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A Lens Technique for Transitioning Waves setween Conical
and Cylindrical Transmission Lines

Capt Carl E. Laum
Air Force Weapons Laboratory

Abstract

Conical transmission lines can be used to launch and terminate plane
waves on cylindrical transmission lines. However, some mismatch is introduced
in joining the two transmission lines. This mismatch may be significantly
reduced by the insertion of a synthetic space lens at the juncture of the two
transmission lines. The lens is made of a material which has the same wave
impedance as free space, but which also has a slower propagation velocity.

Such a material may also have other uses in other kinds of electromagnetic
devices. :
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I. Introduction -

In a previous note we discussed the use of conical transmission lines
in launching plane waves on cylindrical transmission lines. While the field
distribution on the conical line can be made to closely match that on the
cylindrical line, the wave on the conical line is spherical, not planar,
introducing a time dispersion across the cross section of the cylindrical line.
This time dispersion can be reduced by lengthening the conical line which also
makes the transition more gradual.

Another way to reduce this time dispersion is to slow down the spherical
wavefront in different degrees over the cross section of the transmission
lines at their juncture so that the spherical wave is made nearly planar.
This is just the concept of a lens. In the more familiar case of an optical
lens, if a light source is placed at one of the foci, -the light passing
through the lens is focused into a parallel (non—dlverglng) beam. For the
present application consider the apex of the conical transmission line as
the wave source which is at one focal length, the length of the conical
line, from the lens. Of course the typical lens works for wavelengths
much less than the diameter of the lems, but it is for such high frequencies
that the lens is needed. For longer wavelengths the conductors of the
transmission line guide the wave. Combining a lens with the matched conical
and cylindrical transmission lines may then improve the rise time character-
istics of the plane wave launched on a cylindrical transmission line.

The typical lens achieves its effect because of its dielectric properties.

That is, its permittivity, €, (or dielectric constant) 1s greater than € and
thus electromagnetic waves propagate through the lens at a speed less than c, _)
the speed of light in free space (and very nearly in normal air also). This
type of lens, however, has an undesirable property in that electromagnetic
waves are partially reflected (except in the case of the Brewster angle) in
passing into and out of the lens material. But suppose that we have a special
material from which to make a lens. This special material (which we choose

to call synthetic space) has an increased permeability, u, as well as
permittivity, €, in such a proportion -that theilr ratio is the same as that

for free space, i.e., u /e . In other words, this material has the same
wave impedance as free Space. The propagation speed in this material, however,
is less, so that it can be used for a lens. An electromagnetic wave in a free
space medium which is normally incident on a semi~infinite medium (or a slab)
.of this synthetic space undergoes no reflection. For angles near normal
incidence the reflection is small compared to a dielectric lems. A synthetic

space lens used with a gradual conical transition might be built with angles

of incidence close to normal incidence and thus avoid this reflection problem.

In order to make this synthetic space we require some material with u/u
greater than one and greater than or equal to e/e for the same material.
Also the conductivity, o, should be sufficiently low such that the relaxation
time, €/0, of the material be much larger than approprlate times of interest
(such as transit times on the structure). The. permeability and permittivity
should be approx1mately lnaependenc of frequency for frequencies of interest.

1. Capt Carl E. Baum, Sensor and Simulation Note XXXI, The Conical
Transmission Line as a Wave Launcher and Terminator for a Cylindrical

Iransmission Line, January 1967,



One group of materials which might be considered for this applicat.uu 1s the
ferrites. If the ratio, u/e , of the material is too large it might be lowered
by mixing the material with an insulating dielectriz in appropriate proportions.
If the propagation speed in the material is slower than desired it might be
increased by lowering both u and € by decreasing the mass density of the
material, possibly by foaming or mixing with a foam.

Besides lenses for launching plane waves on cylindrical transmission lines,
such a synthetic space material might have other uses. As suggested (private
communication) by Dr. R. Partridge of LASL such a material might also be advan-
tageously employed in electromagnetic sensors. If one is willing to vary the
propagation speed in the synthetic space as a function of position perhaps one
could further improve devices such as lenses by smoothly bending electromagnetic
waves in particular desirable manners.

