘o Iv. Case of N = 2

Summarizing from [4] we have

()(Cn,mb))=w:1 ;
g(z)= J; Nz’)ciz’

[101

(%n(z)) z )wlm(z’))~”=~-, (-J g(z)

‘1!cos’g(z)’+c:Isin’g(z))
(’cos(g(z)) Sin(g(z)))

[ %~,~ -ZC1,1]:ZC1,2(Z) -[:ZC2,2(Z)-:ZC,,1 (Z)]ZC1,2(z)
h(z)=+

Zc,,, (4ZC*,* (z) -21,2 (z)

Knowing that (cDn,m(z)) is a real unitary matrix now we have for the eigenvalues

A~ (z)= eigenvalues of (cDn,m(z))

det((on,n(z))) = 1= A1(z)A2(z)

~((%,rn(z))) = 2cos(g(z)) = Al(z)+ A2(z)

[Al(z)l= /A2(z)l = 1

‘2(z) = A;(z)= A;’(z)

Al(z)= cos(g(z))k jsin(g(z)) = e*~g(z)
2

Going on to eigenvectors we have the right eigenvector equation

(%m(z))@njp = Ap(z)(&)p

(4.1)

(4.2)

(4.3)

which in component form is

11 -. —
. -.



- sin(g(z))l+~ +-[cos(g(z)) - A~ (Z)]R2:0 = 6

Substituting for the eigenvalues gives

()(%)+=& ;j

Similarly for the left eigerwectors one can repeat the above arid obtain

()(L)* =* ;j

●’
(4.4)

(4.5)

(4.6)

As can be verified these right and left eigenvectors are a biorthonormal set. Note that the eigenvectors

are independent of z.

The eigendyads are

The diagonal form of (C5n,m(Z)) is now

(%JJ%M)=h/dwJ*(&)*
/3=1

(4.7)

(4.8)



{o v. General Result for Case of Two Conductors Representing Unit Cell of \Vave Launcher

A special case of N = 2 is considered in [1]. Here we have a two-conductor (plus reference)

transmission-line model of a unit cell of a periodic array of wave launchers. The symmetry of the problem

has planar electric and magnetic boundaries, simplifying the analysis somewhat. The discussion and illus-

trations of section II of that paper are directly applicable here. .

The characteristic-impedance matrix for the unit cell, or for one quatler of the cell (considering the

electric and magnetic boundaries which symmetrically divide the cell), has the form

(Zc.m)=zo(fg-)

rZo= ~=characteristic impedance of free space
GO

(5.1)

()The geometric-impedance-factor matrix fgn,m is symmetric (reciprocity) and has non-negative eigen-

values. It can also be used for the per-unit-length inductance and capacitance matrices since we assume

the medium surrounding the perfect conductors is uniform and isotropic.

Assuming that the wave-launcher plates are flat and that in a cross section of the unit cell they are

parallel to the electric boundaries we have for an arbitrary cross section

(fgn,m)=pi:)
2a= width of unit cell

2b = height of unit cell

2a’ = width of plate

2b’ = spacing of wave-launcher plates

Define a normalized form as

13
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H
b’ -

(%fn) =;(%)= :: 7
1

-F

Define a normalized coordinate

Os; s1

Jsuch that our region of concern is

(5.3)

(5,4) -

In the previous paper this was taken as

(=;+l
(5.5)

1 = length of wavelaunchers

While the development of the solution of the differential equation in sectfons II and Ill of the present paper

as well as in [4] is in terms of the real spatial inordinate z (meters) note that in (2.2) this variable can be

changed to some other, say <, merely by replacing d/dz by d/d< wherever it appears in (2.2), in effect

renormaiizing (An,m). In the exponential form of the solution as in (2.5) the dz’ becomes d~, and the

integral is over a range of ~ which we take as O<~’< ~. Similar comments apply to the normalized form as

e
~

in (3.5). Fufihermore (Fn,m) can be substituted for (ZCn,m) and (Fn,m)-l for (YCn,~) wherever they appear

in these so!utions, i.e. in (2.2), (2.5), and (3.5).

Now in (5.2) let us have

(5,6)

so that as in [1] the wave-launcher starts from some apex (relatively) small spacing and expands to fill the

unit cell at the ape flure plane where the wave launcher makes contact with adjacent wave ‘launchers. Now

we could choose b’/b as some monotonic function of ~ subject to (5.5), but by a change of variable this

can become g, i.e. let

This means that ~need not be a simple linear function of z as in (5.5).

