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SENSOR AND SIMULATION NOTES

THE EXTERNAL ENVIRONMENT OF VPD-11:

GROUND-WAVE FIELD

Kendall F. Casey
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Fremont, CA 94538

Abstract

The electromagnetic field of the VPD-11 EMP environment simulator

is considered, with particular attention being given to the field near the

air-ground interface. The simulator antenna is modeled as a distribution

of conical ring dipoles. I he irequency-domain radiated field is evaluated

asymptotically using saddle-point integration techniques. Time-domain re-

sults are obtained using numerical inverse Fourier transforms. It is found

that, for typical pulser charge voltages, the field close to the air-ground

interface is less than one kV/m at a range of one kilometer.
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1 Introduction

In a previous note [1] we considered the electromagnetic field of the VPD-11 EMP

environment simulator, confining our attention to the far-zone space-wave con-

tribution to the total field. This contribution vanishes as the observer position

approaches the air-ground interface. To complete the description of the VPD-11

field, one must also consider the ground-wave contribution. This contribution to

the total field is dominant for observers near the interface. We consider the total

field of VPD-11 in this note, giving particular attention to the ground wave.

In the next section we consider the electromagnetic field of a conical ring dipole

over an imperfect ground. This source, which is modeled by a closely spaced

pair of magnetic-current loops, represents a ring-shaped segment of the VPD-11

antenna. Then in Section 3 we carry out the asymptotic evaluation of the conical a

ring dipole field and obtain the space-wave and ground-wave contributions to this

field. The integration over a distribution of conical ring dipoles is carried out in

Section 4, wherein we evaluate the space-wave and ground-wave contributions to

the field of the VPD-11 antenna in the frequency domain. Numerical results for

the time-domain electric field radiated by VPD-11 are presented and discussed in

Section 5. We use equivalent circuits which represent the Marx generator and the

antenna input impedance to obtain the frequency-domain current at the antenna

feed point. The time-domain radiated electromagnetic field is then obtained via

numerical inverse Fourier transformation. Section 6 concludes the note.
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2 Field of a Conical Ring Dipole Over an Im-

perfect Ground

The VPD-11 antenna is a resistively loaded wire mesh cone. The resistive loading

on the antenna is designed to produce a surface current density ~~(F ‘, t) which

behaves as

@’, t) = L-J(t– 7“/c)(l – 7“/7’.)

27rr’ sin 190
& (O <r’ < ro) (1)

where r’ is the radial coordinate along the surface of the cone and To is the slant

height. The unit vector in the radial direction on the cone, whose internal half-

angle is O., is &. The current at the feed point is lo(t)and c denotes the speed

of light. Since the surface current density vanishes at r’ =

upper edge of the antenna and from the top cap is small.

The surface current density on the antenna is given in

(the time dependence exp(jwt) is assumed) by

To, radiation from the

the frequency domain

io(ju)(l – r’/ro)e-~~r’
~ (;’) =

27rr’ sin 00
;Tl (o < r’ < ?-0) (~)

where ~o(jw) is the frequency-domain current at the base of the antenna and

k = w/c is the free-space propagation constant. We define a “conical ring dipole”

as the segment of the antenna lying between r’ and r’ + A-’, for 6’ = O.. It

is not difficult to show using duality [2] that the field radiated by this source

is identical to that of two

magnet ic currents + V. and

magnetic-current

located at r = r’,

3

loops carrying equal and opposite

0 = 90 and 00 – d$o with
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magnetic currents +Vo and located at r = r’, 8 = 00

201(+’”
Vod60 = –—

2xj kr’z sin O;

and 00 – dOo with

(3)

where 20 denotes the

i(r’)

Integration over a set

intrinsic impedance of free space and

= jo(j~)e –~~”(1 – #/ro) (o <7-’< ?-0) (4)

of such sources yields the field of the VPD-11 antenna. We

therefore begin by considering the field of a single magnetic-current loop over an

imperfect ground.

