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Abstract

Efficient numerical solution techniques have been developed and used to
examine the electromagnetic fields that can be developed in the working volume of
the CW Ellipticus antenna operated at frequencies from 100 KHz to 1 GHz. An
elliptically tapered transition section is designed and tested to obtain the desired
illumination pattern in the working volume. A parametric study is performed to

ascertain the performance of the Ellipﬁcus antenna for frequencies up to 1 GHz.
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I Introduction

1.1 Background

The present EMP test facilities at the Weapons Laboratory do not provide
the required high frequency illumination. It has been proposed that a low level CW
facility, incorporating the Ellipticus antenna, be used to provide a horizontally
polarized electric field to illuminate test objects [1,2]. The original design
specifications for the Ellipticus provided for an operating frequency range of 10
KHz to 100 MHz. Upgrading the Ellipticus CW antenna design to cover higher
frequencies may be accomplished by using a transition section from the driver to
the antenna that radiates up to a few GHz. This design is based on an
exponentially tapered transmission line design that has radiator characteristics at the

high frequencies and serves as a matching section at low frequencies.

Due to the wide operating frequency range, a numerical rather than
analytical analysis of the Ellipticus illuminator is required. A suitable procedure
is developed that incorporates the NEC computer code [3]. Since the number of
unknowns increases significantly with the frequency, a novel wire segmentation
procedure-is used [4]. This allows the analysis of very large wire configurations
and provides sufficient accuracy with acceptable computer memory requirements

and computational time.

1.2 Scope of the Investigations

In this report, efficient numerical solution techniques have been developed
to examine the electromagnetic fields that can be developed in the working volume
of the Ellipticus facility operated at frequencies from approximately 100 KHz to
1 GHz.

First, a detailed description of the Ellipticus CW antenna configuration

design is given in order to perform a detailed analysis of the structure under study



[3].

Second, numerical models are developed to compute the fields in the
working volume. The NEC code is used to analyze the Ellipticus configuration [3].
Features of the code include the treatment of a lossy ground plane, various

impedance loading schemes, and several source models.

Third, the iﬁput transition section of the Ellipticus antenna for high
frequency applications is designed. The basic design is accomplished by using
exponentially tapered transmission line analysis. The NEC code is then used to
evaluate the design in terms of the desired radiation pattern for the working volume.
Also, a model of final design of the transition section is constructed and tested.
The test, in general, inciudes radiation pattern testing and input impedance

characterization.

Finally, a parametric study is performed to ascertain the performance of the

Ellipticus illuminator for frequencies up to 1 GHz.

IT Description of the Ellipticus Illuminator

Figures 2-1 and 2-2 [5] show the design structure of the CW Ellipticus
antenna. The Ellipticus antenna configuration is a distributed impedance loaded
wire structure where the wire forms one half of an ellipse, cut along the semi-major
axis, over a lossy grouhd. The antenna is 100m across from the base and 20m at

its highest point, a very large structure in terms of a wavelength at few Gigahertz.

The structure is driven from its highest point, at the center, by a differential
mode CW driver thereby producing horizontal polarization of the electric field at
the ground directly below the source. When a large object is illuminated, linear
polarization is not expected over the entire surface. Typically, the test object is
placed at the center of the Ellipticus antenna on the ground or raised off the ground

on a rail car.
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The antenna is constructed of 0.32 cm diameter, aircraft cable. The antenna
is resistively loaded where the total antenna resistance is approximately 17509,
placed 0.1m apart along the length of the antenna.

III The Exponentially Tapered Transmission Line Design

3.1 Input Impedance Derivation

A transmission line whose impedance per unit length, Z, and admittance per
unit length, Y, vary with distance down the line is known as a nonuniform

transmission line. This transmission line is illustrated in Figure 3-1 below [6].

Figure 3-1: The Exponentially Tapered Transmission Line

One such nonuniform transmission line is the case in which Z and Y vary

exponentially with distance down the line, z, as follows [6]:
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2) = joLe® (3-1)

Y(2) = joChe ™™ (3-2)

Note that L, and C, are the inductance and capacitance per unit length at the input,

respectively. Also, g is the taper factor.