Particular interest lies in the case in which the wave impedance is the
same as free space because of the typical application (say for electromagnetic
plane wave simulators) in which the electromagnetic wave is in air. There
might be other cases, however, in which one is concerned with media (such as
dielectrics) with wave impedances other than that of free space. In such
cases materials with different electromagnetic propagation speeds but with
the same wave impedance may still be used to achieve the same kind of effects.
Even though a particular wave impedance is considered in this note, the
results apply for a general wave impedance.

II. Reflection and Reffaction at an Interface With a Svnthetic Space Medium

Consider, then, what happens at the interface of two semi-infinite media
as illustrated in figure 1. Medium 1 is defined by negative r and medium 2
by positive z with scalar electromagnecic parameters (£, i, and g) for each medium
appropriately subscripted. The incident wave impinges on the interface from
medium 1 at an angle, £,, with the negative z axis. The direction of propaga~
tion of the incident waVe (and of the other two waves as well) is parallel to
the (x, z) plane, determining the direction of the x and y axes. The incident,
transmitted, and reflected waves are designated by subscripts 1, 2, and 3,
respectively, and similarly have angles defining their propagation directions
as illustrated in figure 1. -

First,consider the ralaticns among the angles defining the propagation
. directions for the three waves. The electric field, E, in the three waves is
normal to the propagation directions and has the forms for the incident wave

E = Ele-jkl[xsin(gl)+zcos(£l)]

(1) i
for the transmitted wave
E = Eze—jkz[xsin(£2)+zcos(£2)] . 2)
and for the reflected wave
E = £ye iy lxsin(Ey)zcos (Gy)] (3)
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where in the formulation (and in others to follow) a time dependence of the

form eJ¢t is assumed, but suppressed from the expressions. Similar expressions
apply for the magnetic field in the three waves., Either the electric or magnetic
field is assumed parallel to the y axis and a more general polarization of the
incident wave can be decomposed into these two cases, which are considered

later. The propagation constants and wave impedances are of the forms

k = V-jwu(o-i-jwe) “ (4)

and

Ton
g+jwe (3)

respectively, and these parameters are subscripted to apply to each specific
medium. For a polarization of the incident wave with one field component
parallel to the y axis, the electric and magnetic fields are related by the
wave impedance in each medium and the results apply to many cases Ef we let
the angles defining the propagation directions be complex numbers. For this
note the interesting cases have these angles as real numbers.

If the three waves as in equations (1) through (3) are to match along
the interface (z = 0), then it is required that

k,sin(§) = k,sin(g,) = k;sin(§,) (6)
This reduces to the familiar relationships

g = &y 7

klsin(il) = kzsin(gz) (8)

which are known as Snell's laws. From equation (7) then §., is dropped from
further consideration. Since we are interested in the casé for which the
incident wave is a plane wave with §, a real number we can see from
equation (8) that for £, to also be rgal it is necessary that the ratio
kl/k2 be real. From equations (4) and (5)

k Z

b T (9
kp My g i

For real u's and equal Z's (which is required later) this ratio is a
real number, and then &, is also a real number. Note that this relationship

does not require that the ¢'s be zero, although this is also required
later.

2. J. A. Stratton, Electromagnetic Theory, Chap. IX, 1941,



Now consider the transmission and reflection of the waves at the inter-
face between the two media. The transrission and reflection coefficients are
given by Fresnel's equations. First, let the electric field in the incident
wave (and also the electric field in the other twe waves) be parallel to the y
axis as illustrated in figure 2A. This polarization is designated by a sub-
script, e. The direction of the fielc components indicated in the figure is
taken as positive for each field component. Applying the boundary conditions
at the interface gives for tangential E '

E, + Ey = E, . (10

and for tangential H

chos(il) - B cos(i ) = cos(E ) (11)