(5.q

0’
14
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(o Let us now write (5.3) as

[)
“ (%?K))= v g

(1 (5.8)

where v is some yet-to-be-specified function of ~. Noting that

det((~n,n(~))) = v-{22 O (5.9)

we must constrain

V>(2 foro<~<l (5.10)

At the aperture plane as discussed in [1] let us have the wave launcher width 2a’ also fill the unit cell giving

q;=, =1

At the apex choose some value,

(5.11)

say

“1<=0=a>O

/‘e Then let v generally take the form of some monotonic function of g with

v> greater of [a,~2] for Oc g c 1

(5.12)

(5.13)

subject to (5.11) and (5.12). If O< a <1 (the case of interest) then v is a monotonically increasing function

of ~. As discussed in [2] for given values of y (or Fl,l), b’/b (or {), and b/a one can find the required u’/a,

thereby generating the contour of the edge of the launcher plate.

Let us define

[
(%,L’Z( 0)= “$’(~) W,2(0llp,l(~) H2,2(() 1 ()= (%JOF = v J ~cl

H2,1(’()=H1,2(4)

(5.14)

where the square root of this matrix is discussed in appendix B. Replacing the square root of the charac-

teristicimpedance matrix (i.e., (Zcn,m)) ( )by Hn,m and similarly for the inverse and changing the coordi-

(● nate to gallows us to apply section 4 for the normalized high-frequency solution for N = 2 as

15
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[1(%M))=W)0 ‘
-1 0

(%7X))=
[ 1cos(g(~)) sin(g(~)) -

-sin(g(~)) cos(g(~))
(5.15)

,(g) , [~2,2(c)-~l,l(c)]$ ~l!2(J)-[$H2,2(() -+ Hl,l(()]Hl,2(<)
=—

2 Hl,l(~)~2,2(~) -~f2K)

Now one can try to integrate h(~), but first let us oonsider the simple solution. From (3.10) and

(3,11) we have

lWK)I=IWJO)I (5.16)

At (=O we have asin[l]

()
(Vi(o)) = Vo : 0 )

(5.17)

i.e., a voltage is applied to the launcher plates, but none to the outer electric boundaries of the unit cell. ‘

Noting
..

~cn,m(J))=zil;(~n,m(L))-’=z;’: [.+-l(:, -;)

we then have

Furthermore we have

[1(Vn,m(q=%’;‘: :
(MjJo))+vn(o))= (vn(o)).(Ycnm(o)) .(vn(o))

(5.18)

(5.19)

16
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;

(%(0=(%,N))“(VW)

=vo[+;~[aj:)(0
.vo[J._;~(;)

so that only WI(O) is non zero.

Considering the boundaty at <=1 note that

(Vn(()) =(%n,m(0)’(%K))

“[zo~~(F~rn(~});-(wn(J))

‘[~~~(~~l~(~})o(wn(~))

(’o From (B.20) and B.21) with ~= 1 implying

()
(%m(l))=~ ‘ 1fill

(5.20)

(5.21)

v = 1we have

(5.22)

which gives .

.

[ ][~(l)= vp(l)= *: + Wl(l)+ W2(1)]

The equality of the two voltages at ~ = 1 is consistent with [1] and the fact that the two conductors meet

there. As discussed in [1] at J = 1 the primary wave fills the unit cell and matches without reflection

through the aperture plane with amplitude VI(1). There is a secondary wave between the launcher plates

and outer electric boundaries which totally reflects from the short-circuit junction of the launcher plates

with the outer electric boundaries at ~ = 1.

From (3.3), (3.1), (5.15), and (5.20) our solution is now

17
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(%(l))=
[ )cos(g(l)) sin(g(l)) ,~wn(0))

-sin(g(l)) cm(g(l))

=vo[&#[::;.!;J “

~(l) = V~(l) = I@[2a]-~~os(g(l))- sin(g(l))]

= v~a
()

-+ Cos g(l)+:

This leaves the problem to one of the evaluation of g(l ).