For an exponentially tapered transmission line (ETTL), the voltage and

current vary with distance down the line, z, as follows:
i,

V(z) = Vle"h/z + Ifze‘le (3'3)

/,

I(Z) = Il.e"Yz/z + Ize-'YzZ (3'4)

where the subscripts 1 and 2 denote +z and -z traveling waves respectively and the

exponent terms are defined as

(3-3)
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Also, the differential equations for the variation of voltage and current along the

transmission line are as follows:

i‘% = - ZR)IR) (3-72)
and
22 - - ror (3-7b)



From equation (3-4) and equation (3-7a), the -z traveling current can be expressed

as

-y 1 d -y
I LER = - ——IV e (3'8)
2 7@ dz( e "")

By evaluating the derivative, the -z traveling current can be solved for as

"
I = ﬁ'h_ (3-9)
Jol,
Similarly, I, can be solved for as
AN
I = L (3-10)
Jol,

The input impedance to the transmission line can be expressed as

_ Vo) _ Vi+ ¥, (3-11)

[0y I +1

Substituting I, and I, from equations (3-9) and (3-10) into equation (3-11) yields

VI
1+ — .
Z, = 2 [0k (3-12)
in v P, /
RETU AR
2 v/

The characteristic impedance at any point z on the transmission line can be

| Z@ L, (3-13)
VA = — = —_—p
) J YW G

Note that Z(z) does not represent the ratio of V/I for an infinite line.

expressed as
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The term under the radical in equations (3-5) and (3-6) can be designated as jf.
That is,

B = \JQZLOCO - [%]2 (3-14)

Letting q=0, which is true if the line has no tapering, equation (3-5) becomes

(for g=0)  v'y; = joL,Cy = jofugey = By (3-15)
Evaluating equation (3-13) at z=0, L, can then be solved as
Ly = Z.(0),/iy8, (3-16)

Finally, using equations (3-14), (3-16), and the term f3, from equation (3-15),
equation (3-12) for Z, can be re-written as

ot
—_
V |
z, = Z %)z 0 (3-17)
1
L.ox |-
€} "{1/

If an arbitrary load is placed on the transmission line at z={ (as shown in
Figure 3-1), the voltage and current on the line at this termination point will obey

the following relationship

9 (3-18)

o ()

where V() and I(f) are defined by equations (3-3) and (3-4) evaluated at z=0. Z;

can now be re-written as

v _ Ve s ve™ (jol,
- - (3-19)

L
1(¢)) / " P /
Vle"h:! + Yl/ Vze"fz ¢ Y1

Y



Solving for the ratio V,/V, yields

i
¥,
/

JjB
et —2 | Z0)e? - Z,

_q R Y
= + JpB 1 .
Yo 2 (3-20)
V .
2 g o[ )z e
_.g + f
> JjB

Thus, the input impedance to an exponentially tapered transmission line with
input characteristic impedance Z (0) and loaded with an arbitrary complex load Z;
can be calculated by solving for V,/V, using equation (3-20) and then substituting

this into equation (3-17).

The resulting equation (3-17) is a function of the complex load Z, placed
across the load terminals of the ETTL and of the design parameters of the ETTL
itself, q and Z,,. The NEC modeling of the results for the Ellipticus Hluminator
(EI) using the ETTL as a transition section give the impedance(s) seen by the
voltage source(s) used in the numerical model. This data is to be used along with
the Z;, equation derived above to compute the input impedance of the EI structure

at several frequencies of interest.

In each case, Thevenin modeling of some or all of the ETTL transition
section are used in the NEC model and the values of Z, used in the Z, equation are

found as

Zore - Za = 24 (3-21)

where Zgygc is the NEC source impedance. When no symmetry is used in the
model, the values of Zy. can easily be seen from considering Figure 3-2. When
symmetry is used, two Thevenin voltage sources and loads are used as shown in

Figure 3-3. In this case, Z; is found as

10
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2Zgiec ~Zy = Z, (3-22)

Also, the value of { in the Z;, equation will be the length of the ETTL that
is modeled by its Thevenin equivalent circuit. For all cases, except the 200 MHz
and higher frequency cases, the value of ¢ is 1.935m (indicating the entire ETTL
transition section is being modeled with its Thevenin equivalent circuit). For the
cases of 200 MHz and higher frequencies, the value for ¢ will be 1.935m less the
length of the portion modeled by straight wire segments in the NEC model.

3.2 Transition Section Design

The governing equation for the characteristic impedance of the exponentially

tapered transmission line is [6]
2@ = Zp" (3-23)

where Z (z) is the characteristic impedance at a point z on the line and Z, is the
input characteristic impedance (i.e. at z:=0). For this design Z =50 ohms. Circular

conductors of radius a will also be used for this design.