Replacing H by E/Z gives

COS(EI) COS(EZ)
(El E3J -Egi——- = E2 “—EE;__— | (12)

Eliminating one of the E's in equations (10) and (12), the ratio of the
other two can be found. This gives a transmission coefficient

-1
I T e R DR s
e L, Zl Hl 22 cos(El) {13)
and a reflectica coefficient
.. E; cos(&,)
E, . Z, cos(gy)
R &= e 2= e = = (14)
e 1 1 - ; cos(iz)
52 Los(El)
where these are related as
Te =1+ Re : {15)
With equation (8) T anéd X czn be expressed in terms of either El or Ez,

the other being elifiinateds

Similarly consider the transmission and reflection coefficients for
the case that the magnetic field in the incident wave (and also the mag—
netic field in the other two waves) is parallel to the y axis. This case .
is illustrated in figure 2B and is designated by a subscript, h. Applying
the boundary conditions at the interface gives for tangential H

H, + Hy = B, (16)
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and for tangential E

Elcos(al) - Escos(sl) = EZCOS(EZ) (17
Replacing E by HZ gives

(Hl - H3) Zlcos(gl) = szzcos(gz) . (18)

Eliminating one of the H's in equations (16} and (18), the ratio of the
other two can be found. This gives a transmission coefficilent

-1
H2 Zl E2 Z2 cos(Ez)
Th=H—=———=2 l-{-E-————cos(g) (19)
1 271 1 1
and a reflection coefficient zz cos(gz)
] - =
H3 E3 Zl cos(&l)
Rh=—=——= (20)
Z cos (£,)
1 1 1 +,_g 2
2l cos(&l)
where these are related as
T, =1+R, | (21)

Again using equation (8) we can eliminate El or 52 from Ty and Rh.

Suppose now that we restrict the electromagnetic parameters of the two
media by the relatiomship

2 _H2
e, H

qlhg

(22)

| aad

1

Also let these parameters be independent of frequency (over a range of
interest). Then the ratio of the propagation constants, ka/k., is a real
number, independent of frequency, so that from equation (8) for a fixed real
€1, €2 is a real number and independent of frequency. The two wave impedances
are also equal. Referring to equatioms (13), (14), (19), and (20), note

that the transmission and reflection coefficients now have the same form,
independent of polarization. These now have the form for the transmission

coefficient -1 .
COS(EZ)
T =2 [l + EEEZEI; . (23)

and for the reflection coefficient



cos(Ez)

L- cos (§,)
R cos(iz) (24)
1+ ——
cos(El)
Substituting for &2 from equation (8) gives
.- ZCos(El) (25)
T et
cos(El) +\/1 -(E;) ‘51n(51j
and
cos(g,) -1 -t{—l' z(sin(i ))2
1 k2 1 (26)
R =
.\/ k)2 2
cos(gl) + _(E;) (51n(£l))
Note that for normal incidence (£, = 0) the reflection coefficient is zero

and the transmission cocefficient “is unity.

Consider now the case that one of the media has parameters equivalent
to free space, i.e., it has permittivity, €45 permeability, u_, and conductivity,
zero, over some frequency range of interest. From equation (82) the other
medium has zero conductivity and has the same wave impedance as, but a slower
propagation speed than, the former medium. We call this other medium a
synthetic space medium. Define for this kind of medium a relative permittivity

e =& | (27)

a relative permeability

U
o= = (28)
r My

and a relative propagation speed

VU €
8 = -9 .9 _ 1 (29)
V ue Vi Ep

For a synthetic space medium these three parameters are related as =

- - 1 ' ST
Ep T M 3 (?0)

Then by specifying 8 the other parameters of the synthetic space medium are
determined. Actually, if one regards these parameters as applying to the
relative values of the permittivity, permeability, and propagation speeds
between two media (without requiring that one medium have the free space
parameters), the equations for the transmission and reflection coefficients

still apply.