Collecting from (B.20), B.22), (B.23), and {5.15) we have

Substituting we have

~2,2(r)-~1,1(<) =y%2(0

JK(l-V)2+4K2

(5.24)

‘“)
(5.25) e

0
18
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0 h({) =;

1=—
2

1=—
2

1

=+[(1-v’)+4(’J1[v-,2p~{l-v+( ql++-~2F
(5,26)

,—.
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v!. Case of v= a

Consider the simple case of

CZ=I, V= I (6,1)

From (5,26) we have,

h(<)=o, g(l)= o (6.2)

Then from (5.24) we have

@% (6,3)

This corresponds to the case in appendix C. It also corresponds to the result in [1] which was solved

in a different way.

,,“,

20
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0 V1l. Case of v= cz+(l - a)J2

Now consistent with (5.1O)through (5.13) let us choose a quadratic form for v es

V=a+(l-a)gz (7.1)

Then in (5.26) we have the terms

[11#=(1-v)2+ 4&=(l-ct)2 1-(2 2+4(2

(7.2)

[1
v-~2=al–<2

~c=(l-a)~+J2]1– v+#

Combining we have

(7.3)

What we need is

(1-cY)fi
g(l) = J: ~(()~( = ~gl + ~ g2 -(1 – a)g3

(7.4)

These are defined in such a way that the integrands hn are positive over the range of integration, and

{o hence all the gn are positive.

21
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Taking the first of these integrals oi
(7.5)

make a change of variables

(7.6)
1

[1 [1

-1
l–~’ ~d~ = 1+u2 du

This gives

[1j-<’=q+u’“

‘+~’=h+”’rb+’”l‘ -2
v=~+u ] [(1- CY)2+4U’+4U4 1

(7.7)

and the integral becomes

2 Zdu
gl = J:[(i-a)’ +4U2 +4u4]-’p+u’]-’pu’u ]

=;J:* [[1-~)2+4~’+4~4J’p+ ~’~’p+2~’~d~
(7.8)

This is now in a form to be evaluated by the residue theorem. Consider a contour along the real axis of the

u plane retu~ning in positive (counterclockwise) sense in the upper half of the u plane. Since the inte-

grandon~his~ntouris q~-2) I Iasu+ mthere is no contribution and

gl = 2zj~ (residues in upper half u plane)

The integrand has three conjugate pole pairs at +Un with

III+A$
ul.j—

2

q=j

(7.9)

(7.10)

● ’
22

. .



.

I

●

(o

where (positive square root)

A=~l-(1-a)21;

with the restriction

OSa<z

This can be extended for a outside this range by allowing A to be imaginary.

Labelling the residues as rn we have

{[
r,=; ~ (1- CX)2+4F+4U4

11-1+”’r-’b+p”’s
U=lq

=-L[l+u2]-1~+2.2] “
U=lq

.j@ A~m[l+A]-+

For z we merely replace A by –Agiving

.~ A—[1- A]-~
‘2=–J 8 l+A

For ~we have

n=4{:[l+u’]~’[(1-a)2 +4u2+4u41--l~+2u’y
U=U3

[( ).+ l-a2+4u2+4u4 ~’~+,u’~

U=U3

1
=

‘J 4(1 - Cy

Combining these residues gives

23

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)
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3
gl = 2nj ~rn

n=l

.=iz A
4 (1- a)2 { 1-[I+ A]#+[I-A]# + z

2(1-42

z

{{ }}
@A -[I+ A]#+[I-A]; +1

= 2(1- a)2 2

The second integral is “

●✿✼

(7.16)

@

(7.17)

with the same substitutions as for gl. The integrand has the same oonjugak? pole pairs as in (7.1O). Let us

evaluate g2 in the same manner as gl by closing the contour in the upper half plane. Note for g2 that the

ifmrandis+’) =14+’=

I_abelling the residues as r,, we have

{[
r{=+$ (1-a)2+4u2+4u4

lFIP+’21-’F+2’21
U=lq

[1

-1
=J- 1+’2

16U U=lq

=-@l-A]-l[l+ A]-+
(7.18)

For ~ replacing A by - A we have

24



o ti=-g[l+md

For ~ we have

Combining

[( )=; l-a2+4u2+4u4 l-’~+’u’]

u=u~

1

= J 4(1- a)’

these residues gives

(7,19)

?2=1

.X*~[1- A]-’[l+ A]-; +~[1+ A]-’+ [1- A]-; - ~(1&2

=z:~-A’l-’{[l+A]i+ [l-Al~}-2(1:a)2

= Z~(l-a)2{[l+A]~ +[1-A]~}- z
2(1- (X)2

r

{{ 11~ [l+ A]; +[l-A]; -I
= 2(1- CX)2 2

Combining the first two terms in (7.4), for convenience,

(7.21)