When the center-to-center wire spacing at a point z, s(z), is at least several

times the wire radius, the characteristic impedance for a two-wire transmission line

can be approximated by {7]

- IR R [E(_Zl} =22 (3-24)
n a

Equations (3-23) and (3-24) can be equated and their derivatives with respect to z
can then be taken. Solving for s’(z), that is the derivative with respect to z of s(z),

yields

11
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Figure 3-3: Basic Circuit Model of the EI when Symmetry Is Used
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s'z) = -'-‘(z)n—z-‘gqe‘?z = s(z)ﬁi _Zc_ (3-25)
1 N2z Z,

Solving for the position along the transmission line, z, yields

= 5@ 7% (2 (3-26)
s'@) M Zo

In these expressions, the term s’(z) is chosen as a constant value to begin
the design. Figure 3-4 below illustrates the exponentially tapered transmission line

used as a transition section.

Figure 3-4: Transiton Section

Choosing the 37 degree angle below yields s’(§)=1.50711.

Evaluating equétion (3-24) at the end of the transition section, at z={, and
noting that N=120n yields

Z(0 = 120 m{ﬂ} (3-27)
a

o ;s



Evaluating equation (3-26) also at z={ yields

. S0Z®  [Z© (328
120 S/(Q) ZcO

The design of the transition section can then be completed by choosing a
value for s(@) and computing the resulting Z(¢) and the length £ Choosing
s()=0.4m yields Z (0)=413.98 ohms and ¢=1.935m. These were the values
selected for the transition section design. These parameters for the transition
section yield a 50Q2 to 413.98Q transition of characteristic impedance over its

1.935m length.

This transition section will also have a lower cutoff frequency that can be

calculated as [6]

0 = 1 (2) (3-29)
’ VLDCU' 2

In equation (3-29) q can be solved for from equation (3-22). Using the design
parameters mentioned above, this yields q=1.0924 and a cutoff frequency of

f =26.07 MHz.

3.3 NEC Modeling

The exponentially tapered transmission line driven with a 1V source can be
replaced by a Thevenin equivalent circuit for the portion from z=0 to z={", £’<{,
as shown in Figure 3-5 below. This model will be accurate to use in the NEC
model as long as the wire spacing of the transmission line at z={¢’ is much less than

one wavelength.

The Thevenin equivalent model will have V=V (2’) and Z,=V  (8’)/L.().
Expressions for V,, and Z,, can be derived using the open circuit and short circuit

conditions on the circuit of Figure 3-5 [8].

14




Figure 3-5: Thevenin Equivalent Circuit

The voltage and current on the exponentially tapered transmission line will

obey the following relationships [6]

" Wz) = Vleﬁ'"“lz + Vze'y‘ﬂz (3-30)

o1 (3-31)

/ Vi
1) = Vi, e-n’z . Vot
Jwl, | JoL,
Under open circuit conditions, the voltage at z=0 and the current at z={" can be

expressed as
V() = 1 - I0)Z,(0) (3-32)
and
=0 (3-33)

Evaluating equation (3-31) at z=¢’ and equating it with equation (3-33) yields

o ;



- ﬂ] et (3-34)

Evaluating equation (3-30) at z=0 and equating it with equation (3-32) yields

Z.0)

4 .
Jol,

1

+V,=1 (Vlyl’ + 271”) (3-35)

Equations (3-34) and (3-35) can be used to generate expressions for V, and V,.
These expressions will then be used in equation (3-30) with z=0" to yield

V=V (0).

From equation (3-35), V, can be found in terms of V, as

"
1-V,|1+ Z(Oi]
v, = 1ok, (3-36)
[1 . zccO)v,’J
joLy

Substituting equation (3-36) for V, in equation (3-34) and solving for V, yields

-1
(3-37)

o1t - 1)

v, = |1

Zon) (), 20v) (1
jol, joky )|y

To compute V,, for arbitrary values of Z,(0) and &, V, is first computed from
equation (3-37), V, is then found from equation (3-36), and then V, is found from

equation (3-30) using z={’.