2.1 Field of a Magnetic-Current Loop

The geometry of the problem is shown in Figure 1. A loop of magnetic current V.

is centered on the z-axis at z = z’ > 0. The radius of the loop is p’ and the plane of

the loop is parallel to the z = O plane. The region z >0 is free space. The region

z < 0 is an imperfectly conducting medium of (complex) relative permit tivity ;T.

The electromagnetic field is independent of the azimuthal coordinate ~ by
.-,

symmetry. Its components are E@,E=, and H@, which can be expressed in terms

of a scalar function + by

~ = 20 (32$——P jkq ap~z

‘Z=$(kzq+a”
4
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(6)
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Figure 1: Geometry of the problem.

(7)

The function + satisfies the scalar Helmholtz equation, subject to appropriate

boundary conditions; and q = 1 for z > 0, q = t, for z < 0. Expressions for @

which are appropriate for the air and ground regions are

(s)

(9)

where the function AP(~ ) describes the field radiated by the magnet it-current loop

in the absence of the ground. The function R(A) is to be determined and JO(.)
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denotes the Bessel function of order zero. The square roots are to be taken such

that ~i= ~ O and %<- ~ O to ensure satisfaction of the radiation

condition as z + ~m.

The expressions for @ given in eqs. (8) and (9) above ensure that Ho is

continuous at z = O. In order that EP be continuous at z = O, it is necessary that

(lo)

whence we obtain

R(A) =
~r-– ~

(11)
G-+ d’m

The function R(A) is simply the Fresnel reflection coefficient for plane waves polar-

ized parallel to the plane of incidence, expressed in terms of the spectral variable

A.

The primary-excitation function AP(~) is found by enforcing the condition that

whence we obt sin, upon inversion of the Fourier-Bessel transform,

which completes the solution for the field of the

imperfect ground.

6
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2.2 Field of a Conical Ring Dipole

Now write p’ and z’ in terms of the spherical source

p’ = r’ sin 00

Z’= r’ cos60

and construct the field of a second magnetic-current

coordinates r’ and 60 as

(15)

(16)

loop (carrying magnetic cur-

rent –VO) at r’, 00– dOo.The total potential d+t due to the two sources is given

for z > z’ by

where

II(r’; O.;~) sin OoJ1(~r’ sin ’90) Cos 00 (1s)

+ R(’A)f3-JRr’c0980 1

Substituting for VodOo from eq. (3), converting the integral in eq. (17) into one

along the entire A-axis, and using eq. (7), we obtain the magnetic field of the

conical ring dipole over an imperfect ground in the region z > z’:

dHd =
i(r’)dr’ JmH[2)(Ap)e –j- Z .

8~jr’ sin 60 -~
(19)
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where 17~2)(”) denotes the Hankel function of the second kind, of order one. We

now consider the evaluation of this field when k~~ + m.

3 Asymptotic Evaluation of the Conical Ring

Dipole Field

In this section we carry out the asymptotic evaluation of the field of the conical

ring dipole over an imperfect ground. In so doing, we obtain the space-wave and

the ground-wave contributions to the total field. We begin by introducing the

large-argument asymptotic form for the Hankel function

and making the changes of variable

p=rsin O

~=rcosg

~=ksin~

in eq. (19). We obtain
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where

G’(() = ~jkr’cosoo . ..( [cos 0. sin ~ J.(kr’ sin 00 sin f) (25)

–j sin 00 cos f JI (kr’ sin 00 sin ~)]

•t R(k C05 {)e–jkr’cosoo . ..c [COS00 sin~ JO(kr’ sin e.sin ~)

+ j sin 00 cos t Jl(kr’ sin 190sin ~)]

where C< is an appropriate integration contour in the complex f-plane.

The complex ~-plane is shown in Figure 2. The branch cuts between < = –r

and f=O, f=randif=2~, . . . and the branch cuts on ~(~) = –7/2, 3ir/2,

. . . arise from the factor (sin ~)li2 in the integrand of eq. (24). The additional

branch cuts, which arise from the reflection coefficient R(k sin ~), are defined

rsuch that G c, — sln { = O on the cuts. The exposed sheet is that on which

9&=xFf <0. The reflection coefficient has poles located at

(26)

The poles on ‘the exposed sheet (that is, poles for which ~~t, – sin2 ~ < O) are

located where
.