25
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(1-&)Gg2= l-a
~gl + 2 ~{gl + W2}

{[

;
‘1-a z

~ [-A+a][I+A]: +[A+D][I-A]

}}

+(1-LX)
‘XE2(l-a)2 2

{{

~ [l-A][I+A];-[1-CZ][I+A]4+[l+A][I-A]; -[1- LY][I-A]4
‘*G 2

}1

+(I-a)

{z’ ‘l[l+At+[l-A+l-~[’-a]-l’+A++[i-A+}+(l-a)}
‘-X 2 [-1

‘{E-a’-l’{[’+At+[l-Av}= ~ z [sign(l

The third integral is

O
!

(7.22)

(7,23) e“

The integrand has two conjugate pole pairs at t~n with

[7.24)
_ .l– A

‘2 -Jjcq=-@

subject to (7.1 ~) and (7.12).

Labelling the residues as Rnwe have

26
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‘o ~1={$[(1-~)2P-~2r+4J2]~il+~21
(=<1

=+[-(l-a)’[l-(’] +’J’[l+(’]

<=3-1

]1-al

{ [–1 ]

,_ l+A 2

‘~8A(l+A) l-a

p- CY]u,_ l+A

= ~ 4A(1 + A) (1-a)’

Similarly for R2 we need but change A to - A as in (7.24) in going from {1 to (2 giving

11- a{ {[1]
,_A2

“=-j8A(l-A) ‘- G

{1

It-al I-A

‘-j4A(l-A) ‘-(l_ a)’

The integrand can now be written as

where we have used the fact that the ~n and Rn are pure imaginary. Note also that hs(~) is 0(~-2 ) ~

~+ m so there is no additional polynomial term in (7.27). Integrating we have [6, 7]



.

,

{ (1 ( 1}=[2AII - al]-’ -(’- a~+~’+A) arctan ~ + ‘i- a~ ~(’- ‘)arctan ~

{

=[2A11- C@ -
(1-~)2(1-A)-(1-A2)

U ( )}

(I-~)2(1+ A)- (1- A)2 arctan~
arctan ~ +~_A2 Kll 1_A2 lc21

, { M+arc’’n(ti)}= [211- al]-’ arctan

with the last result following from the reciprocal relation of 1<11and 1~21.

Now in (7.4) we have

-(1 - a)g~ =-~sign(l-a)

Combining with (7.22) gives the result for (7.4) as

(1- ff)Jz
~(l)=~gl+ 2 82-0- a)g3

{
=$ ~[sign(l - a)-1]{[1+ A]~ +[1- A]+}+ a+ - sign(l - a)

}

Note for 0< a <1 we have a simpler result

{}

1

g(l) = ~ a-~ -1

Note that

Ihl,g(l) = o

(7.28)

(7.29)

(7.30)

(7.31)

(7,32) e
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0 and that

g(1) >0 for O<ctel

From (5.24) we have

~= [2a]-; [cos(g(l))- sin(,g(l))]

()
= a-~ cos g(1)+ ~

For the case of Oe a <1 we have

H(l) -~

()
—=a 2COS*

Vo

‘[2a]-fcOsF(a-wsin[aa-vl

(7.33)

(7.34)

(7,35)

For a near (but below) 1 we have

Note that decreasing a from 1 initially increases VI(1), which maybe desirable. The solution goes to a

maximum at a = .83 where V1/Vo = .714. This is an increase from ~/V. = .707 at a =1. The increase

is not very much.
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Vlll. Case otHybrid Wave Launcher o ‘i

Now consider a special case consisting of two sections. In the first section let us transform VI from

V. to Voti without coupling to the second conductor. Here the first conductor is confined to a small

height (ideally zero) so that there is no coupling to the second conductor. The section is the wave

launcher proper in which Vow is reduced to VO in the aperture plane.

A. Decoupled Transmission-Line-Transformer Section

For this section let the normalized coordinate be ~ with

O<g<l

Choose the normalized impedance matrix as

(%m(O=(; :)

[1(f-%m=(%m(’+=J o
01

with positive square root. Let

(8. 1)

(8.2)

(8.3)

Note the absence of the off-diagonal terms. This means no coupling between VI and V2 on the two-

conductor transmission line. The variation of v over the range in (8.1) is not critical for the present analysis

although as a practical matter one may wish that this variation be monotonic.