Under short circuit conditions, equation (3-32) still holds and V(¢)=0.
Evaluating equation (3-30) at z=0’ and using the fact that V(£’)=0 yields

(]

Vet = -y (3-38)

Equation (3-38) above and equation (3-35), which is also valid for the short circuit

16
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case, can be used to solve for V, and V,. These expressions will then be used in

equation (3-31) at z={’ to yield L (¢’). The relations for V, and V, are

V, = - zet’ (' - (") (3-39)

and

I/2=

-1
. ZCFO)YI” i Zc-(O)YI' gt (! - 1" (3-40)
JjwL, JoL,

To compute L (¢’) for arbitrary values Z,(0) and ¢, V, is first computed from

equation (3-40), V, i; then computed from equation (3-39), and I (2") is computed

from equation (3-31) at z={". Finally, Z, is found as
V)

oc
Z, =

I

Sc

(3-41)

In the NEC modeling of the EI, the transition section is modeled by several
straight wire sections that approximate the curvature of the ETTL. But due to
limitations of the spacing of wires in the NEC program, the transition section is
only modeled with straight wires up until the wire spacing approaches 4 or 5 wire
radii in center-to-center separation. The remaining length of the transition section
is denoted as {’ and is modeled with the Thevenin equivalent circuit previously

discussed.

All of the EI except some or all of the transition section is modeled with
straight wires. The coordinates for this wire model are taken from Figure 2-1 for
the main EI’s structure and from the tabulation of wire spacing, s(z), as z varies for
the transition section. These straight wire approximations to the lower portion of
the transition section are used for the 200 MHz, 300 MHz, 500 MHz, 800 MHz,
and 1 GHz cases. Figures 3-6 through 3-9 below are to-scale illustrations of these
straight-wire approximations to the ETTL. Straight wires are used between the

17



is shown beside the wire. Symmetry about the x-z plane is used in these models,

so only half of the ETTL is illustrated.

In addition to using Thevenin equivalent circuits to model portions of the
transition section and using symmetry with the x-z plane, the EI is also modeled
over a lossy ground plane. The Sommerfeld/Norton method for analyzing wire
structures near a lossy ground plane is used in the NEC computations. For each
frequency used, a program titled SOMNEC is run to generate a data file containing
parameters of the lossy ground plane. This program is given the frequency of
operation and the permittivity and conductivity of the ground plane in order to
generate each output file. The data file is then used by the NEC program as it is
running [5]. The permittivity and conductivity values used are for concrete. They
are obtained from data in a publication by Castillo and Singaraju [9]. Their
constitutive parameter data is given only up to a frequency of 100 MHz, so for
higher frequencies the plots are extrapolated to obtain approximate values of the

parameters up to a frequency of 1 GHz [10].

3.4 Ohmic Losses

The resistance per unit length of a fransmission line increases significantly

at high frequencies since the skin depth 8 becomes small, i.e.,

2 (3-42)
WROo

where @ is the radian frequency, U is the permeability, and ¢ is the conductivity.
For most practical purposes, only that portion of a conductor that is within a skin

depth of the surface carries significant current.

For a two-wire line with circular cross section conductors, the internal

impedance per unit length is [11]

18
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Figure 3-8:
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1+ W
2 pires = M,J = - (3-43)
' 20[1 - (Z)Z]

where a is the wire radius and 2h is the center-to-center wire separation. Here, the
real part of Z is the wire resistance per unit length and the imaginary part is the
inductance per unit length that arises from the magnetic flux inside the wire. Note
that the internal impedance grows without bound as the wire separation approaches
zero. This occurs because the line current tends to accumulate on the portion of the

wire surface nearest the other conductor.

If the characteristic impedance of the transmission line must be as small as

508, then for an air dielectric, the spacing should be

z
L .2 1 - 1.08807
a | 1207 |

And from equation (3-43), the internal impedance is increased by a factor of 2.33
over the internal impedance for a line spacing satisfying h? >> a®>. Moreover, the
close spacing of the conductors aggravates the breakdown problem and makes the
fabrication more difficuit because the reduced tolerance in separation distance

variations.

For thin flat parallel conductors, generally called two-conductor strip line,
the internal impedance is [12]

¥4

- —_ + X + - °
G20 +j)\J-mp, A+ x+m -2 ()] (3-45)

strips w 20 1 +x+ 1 +x

where
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= T¥ (3-46)
2

and

@= (2P -1 DA+ -1 (3-47)

\

Here w is the plate width, 2h is the plate separation, and t is the plate thickness.

The characteristic impedance of the strip line is [12]:

7z = | B 7 (3-48)
¢ e 1 +x+ il +2x)

In order to compare the loss characteristics of strip conductors to circular

conductors, the width of the plates is constrained to have the same circumference,

ie.,
2w = 2na

and the characteristic line impedances are required to be equal. With these

conditions, the ratio of the internal impedances is

2 21 + x + 7w - 2 (Z)]
= 1- (2P
1 +x+ 1 + 3% h

(3-49)

zilwiru

Considering a 50€2 characteristic impedance, then h/a = 1.08807 for circular
conductors and x = ww/Zh = 19.66 for flat strip conductors. In addition, for the

comparison, let

t tw 2
—_— = 2—— = 2 —_— 6.2 = 0.78
h w2h ( 32 )(6.26)

Then o = 4.79. Using the foregoing in (7) yields
22




a7 = 14

* i
Clearly for the parameters selected, the ohmic losses of the strip line greatly exceed
those of the circular conductor, two-wire transmission line. This is expected since
the current distribution on thin strip conductors is highly nonuniform with most of
the current in narrow sections at the edges [13]. Consequently, it is desirable to use

circular conductors whenever possible.