For an electromagnetic wave travelling between a medium with free space
parameters and & synthetic space medium there are two cases to consider. First,
let the incident wave be in a medium with free space parameters. Using a sub~
script, 1, for this case, there is a transmission coefficient

2cos(§.)
T, = 1

1 2 2
cos(El) +'\/€— 8 (Sin(il)) (31)

and a reflection coefficient

cos(&l) -\[l - Sz(sin(il))z

1
cos (g, +Vi o Sz(sin(il))z

Second, let the incident wave be in a synthetic space medium. Using a sub-
script, 2, for this case, there is a transmission coefficient

2cos(£l)
T, = (33)

2 1 2
cos(;l) +\/l - EZ (sin(il))

and a reflection coefficient

cos(e)) /1 - L, (stn(e )2
R, = (34)
cos(§,) -i-\/l - L (sin(g))?

1 BZ 1

There 1s a certain antisymmetry in these two cases, as can be seen by
rewriting R, in terms of &y as

w0

cos(5,) <\/1 - 8%(sin(g,))?

Ry =- ' (35)
: 2, . 2
cos(Ez) +\V1 -8 (SIH(EZ))

Then, for a synthetic space lems, if it can be arranged to interchange the
values of £, and Ez for the electromagnetic wave on entering and on leaving
the lens, Ry will be the negative of R;. The possibility of interchanging
the values of €, and €, 1is consistent with equation (8) since the values

of kl and k, are interchanged between entering and leaving the synthetic
space medium. .

For small angles (gi and 52) the reflection,coefficients are small
and can be expanded to give similar expressions. Equation (32) reduces to -

2 2 :
3 &
s T -
l: 2 T 2 “—Z (l'B) (36)
b-8) o 4
. 2 2

10



Similarly equation (35) reduces to

£2
2 2
R, =7 (1-87) (37)

For small angles then the reflections are quite small, and may produce
negligible effect in many cases.

III. Approximate Synthetic Space Lens

With such a synthetic space medium, then construct a lems as illustrated
in figure 3. As illustrated, let this example of a lens be a plano-convex
lens. This lens is placed at the juncture of a conical and a cylindrical
transmission line. The parameters for these transmission lines are the same
as those used in a previous note.3 For convenience, we list some of the
pertinent equations which relate these parameters from this previous note and
expand the expressions for small angles (9's). There is the transition para-
boloid along which the potential distributions for the TEM modes on the two
transmission lines match given by

r 2 z
1 - _1

2z =1- z (38)
o o

in coordinates appropriate to the cylindrical line or

p 62
X 2 L
z l+cos(61) L+ 4 (39)

in coordinates appropriate to the conical line. Also on the transition
paraboloid the two coordinate systems ralate as

0 9 '
- 1. L
= tén‘ 2 } = 3 (40)

r
2z
o

The two transmission lines are considered as equivalents of each other

as discussed in the previously referenced note in that the conductors of
each transmission line, if extended in their particular geometry to the
transition paraboloid, match each other on that surface. Inside the lens,
however, the conductors will not necessarily have exactly the same geometry
in this case. Note that the relatiomns for the transition paraboloid also
give an optimum relation for mapping potential distributions from the
conical line to the cylindrical line and vice versa. Ideally a lens
preserves this mapping relationm.

Considering &, as the maximum angle for significant fields on the
conical transmission line, make the intersection of this line with the
transition paraboloid the maximum angular extent of the lens. This

3. See reference 1.
11
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intersection with the transition paraboloid is a circle with coordinates
(p3,6 ) and (r3,z ) as appropriate to the two coordinate systems. The lens
being considered gas boundaries given by a plane, z = z3, which is perpendi-
cular to the z axis, and a sphere, p = p,, which is centered on the apex of
the conical transmission line. This lens has cylindrical symmetry about

the z axis. Since r3 is the maximum r for significant fields, one would
normally expect all the conductors on the cylindrical line to have r's less
than or equal to r3. The transmission line conductors then go right through
the lens to join the two transmission lines. Significant fields may not
extend to r, for all angles (¢) aroung the z axis, in which case part of

the lens near its edge (for such angles) may be removed without significant
effect on the lens performance.