Cos[ = J& (27)

The pole which will most strongly influence the field of the conical ring dipole is
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Figure2: Thecomplex ~-plane.

located where

Re(C)

(2s)

where A. > 0 and Ai > O; and A, and Ai depend upon ~,. This pole is always

located between the branch cut originating at sin f = & and the lines J?(f) =

r/2, g(f) z O and W(t) > ~/2, ~(~) = O. The integration contour Cc runs from

~ = –7r/2 – joo to ~ = –7r/2, passing just to the right of the branch cut along

s(~) = –7r/2; thence to f = m/2, passing just beneath the branch cut which

originates at ( = O; and finally to ( = ~/2 + ~W.

Now deform the integration contour C< into the steepest-descent path SDP

which passes through the point ~ = 0. The steepest-descent path is defined by

.
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the condition

Cos(( – e) = 1 –j;

where q is real. Next separate out the singular behavior at

G(c), writing

(29)

t = Cpof the function

(30)

where A denotes the residue of G(.$) at the pole. The sum of the first two terms

on the right-hand side of eq. (30) is analytic at ~ = (P. We note that in deforming

Cc into SDP, one may encounter the branch point at sin ~ = W for observation

angles O greater than some minimum value which depends on t~. It can be shown

that the contribution to the total field associated with this branch point and its

associated branch cut is small in comparison to the space-wave and ground-wave

contributions, and we do not consider it further.

Introduce the approximation

near the saddle point. Since kr >> 1, we extend the integration range on q to

(-00, co), yielding for the integral in eq. (24)

dfid - ()kj(r’)dr’ 2jk 1’2~_jkr j=,d

8X
e.

rr

{Jm~–kr#/2

—w
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where we have evaluated the slowly varying factor (sin ~)*i2 at ( = O and extracted

it from the integrals. Now the function in square brackets in the first integral of

eq. (32) varies slowly with q near the saddle point, so it can be evaluated at q = O

and extracted from the integral. There remains simply

(33)

The second integral can be evaluated in terms of the error function of complex

argument w((), defined by [3]

w(f) = e-c’erfc(–j~)

We have

(34)

(35)

Expressing dHb in terms of these results and using the relation d~e = ZOdfi~,

where Ee is the &component of the frequency-domain electric field, we obtain

dEO =
jkZOj(r’)d# G(~)e-~kr

4m

e3rF’,[K(&-(3)]
–jkj(r’)dr’A _ k

47rr(e – (p)

(36)
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The first term on the right-hand side of eq. (36) represents the space-wave field

of the conical ring dipole. The second term represents the ground-wave field. The

function F=(.) is the Sommerfeld attenuation. function [4] defined by

F,(() = 1 – W (w(j<) (37)

The residue A is easily shown to be

where

●

()
2;:/2

A=— ~-jkr ’ COS60 COS(p .

2-1

[sin Q cos 19.JO(kr’sin 0. sin &) + j cos f, sin ~o~l(kr’ sin 00 sin ~,)]

Cosq =
ii%

(38)

(39)

(40)

This completes the asymptotic analysis of the field of a conical ring dipole over

an imperfect ground.

4 The Electromagnetic Field of VPD-11

In this section we use the result given in eq. (36) for the field of the conical ring

dipole to evaluate the field of VPD-11. We consider first the space-wave field.
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4.1 Space-Wave Field

The space-wave electric field dEe.

by

of the conical ring dipole is given for kr >> 1

dEe, =
()

jkzo~o(jw) ~-jkr ~ _ ~ ~-jkr’G

4m
(T’; 9)dr’

r.
(41)

where r’/ro < 1 and we have indicated the dependence of G upon r’. To obtain

the space-wave field for VPD-11, we simply integrate the expression given in eq.

(41) over r’ from r’ = O to r’ = ro. We express the Bessel functions which appear

in G(r’; 0) in terms of their integral representations as follows:

Jo(kr’ sin 190sin 8) = & ~
2* ~jkr’ sin 80 sin 6 cos &’d

d’ (42)

2X
Jl(kr’ sin 00 sin 6) = ~ ~ eJkr’‘in’0 ‘ino ‘0s4’ cos $’d~’ (43)

We next carry out the integrations over r’. We obtain for the space-wave electric

field ~8, the integral expression

–Zolo(ju)e-~kr 1 2“
&,(r, O) =

/Go
dg$’.