In the construction of the exponentially tapered transmission line, the
conductor cross section is continuously varied from flat strips to circular cross
sections as the characteristic impedance increases exponentially. This was done to

increase the power handling capability and provide low ohmic loss characteristics.

3.5 Characteristic Impedance Computation

The potential at points near an arbitrarily shaped conductor can be computed
numerically by using a finite difference approximation to Laplace’s equation [14].
In the discussion that follows, this method is applied to an elliptical conductor near
a perfect ground plane- in order to compute the two dimensional potential
distribution about the conductor. From this, the charge on the ground plane (which
is equivalent to that on the conductor) is found, and from that the characteristic

impedance of the conductor will ultimately be computed (also see section 3-6).

Applying this process requires that the plane in which the potential values
are to be found be overlaid by a grid. The potentials are computed only at the
points where the grid lines cross. Known boundary conditions are applied to grid
points that fall on a boundary whose potential is already known. Such points are
initialized to their known value and are kept at these values throughout the iteration
process that follows. Other boundary conditions may also be used in the iteration

process.



The iteration process sweeps across the grid of points, adjusting the values
of the potentials with each pass. The accuracy of this process is limited by how

fine the grid is and by how many iteration passes are allowed to occur before the
process is stopped.

Figure 3-10 below shows the boundary conditions and grid that is used to
compute the potential at points in the region around an elliptical conductor. The

symmetry about the y axis in this problem is also utilized to arrive at boundary
conditions along the y axis.
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Figure 3-10: The Elliptical Conductor

The iterative process that is used in this problem is the successive

overrelaxation (SOR) scheme. In this process, an arbitrary grid point (i,j) that does

24
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not lie adjacent to a boundary is adjusted on the nth iterative pass to satisfy the

following equation:

I /4

Vu(,,) = (1- K)Vu("-l) . % [V‘ +1J(n-l).l. Vi-lj u+l(n-l)+Vu_l(n)] (3-50)

where 1 < K < 2 and where V,; is defined as

V, = Vixy) where x=iA and y=jA (3-51)

The values of K used most often are 1.1 < K < 1.3 (K=1.2 is used in all of the

production runs of this process in section 3-6).

In this case, a curved boundary is present. Many points that are adjacent to
the curved boundary may have an adjacent point that falls on the other side of the
curved boundary. Noting that the iterative equation (3-50) is a function of the
potentials of the four adjacent points, equation (3-50) cannot be used in such cases.
Instead, specialized iterative equations must be used when one or more of the four

points adjacent to a grid point fall on or beyond a boundary.

For points that are close to the lower half of the curved boundary as shown

in Figure 3-11, the iterative equation used is

(isj+1)

(i-1,3) (1,3) (141, 9)

“(1,3-1) B
Figure 3-11: One Point Crossing the Boundary
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v® - gy 6. K J a M Vigi® Ay Oy oD (3-52)
i -5 v 1+7m [1+q+ 1+-q * [ ity il ]

where V, is the value of the potential on the boundary as shown in Figure 3-11.

For points that are close enough to the boundary to have two adjacent points

fall across the boundary, the iterative equation used is

kK [ % VY 1 (n-l).,._l_y

) - -— (5'1).4_
Vi (A-KV; _1-+—1-
§ o
where V, and V, are the potentials on the boundary as shown in Figure 3-12.

Similar to the case of Figure 3-11 is that of Figure 3-13 below where one
point crosses the boundary. In this case, the iterative equation used is

™ - (1 -y, K f Ve . & w0, & -,y b (3-54
R e T L

Here V, is the potential on the boundary as shown in Figure 3-13.

Other possible configurations of points falling near the curved boundary are
straight forward applications of the three cases already presented.