From the previously referenced note we also have a dispersion distance
given by

ri ) [ ei
dl = EE; = Zzotan T %%, 3 (41)

This represents the approximate extra distance that a wave off the z axis
travels, over that travelled by the wave on the z axis, in going between a
spherical wavefront on the conical line and a planar wavefront on the cylindri~
cal line (in either direction). This dispersion distance is largest for the

largest r of significance, ry, giving

2 2
T3 %, !
dy = 3z - 2z tan > %25 (42)

o]

The effect of the lens is to slow down the wave for distances which
decrease, the farther the propagation path is from the z axis, in such a

, manner as to compensate for the above dispersion distance. Consider a

typical propagation path designated by €; on the comical line and rj; on
the cylindrical line as illustrated in figure 3. Ideally these two
coordinates are related as in equation (40). Since we are considering
the case of small 6, the distance, ty, that the wave travels through the
lens is approximate%y the same as if the lens were not there. The propa-
gation velocity is, however, less so that the transit time over this
distance is longer. In order to approximately match the transit time

. between a spherical surface (constant o) on the conical line and a plane

(constant z) on the cylindrical line set

(i -1 t;] = d3 - dl (43)

8

The left side of the equation represents the additional transit time
introduced by the lems, but converted to an equivalent distance. This .
equivalent extra distance is used to increase tle dispersion distance,
di, for the propagation path of interest to the maximum dispersion
distance, d3j. If we can choose § such that the equation holds for

0< 6.<83 then the transit times will be matched for all propagation
pathsS of interest in going between the two transmission lines.

13



For small 61 equations (41) and (42) give

z
= =2 [g% . g2
d3 = d; =3 (63 91) (44)
Also the lens thickness for small 81 is approximately

p z :
£, = 0, [cos(el)-cos(63)} ¥ —% (6§ - ei) = 52 (Gg— ei) (45)

Equation (43) is thenr satisfied by

1
B =73 : (46)

independent of 6. (for small 8,). This choice is then used for further
considerations. “Note that equation (43) is exactly satisfied for 8; = (4
where tl = 0. Also for 61 = (0, using equation (39)‘for Pgs ty becomes

£ = Py -2y = 03[l—cos(63)}
5170 1-cos (83) ) ( 93)
= 2z, I;z;gzgga = 2zotan 3 (47)

which is precisely the same as dj. Thus, with this choice of 8, equation
(43) is exactly satisfied for 8, = 0. This plano-convex lens then does
closely match the transit times between the two transmission lines.

Another consideration is the degradation of a wave in passing through
the lens due to reflections at the surfaces of lens. Let the wave be travel-
ling from the conical to the cylindrical line. The angle of incidence at
the planar surface of the lemns is 6, as illustrated in figure 3. From
equation (8) we have for the angle, 9,, of the transmitted wave

Bsin(8;) = sin(6,) (48)

which for small 61 and the chosen B reduces to

1
Oy = 88, = 7= | (49)

In going between the two transmission lines the propagation path should

bend through a total angle, 6.. Conveniently, for small angles, half of
the bending is accomplished at the first lens surface, leaving the other
half to the second surface to minimize the reflections. The reflection

at the first interface is now, from equation (36),

e2

S 1 .02 - 3 .2
Rl 4 (1-87) 16 el (50)

14



which for small 6, is rather small. At the second surface of the lens
(the spherical surface), for small 9, so that t<<z,, the angle of
incidence is el - 8, or approximately 94 since the surface is normal

to a line of constant ©; from the conical apex and 6, is the deviation,
in the lens, of the propagation path from that line. Then from equation
(8) the angle of transmitted wave is approximately 91 so that the
propagation path ends up parallel to the z axis as desired. The
reflection at the second interface is, from equation (37),

62
1 2 3 2 ‘
R—_ - = — 8 .
R,z 5 16 1 (51)

There is then a net transmission coefficient, T4, counting only first
reflections, due to the reflections at the two surfaces of

3 g2 3 52 9 a4
= = - - 8 —= § = ] e 8

For small 91, Ty is very close to ome.