4im

{(– sine cos@o+ cosesin 90 cos gS

)l–cos Ocos Oo–sin Osint?ocOs& “

[

1 _ e-jkro(l-cos6 cosk-sin @sin (7o cosd)

111–jkro(l – cos 6 cos 00 – sin Osin 00 cos #) –

14
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R(k cos 0)
(

sin Ocos 00 + cos Osin 60 cos #’

)l+cos Ocos&-sin Osin130cos@ “

r. 1 _ ~jkro (1+.0s Ocos Oo–sin O sin 00 cos @’) 1 ]

which agrees with the integral representaticm for the space-wave field given in [1].

Evaluation of the integral over q$’and of the space-wave field was discussed in [1].

4.2 Ground-Wave Field

The ground- wave electric field dEeg of the conical ring dipole is given for kr >>1

by

dEOg =
–jkZo~o(ju)e-jk’

47W(0 – (p)
F=[@,p+]. (45)

()1 _ < e-jkr’A(r’)&.’
To

where r’/ro < 1 and where we have indicated the dependence of A upon r’. To

obtain the ground-wave field of VPD-11, we integrate the expression given in eq.

(45) over r’ from r’ = O to r’ = ro. Again expressing the Bessel functions in terms

of their integral representations and carrying out the integration over r’, we obtain

for the ground-wave electric field EO~ “

Eog(r,6) =
–ZJo(ju)e-Jkr

4m(0 –&) (-) F@’’p-o’] ~

~15
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b..

/(k o’”d~’sin & cos 00 + cos (P sin 00 cos @

)1 + cos & cos & – sin co sin 00 cos @ ‘

[

1 _ ~–j~ro (l+cos 6’0 cos <p-sin <p sin 00 C09 4’)

1 – jkro(l + cos & cos 00 – sin& sin 60 cos 4’) 1
This expression can be written in the form

E9,J7-,0)=

where

–Zoio(jw)e-jkr 2&2

4m(e - (p) (z+[l%+] ~ (47)

(

i’ ‘3 e-jkro
&-+—

j kro j kro )

&: /(27 O’”d+’

sin lo cos 00 + cos (P sin f30cos @’

)
(48) m

1 + cos & cos f30– sin (P sin 6’0cm 4$’

L=;l 2TdqS
(sin & cos 190+ cos & sin 00 cos #)

(1+ cos f, cos 00 – sin f, sin 00 cos @)’
(49)

2T o’rd~’
i3=~ J (sin & cos f30+ cos & sin 00 cos ~’)

(1 + cosc, cos 00 – sin(, sin do cos ~)’ “
(50)

~- jkro (COS00 Cos[p- sin (p sin 00 cm 1$’)

The integrals ~1 and ~2 can be evaluated in closed form through the use of the

residue theorem. The results are

II = Csc(p – cot (p = &( fi+l) (51)
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(52)

The integral ~~cannot be evaluated in closed form. It can be evaluated numerically

if kro is not too large; and if kr >> 1,asymptotic methods are appropriate. Using

the methods described in [1], we can show that when kro >> 1,

j3 w
1

{

j sin(& – OO)e-~~’OCOS(CP-OOJ
~2xjkr0 sin lo sin 00 [1+ Cos((p - 00)]2

(53)

sin(& + Oo)e–~~roCOS(CP+60)
+

[1+ Cos((p + 00)]2 }

The frequency-domain analysis of the electromagnetic field radiated by the VPD-

11 antenna is now complete. We next consider representative numerical results for

the field in the time domain.