Now in (lIn,m(~)) we have

Hl,z(g) = o

implying in (5.15)

A(’g)=o , g(l)=o

(8.4)

(8.5)

o
30



‘o Then we have from (3.2) and (3.3)

(vn(~))lg+l ‘(Hn,f7z(~))lg=1 “(@nrm(~))lg=l “(Hn,m(g))_’ ~_O”(vn(~))lf=~

With our initial condition as in (5.17) we have

(8.6)

(8.7)

1

Our transformer section has then increased the voltage on conductor 1 by a factor a–Zand has left zero

potential on conductor 2.

0
B. Wave-Launcher Section

.

At ~ =1 we begin a new section of the two-conductor system. Relabel the coordinate here as ~ with

os~sl (8.8)

where ~ = Ocorresponds to ~ = 1. Choose the normalized impedance matrix as

()(1(Fn,m(0)= ~ ~ = ‘nm(0)2

(Hnm(’))=K$R2il
with the elements of the square root as discussed in appendix C. In this case we have

H2,2(<) - Lq,l((g)= o

g(1)= oh(~) = O,

(C%m(l))=$

i

‘o
This is also the case considered in [1].

o

1)

31
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(8.10)
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The solution has

(W))l;=, ‘(f%’m) l;=l “(%AO)[;=I “(%m)-’l “O’W));AO{=0 I -

‘H N :)”& w~’g)) /-=,

()
=+ ; : “(w<))

g=o

Noting that at ~ = 1 which is the same as < = Owe have

(Vn(f))lg=l=

[1

(%(())l;=O = ~

This result relies on the fact that there is no (high-frequency) reflection at the interface since

.
Then we have at < = 1

()(Vn(r))lg=, = * ;

so that

This can be set to be 1 provided

1
(y. —

2

This gives a unity high-frequency transfer function through the hybrid wave launcher.

(8.11)

(8.12)

(8.13)

o
#

(8.14)

(8.15)

(8.16)
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‘o c. Some Comments

Remember that the present analysis is based on a high-frequency approximation. As discussed in

section 5 there is a certain arbitrariness in the definition of the inordinate along the transmission line (z or

< or ~). By a transformation of ( to some ~(~) varying between Oand 1 one gets the same answer for

the high-frequency transfer function for source voltage to wave launched from the aperture plane.

Here two sections of the wave launcher are considered. How long should each be? By a scaling

argument one can normalize frequency or time by a characteristic length, say the length of one of these

sections. Perhaps one can better use the total length (~ = Oto ~ = 1) as a scaling length. Even so this

leaves the relative length of the two sections as an open question for optimization. The high-frequency

approximation is not adequate for this purpose.
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IX. Concluding Remarks

Now we have a few canonical forms of wave launcher with analytic high-frequency solutions. By

comparing the results for the different cases one has some appreciation of how various aspects of the

launcher profiles influence the high-frequency behavior. Perhaps other solutions can also be obtained.

Having the high-frequency solution does not tell us everything. There are intermediate

frequencies/times of concern. Also note that a high-frequency Transmission-!ine model breaks down

when the wavelength becomes less than the cross section of the unit cell.

‘o *
I
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0 Appendix A: Functions of Diagonalizable Matrices

—

Consider an N x N square matrix (%,m) with ei9envalues Ap, ri9ht ei9envectors (~~)pI and Iefi

eigenvectors (-fn)P defined by

(o

(%,m).(%)p=Ip(dp

(L+ “(%2!?72)=w+

with biorthogonalization condition

(%)91 “(@2
{

1for ~1 = pz
= W2 = o forpl #82

9,, p*=l,2,..., fv

(Al)

(A.2)

A sufficient condition for (A.2) is that the N eigenvalues Ap be all ~stinct. AS ~scussed in [3,5] all we

really need is N linearly independent eigenvectors (say the (rn)P ). ~is is also called a matrix of simPle

structure. However, this is often not a necessaw

. A(A)= det((an,m)-2(ln,m))

= ‘g@’

with some of the coefficients

35
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(IN = (-l)N

a~_l = (–1)‘-’~r((an,m))

= (-l)N-l$ap,p
p=l

a.= det((an,m))

= fiLp
p=l

and the general ap given in [3,8J. Setting the characteristic polynomial to zero gives the characteristic

equation for determination of the eigenvalues

A(Ap)= O

.
The matrix now has the dyadic representation

(%n)=iM+(@
fl=l

.