From equation (52) ome can see another advantage in bending the
propagation path through half the total angle at each surface. The terms
involving the square of the angles cancel. Since the angles for the
incident and transmitted waves at the two surfaces of the lens interchange
at each surface the net transmission coefficient of equation (52) applies
to waves going in either direction. This combination of a synthetic space
lens with equivalent conical and cylindrical transmission lines can then
be used to launch and/or terminate plane waves on a cylindrical line. If
the lens properties of matching the transit times and of small reflections
are frequency independent over a sufficiently large frequency band, then
the combination of the lens with the two transmission lines can be used
with pulsed waves.

In combining the two equivalent transmission lines with the plano-
convex lens, there are various ways one might join the transmission lines
and the lens. The conductors of the two transmission lines might extend
directly into the lens, joining at the transition paraboloid. Alternatively,
and a little better, the conductors can join by following a path which
is also a propagation path through the lens. The transition of the conductors
then follows the transition of the wave.

This plano-convex synthetic space lens is, of course, but one possible
lens design, albeit one with some desirable characteristies. It may be
advantageous to use a synthetic space material with a 8 other than 1/2,
in which case the lens geometry would change somewhat. One might even
make a synthetic space lens with B8 as a function of position in the lens, -
in an attempt to make an even better match and/or allow a conical trans-
mission line with larger 84. Perhaps more than one lens.could be used
in a transition assembly, Such as one in which one conical line matches
into a more gradually tapered conical line which in turn matches into
a cylindrical line. This lens technique might even be combined with the
multiple conical transition assembly discussed in the previously referenced
note. In that case a separate lens might be used to improve the match of
each conical line in the array of conical lines into the one cylindrical
transmission line. There are many possibilities for employmert of synthetic
space lens devices and the above list probably does not exhaust such
possibilities.

15



IV. Summary

A conical transmission line, matched into a cylindrical transmission
line, is used to launch and/or terminate a plane wave on the cylindrical line.
The match of the two transmission lines can be improved by placing arn appropriate
lens at the juncture of the two lines. This lens transforms a spherical wave
on the conical line into a plane wave on the cylindrical line and/or vice
versa. An example of such a lens is the plano-convex lens considered in
this note. One can note for the lenses that their focal length should be
the same as the length of the conical transmission line. Thus, a plane
wave on the cylindrical line, propagating toward the comical line is focused
at the apex of the conical line. Certain concepts from geometrical optics
can then be applied to such a lens system. This planc-convex lens is not
perfect in that it only matches the wavefronts on both transmission lines
for small divergence angles for the conical line. In other words, it has
spherical aberration, a common feature found in optical lenses.

There are important features required of a lens for matching a conical
and cylindrical line which are not necessarily required of an optical lens.
The reflection coefficients must be small and the propagation velocity nearly
constant over a frequency band of interest, particularly for use with pulsed
waves. One way to achieve these low reflections is to make the lens from
a synthetic space material which is, by definition, a material with the same
wave impedance as free space but with a slower propagation velocity than
free space. In addition, the angles of incidence of a wave on the surfaces
of a synthetic space lens should be kept close to normal incidence to minimize
the reflections. Another feature of this kind of lens matching system is
that the conductors which form the transmission lines may pass right through
the lens, or in some cases form part of the boundary for the lens.

A limitation on the design of such synthetic space lenses is, of course,
the degree to which synthetic space materials with various propagation velocities
can be realized under the present and future state-of-the-art. Perhaps a
mixture of some insulating, high permeability material, such as a ferrite,
with an insulating dielectric would be appropriate. For pulsed waves the
permittivity and permeability of this synthetic space material should be
approximately constant over an appropriate broad frequency band. With such
synthetic space materials, various new electromagnetic devices may be possible,
including lenses for transitioning waves between conical and cylindrical
transmission lines.
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