The other boundary conditions of Figure 3-10 involving the normal gradient
of the potential being zero are easily implemented by setting the values of the
potentials of the points that lie on these boundaries equal to that of the adjacent
point that lies inside the grid. This is implemented by iterating points that lie near
the boundary at x=0 as

, n- K - - I3 -
() =( - K V (-1 _5_ [Vu(n n o, V1J+I(n o, Vlj-l( )] (3-55)

Points that lie adjacent to the upper boundary are iterated as
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(i+1,3)

(1,3-1)

Figure 3-12: Two Points Crossing the Boundary

o

Figure 3-13: Second Case of One Point Crossing the Boundary
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- K - -
Viae® = 0 - B Vi (0 + 3 Vietaet® + Vouraer™ + Vise ™) (3-56)

Points that lie adjacent to the right boundary are iterated as

. K - " -
VN-u("):(I‘K)VN-U(" D*’?[Vn-z.r(n)*VN-uu(” 1)+VN—1,;'—1( )] (3-57)

The four corner points have unique iterative equations. These equations are

VP =0 -0V, % V3,00 7,0 (3-58)
n - X .
VN—I,I() =1 -8V, -1,1(" n o, ? [VN-2,1(") + VN—I,Z( 1)] (3-59)

. - K n - _
v, ,“_1() =(1-X Vl,u-1(n D 4 2 [VI,M-Z() + Vz,M—l(R 1)] (3-60)

i) { od K R, ) -
Vg™ = (1 = B Vi /&9 + 3 Varsea™ * Vires®] (3-61)
Two other unique points are those along the boundary at x=0 and adjacent
to the curved boundary. Iterative equations for these are straight forward

applications of the previously described cases.

The program implementing this procedure for the elliptical conductor of
Figure 3-10 uses the finite difference technique. In this program, N and M are set
equal to simplify the calculation of the charge on the ground plane. Also, the
voltage on the elliptical boundary is set at a constant one volt to simplify the
iterative equations. The results of the finite difference program have been verified
using a circular conductor (with a=b). The exact solution for the potential at points
near a circular conductor is known from basic field theory [15]. The potentials

numerically arrived at by the finite difference program have been checked for
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several points and have been found to be within a few percent of the exact values.

Caution must be used however to ensure that: (1) the upper and right
boundaries are at least 3a to 4a away from the origin, (2) the height of the
conductor, h, is small (such as 30% or less of the length of a side boundary), and
(3) that the tolerance used for stopping the iteration, TOL, is small enough to
require several iterations to occur before convergence to a solution. At least 6N or
more iterations is a minimum number for an accurate solution for the potential
distribution.

From basic field theory, the characteristic impedance of a lossless

7 = ] L (3-62)
[+ C/

where L’ and C’ are the inductance and capacitance per unit length of the

transmission line is

transmission line [16]. Also

L/C/ = pe (3-63)
Combining equations (3-62) and (3-63), Z, can be expressed as

z, = Ve (3-64)
The charge per unit length on the transrnission line can be expressed in terms of C’
and the potential difference between the conductors, V,, as [16]

Q/ = C/VO (3'65)

In the case of Figure 3-10, V, is set at 1 volt. This yields Q’=C’, which then makes

equation (3-64) becomes
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z, - Yee (3-66)
Ql
The charge per unit length on the elliptical conductor of Figure 3-10 can be

found by integrating the normal derivative of the potential around the conductor to

give

/= §eBV 3-67
| Q feandl (3-67)

An easier approach, however, is to integrate the normal derivative of the potential
across the ground plane below the conductor, since this charge is the same as that
on the conductor. By choosing the values of M and N the same in the finite
difference program, finding the charge can be done by simply summing the values
of the potentials in the row just above the ground plane of Figure 3-10. Knowing
the charge, the characteristic impedance of a two-wire transmission line composed
of the elliptical conductors separated by the distance 2h is then computed. Image
theory and the symmetry of Figure 3-10 are taken into account to yield the correct

value for Z, for the elliptical two-wire transmission line.

The results of the finite difference program have been confirmed by running
the case of a circular conductor (a=b) close to a perfect ground plane, the
chafacteristic impedance of which is known exactly. The resulting characteristic
impedance was found to be within approximately 2% of the exact value. The
programs have also been tested on an elliptical conductor with b<<a, that is a nearly
flat conductor. The resulting characteristic impedance was found again to be within
a couple of percent of the theoretical value for an infinitely thin, flat conductor of

the same dimensions.
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3.6 Design and Construction Of The
Exponentially Tapered Transmission Line

Equation (3-24) gives the characteristic impedance of a two-wire

transmission line of circular conductors [7] and is repeated below.