0 )

(A.4)

(A.5)

o
1

(A.6)

There are matrices which are not so diagonalizable and can be handled by the Jordan form [5]. For pre-

sent purposes we only consider matrices diagonaiizable as above.

Consider some function f of a complex variable A defined by a power series

f(a) = jj fp A.pfor IAI e 10
p=f)

AO= radius of convergence (series not converging for IA1> A o )

Then we have a way to define a function of a square matrix by [5]

f ((an,m)) = i fp (CZn,m)p for all lAp[ < Ao
p=o

since integer powers of a matrix are well defined. Using the dyadic form in (A.6) we have

“(A.7)

(A,8)

o
I
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0

io

(%JP=5q (%)pP?+
p=l (A.9)

from which we obtain

f((%z))=5:(43)(’+(Gi)~
(A.1O)

Here we have used (A.7) to identify the infinite series for each of the ~(Ap). While this is limited to

[Al c A o, we can use (Al O)for our (extended) definition provided ~(l) is defined some other way for

[Al22 ~. in this form we can consider fractional powers, logarithms, etc. of matrices with N linearly inde- ‘

pendent eigenvectors provided we take care in defining the intended branch of the multiple valued

function with which we are dealing.

Some special cases of interest are

(an,m)-’=5 a;1 (G+
p=l

(km)=i (G’J@~
/3=1

= i (L)p(’n)p
p=l

(/n)p (inverse)

(identity)

(%~)T: f A p (-fn)P (~n)p (transpose)
p=l (All) “

At this point it can be noted that the Cayley-Hamilton theorem states [5]

A((an,m))= s~p (an,m)p = (%!n?)
p=o (A.12)

For this result the matrix need not be diagbnalizable. This is readily related to matrices as in (A.6) by

A((czn,~))= ~A(Ap) (~n)p(tn)p= (“mm)
p=o

using the result (A.5).
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if the matrix is symmetric we have

(%~)= =(%~)

an,m = am,n

(anm)”~xn)p ‘ixn)~ ‘(anlm) = ‘B[xn)p

(rn)p = [~n)p = (Xn)p

(Xn)pl “(xn)p2 = 1PI,B2

(an,m) = 3AJ3 (xn)@ (Xn)p
p=l

so that only one set (orthonormal) of eigenvectors is needed.

(A.14) ,

Again a sufficient condition is that the (xn)P

are a set of N linearly irdepencfent eigenveotors. Note that a function of a symmetric matrix is itself

symmetric..

If the matrix is Elermetian we have

Ap realfor~ = 1,2,..., N

(Un,na)= iaJ3(xn)p[-%$
~=1

f((an,m)) = imp (xn)~

.

9 )

.

0 I

(A. 15)
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‘o
Assuming that f(a) is real for real A then such a function of a Herrnetian matrix is itself a Hermetian matrix.

Again only one set of eigenvectors is needed. Note that Hermetian matrices are always diagonalizable [8].

For convenient reference we have some special cases of matrix functions as

f(qln,m)) = W(kn) (identity)

f(%) f(a2) 0 1 (diagonal matrix)

o f (AN)
(A.16)

For 2 x 2 matrices we have the special cases (from [1, 4]

(1(~ol
-1 0 COS(A) sin(,l)

e =
–sin(2) &s(A) 1

‘Cos(a)c :)+sin(a)cl :)

A
()(

01
10 = cosh(l) sinh(A)

e
–sinh(A) cosh(A) )

‘cosh(a)& :)+sinh($ 0 (A.17)

Note that these last cases both have determinant equal to 1. Usin9 these as canonical forms tri90no-

metric, hyperbolic, and logarithmic functions (and inverse functions) can be found for these two matrices.
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Appendix B: Square Root of a Symmetric 2 x 2 Matrix

.