5 Representative Numerical Results

We use the equivalent circuit shown in Figure 3 and discussed in [1] to obtain the

frequency-domain current at the antenna feed ~o(jti). We have

jwrm CaV.
(54)~“(jw) = 1 + j; {Ta + Tm(l + Ca/Cm) + jw[~a~m + (1 + j~’fm)/~31} .

where V. is the pulser charge voltage and

Ta = R=Ca

17
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b.,

.

rm = R. Cm

u:=&
ma

with

Ra = antenna input resistance = 60 Q

C. =antenna capacitance =2.9nF

R. = Marx generator resistance = 3.7 kfl

Cm =Marxcapacitance =5.4nF

L. = Marx inductance = 0.245 pH

The relative permittivity of the ground is described by [5]

(56)

(57)

(58)

a

where c,~ is the high-frequency relative permittivity of the ground and a. is the

low-frequency conductivity. We used values of cr~ = S and UO= 3 x 10-3 S m-l “

to represent the ground near VPD-11.

Using numerical inverse Fourier transformation of the relevant expressions for

the frequency-domain electric field, we have calculated the normalized electric

field e~(r, 0; t) defined by

where

(59)

(60)

—.
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Figure 3: Equivalent circuit for the Marx generator and antenna.

We remark that e. is independent of r when only the space-wave field is considered;

this is not the case when the ground wave is included. Accordingly, we present

results for ee(r, 0; t) at various ranges r and angles 0.

Plots of ed(r, (l’t) as a function of time t for fixed values of r and three values

of 9 are shown in Figures 4 – 7. For each value of r, the peak value and the

rise rate of TO decrease as 0 is increased. We note, however, that ee does not

vanish at 0 = 90°; the space-wave contribution to ee vanishes at this angle, but

the ground- wave contribution does not.

Comparisons among curves for the same angle but

evident that at 0 = 80°, the normalized radiated field is

different

not very

ranges make it

sensitive to the

range r. This result indicates that the space wave is strongly dominant at this

observation angle. At O = 90°, the space wave is absent and the resulting stronger

. .
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Figure 4:

1.
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time (ns)

Normalized electric field eo(r, 8; t) vs. i : r = 500 m; O = SOO,85°, 90°.
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Normalized electric field ee(r, 0; t) vs. t : r = 1000 m; O = 80°, 85°, 90°.
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Figure 6: Normalized electric field eO(r, 0; t) vs. t : r = 2000 m; 19= 80°, 8.5°, 90°.
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Figure 7: Normalized electric field ee(r, 0; t) vs. t : r = 5000 m; O = 80°, 85°, 90°.

21



dependence on range is evident.

The electric field strength seen

readily calculated from the plots.

90°:

by an observer near the air-ground interface is

Assuming VO = 3.5 MV, we find that at t? =

Ee,pkZ 2.27 kV/m at r = 500 m

845 V/m at r = 1 km

314 V/m at r = 2 km

77 V/mat r=5km

The ground-wave field strength decreases approximately as r-3i2. Furthermore,

because of the dispersion associated with the propagation of the ground wave, the

rise rate decreases with increasing range.

6 Concluding Remarks

We have modeled the antenna of the VPD-11 EMP environment simulator as a

distribution of “conical ring” dipoles over an imperfect ground. The field of a

single such dipole is evaluated in the frequency domain using saddle-point inte-

gration techniques to yield an asymptotic representation for the field valid when

kr ~ m. The space-wave and ground-wave contributions to the total field arise

from this asymptotic representation. Then by integrating these field contributions

over the distribution of conical ring dipoles, using the surface current density es-

tablished on the VPD-11 antenna by the nonuniform resistive loading, we obtained

the frequency-domain radiated field. Equivalent circuits for the Marx generator
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and the antenna were used to obtain the current at the feed point of the antenna.

The time-domain field was evaluated via numerical inverse Fourier transformation

of the frequency-domain represent at ions.

We have presented numerical results illustrating the behavior of the radiated

field as a function of time at various observation angles and ranges. For observa-

tion angles less than approximately 80°, the space-wave field is dominant. This

field decays as r- 1. The ground-wave field becomes increasingly important as the

observation angle approaches 90°. At 19= 90°, the space wave vanishes and the

‘3/2 is the only component of theground wave, which decays approximately as r ,

field. At a ground range of one kilometer, the peak value of the electric field in

the air-ground interface is less than one kilovolt per meter.
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