Z@) = N 5@
¢ T

a

(3-68)

In this equation, s(z) is the center-to-center wire spacing at a point z along the line
and z is the wire radius. This expression is accurate only when s(z) > 4a. For the
ETTL design arrived at in section 3-2, this 4 radii separation point yields a
characteristic impedance approximately 157.9CQ and occurs at z=1.0528m from the
50€2 drive point. Thus, elliptically-shaped conductors are used from the drive point
out to z=1.0528m. From z=1.0528m to z=1.935m, where the transition section

ends, circular conductors are used.

To arrive at final design parameters for the ETTL, the problem is divided
into three sections: (1) from z=0m to z:=1.05m where elliptical conductors are used,
(2) from z=1.05m to z=1.254m where the conductors are circular but where an
equation for Z (z) more accurate equation (1) is used, and (3) from z=1.254m to
z=1.935m where the conductors are circular and where equation (1) is used to
calculate Z(z). For the section with elliptical conductors, the finite difference
method is run numerous times varying the ration b/a and the conductor center-to-
center spacing 2h. For each run, b and h are chosen arbitrarily and the semi-major

axis length a is given by

g~ \[0_2 _ 2 (3-69)

2n?

where ¢=0.0798m, the circumference of a 1 inch outer diameter conductor. The
circumference must me kept constant in all of these design runs of the finite

difference routine.
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Each resuiting characteristic impedance computed by the finite difference
process is then plotted based on where it would occur on the ETTL from equation
(3-23). Thirteen cases are then chosen to yield a smooth increase in the ratio of b/a
and the conductor center-to-center spacing 2h. These cases are the first thirteen

cases listed in Table 3-1 below.

From z=1.05m to z=1.254m, the conductors of the ETTL are circular and

their characteristic impedance is [15]

7 = Yt (3-70)

where C’ is the capacitance per unit length of the conductor given by

- ney
o W . \/;;—b)} G-7D

This equation is more accurate than that of equation (3-68) for the close conductor

spacing that is involved in this portion of the ETTL.

From z=1.254m to z=1.935m, the conductors of the ETTL are still circular.
The characteristic impedances in this last portion of the ETTL are calculated from
equation (3-68). The final design parameters for constructing the ETTL with
Z(0)=50Q, Z.(1)=413.98Q2, and q=1.0924 are tabulated in Table 3-1 above. In Table
3-1, z is the distance along the z axis from the drive point, b is the length of the
semi-minor axis of the elliptical conductor, a is the length of the semi-major axis,

and 2h is the center-to-center conductor spacing of the ETTL.

The prototype ETTL is constructed from the design specifications of Table
3-1 with one exception. One inch outer diameter copper tubing is not a standard
size, so 7/8" outer diameter copper tubing is substituted. The effects of this

substitution should be minimal. For example, Z (I) would be 430€2 rather than
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Table 3-1 Example Design Parameters of the ETTL

Z(m) h (m) a(m) b (m) Z. ()

0.00000 0.004600 0.01746 0.001589 50.000

0.13300 0.003000 0.01746 0.00158 61.700

0.20000 0.005500 0.01746 0.00159% 64.800

0.32000 0.006500 0.01785 0.00200 71.000

0.42000 0.008000 0.01771 0.00300 79.000

0.50000 0.008500 0.01751 0.00400 86.400

0.60000 0.011300 0.01725 0.003500 956.000

0.68000 0.013000 0.01693 0.00600 105.000
0.76000 0.015000 0.01654 0.00700 115.000
0.85000 0.017000 0.01608 0.00800 126.000
0.93000 0.019400 0.01554 0.00900 138.500
0.98000 0.021000 0.01492 0.01000 146.000
1.03600 0.023000 0.01420 0.01100 155.000
1.09100 0.026000 0.01270 0.01270 164.000
1.12700 0.028000 0.01270 0.01270 171.200
1.19600 0.031000 0.01270 0.01270 184.800
1.25400 0.034000 0.01270 0.01270 196.800
1.27500 0.0339883 0.01270 0.01270 201.307
1.30000 0.0356041 0.01270 0.01270 206.881
1.32500 0.0373448  0.01270 0.01270 212.609
1.35000 0.0392223 0.0127¢ 0.01270 218.495
1.37300 0.0412502 0.01270 0.01270 224.544
1.40000 0.0434436 0.01270 0.01270 230.761
1.42500 0.0458193  0.01270 0.01270 237.150
1.45000 0.0483961  0.01270 0.01270 243.716
1.47500 0.0511954 0.01270 0.01270 250.463
1.50000 0.0542410 0.01270 0.01270 257.398
1.52500 0.0375598 0.01270 0.01270 264.524
1.35000 0.0611821 0.01270 0.01270 271.848
1.37500 0.0651424 0.01270 0.01270 279.374
1.60000 0.0694795 0.01270 0.01270 287.109
1.62500 0.0723780  0.01270 0.01270 295.058
1.65000 0.07394676 0.01270 0.01270 303.227
1.67500 0.0852263 0.01270 0.01270 311.623
1.70000 0.0915795 0.01270 0.01270 320.250
1.72500 0.0986024 0.01270 0.01270 329.117
1.75000 0.106381 0.01270 0.01270 338.229
1.77500 0.115015 0.01270 0.01270 347.593
1.80000 0.124619 0.01270 0.01270 357.217
1.82500 0.135325 0.01270 0.01270 367.107
1.85000 0.147286 0.01270 0.01270 377.271.
1.87500 0.160681 0.01270 0.01270 387.716
1.80000 0.175717 0.01270 0.01270 398.450
1.92500 0.192636 0.01270 0.01270 409,482
-1.95000 0.211723 0.01270 0.01270 420.819