0 1
4

Let us now work out in detail the square root of a 2 x 2 matrix under certain restrictions. lTe

general form is given in (Al O)where f is interpreted as square root. This requires one to define the

proper branch of this fu;ction. For real and positive d~ this can be taken as the positive square root by

convention. This can be extended to complex A~ by mapping phase (or arg) from -n to m into -Ir/2 to

r/2, Note that, it desired, various conventions (y) can be followed for the various do, since when the

resulting matrix is squared the original matrix is reproduced. So for diagonaiizable matrices there are 2N

different values of the square root (assuming all are non zero). For 2 x 2 matrices there are foursquare

roots, but here we consider only one, the positive or p.r. (positive real) square root since we are normally

dealing with impedance or admittance matrices.

Beginning with a general 2 x 2 matrix we have

(U2,2 ) (8.1)

o
)

so that if a2,2 is non zero and its square root is defined only three gene~al matrix elements need be con-

sidered. If (an,m) is also symmetric then we only need to consider matrices of the form

-(F’’,J=(;:)
(B.2)

Here our concern is for real elements, and constraining the determinant reai and non-negative gives

det((FE,m)) = v–(22 O

V2<2 (B.3)

Now define

(~%~)= (%)4

with the square root positive as discussed above, Note that

(B.4)

oi
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‘o
det((ffn,m)) = Iil,l 172,2- I?~2

=[det((Fn,m))]; (positive square root)

[ {]v-
z~

(H~~)~(H~lrn)T
H2,1= HI,2 (B.5) -

where we have used the fact that a function (square root) of a symmetric diagonalizabie matrix is itself

symmetric and that det((~n,m)) is non negative.
,

To diagonalize (&m)we have the eigenvalues as

2122 = det((Fn,m)) = v-(2

A,ap = tr((Fn,m)) = 1+ v

This has the solution

i

y =(1- V)*+4[2

For the eigenvectors begin with

(~~,rn)-(xn)p = ‘~(x?z)p

which in component form is

(v- ++# +f%f =o

bl;p + (1- Ap )q;p = o

This gives

This establishes the relative sizes of the two elements of the eigenvectors. So we take

(6.6)

(B.7)

(6.8)

(B.9)

(B.1O)
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(-c(%+3=q @_

The biorthonormalization condition

v]=’(r)
gives

(%)p(%)p=~= +[(Ap-v)2+J2]

[= !wB-’)2+~21

.

0’
1

(8,11)

(B.12)

Again with positive square-root mnvention (and some algebra)

+=_

b1=&a2

2 1 (0.13)

The k w“th b~ is chosen for consistency between the a~ and b~ forms in defining the eigenvectors.

Combining the above results gives various forms for the eigenvectors as

2 {2[- ‘v lr(++](a~form)
(%2)1= L Y+(1 )Yi

‘{iy’(1-v)4r
In a more symmetrical form we have

42
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●

●
(Xn), =

2

(B.15)

assumed positive we can note the special case for v = 1 as

(B.16)

so that the eigenvectors are seen to go to a simple form that is obviously an orthonormal set in this limit.

After some algebra one can verify that the two vectors in (B.15) satisfy

(Xn)p, “(%l)p2 = @)/32

i.e., also form an orthonormal set.

Now we can write

(B.17)

(%)=(.;:)=:1W%)p(%)p

Hl,l H1,2

( )(H n,m =

)

= ~ aj(xn)~(x.)p
H2,q H2,2 pal

The dyadic products of eigenvectors are

(Xn)l(xn)l ‘2P
22
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and the eigenvalues are

l+vhy~
ij= ~

2

ly=(l-v)2+4&

One can even write out the components of (Iln,n) as

(B.20)

(8,21)

O :

This formally completes the square root. There are cetiain combinations which one can form for

convenience

‘22+H’l=[l+vJvir+[
(B.22)
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‘o Further combinations are

#_
~Fl = (~2,2 + %1)(~2,2 - Hl,l) = 1- v

cHI,2 = H2,1= ~(H2,2 - I+@=((H2,2+Hl,l)-1

f%=a$~=[v-g+det((lln,m)) = L11,1Z22,2- ,

%=${1++-,2?]

.

●
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Appendix C: Square Root of
()

1<
cl

As a special case of interest let us set v as 1, corresponding to the problem in [1]. Then the

results of appendix B simplify considerably. Summarizing for (Fn,m) we have

(%)=(;;)
det((~n,m))=A1A2=1-(22 O

f@,m))=Al+A2=2

A1=l*(
2

The square root (positive) then has

(%)=(%);

.

● )

(C,l)

(C.2)

● ’
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