413.98Q), the length ¢ would be 2.046m rather than 1.935m, and the cutoff
frequency would be 25.09 MHz rather than 26.07 MHz. Any stretching of the
tubing as it is flattened into an elliptical shape will further reduce these

discrepancies.

33



Type L, 3/4" inner diameter, flexible copper tubing is used for the
conductors of the ETTL. The tubing is flattened to closely approximate the
elliptical conductors according to Table 3-1 specifications. Thé conductors are then
secured to the edges of two 1" by 8" boards cut to set the proper spacing of the
conductors. Countersunk woodscrews hold the conductors to the boards. A simple
framework of 2" by 2" boards forms the support of the ETTL. An N-type feed-
through connector is finally used to drive the ETTL. The finished prototype of the
ETTL is shown in Figures 3-14 and 3-15 below.

1V Computations and Experimental Testing

4.1 Incident Electric Field Computation

To obtain the incident electric field along the ground plane in the working
volume, numerical modeling of the EI is done using the NEC program. The
structure is modeled over a lossy ground plane using Thevenin equivalent circuit
models for portions of the transition section, as discussed in section 3-3. The
desired data obtained from these numerical modeling experiments consist of the
total electric and magnetic fields along line a at x=6m, y=-15m to Om, z=Om and
line b at x=4.705m to 7.295m, y=z=0m, and at the origin. This is illustrated in
Figure 4-1 below.

Given the x, y, and z components of both the total electric and magnetic
fields, the incident field can be computed (approximating normal incidence on the

ground plane) as follows [17]:

Ei = % [E - (120m) H,] @-1)
E = % (B + (120m) H @2)
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Figure 3-14:

e

e A
R

Prototype of the Exponentially Tapered Transmission Line (ETTL).

a
-
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Figure 3-15:

Prototype of the ETTL Undergoing Antenna Power Pattern Measurement.
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I\

o {(m)

-50m 50m
line b
line a

X(m)

Figure 4-1: Lines Along which |E,, | Is Computed

These computations are performed for points 0.0625m apart along the line x=6m,

=-15m to Om, z=Om and for points 0.01047m apart along the line x=4.705m to
7.295m, y=z=0m. The magnitudes of the resulting incident electric field values are
plotted to reveal the behavior of the incident field in this portion of the working
volume. Ideally these plots should resemble the antenna pattern plots that are

performed on the transition section alone for high frequencies.

Figures 4-2 through 4-21 illustrate the dominant y component of the incident
electric field at 100 KHz, 500 KHz, 1 MHz, 5 MHz, 10 MHz, 100 MHz, 200 MHz,
300 MHz, 500 MHz, and 1 GHz along lines a and b of Figure 4-1.

Brief observations of these plots are summarized in Tables 4-1 and 4-2

below.
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Frequency
(MHz)

0.1

0.5

1.0

5.0

10.0

160.0

200.0
300.0

560.0
1000.0

Frequency

(MHz)

0.1

0.5

1.0
5.0
10.0
160.0
200.0
300.0
500.0
1000.0

Table 4-1 Observations of the |E1,,c| plots
for the line a of Figure 4-1

Approx. Range in
Values of ]EE-,,G_I_

1.05t0 1
1.05t0 1
1.09to0 1
12 tol
1.24t0 1
52 tol

35 w01
(large to

1.2 tol
25 w1l

Approx. Range in
Values of 1E,.

1.
1.

a null)

07to1
07tol

1.07t0 1

L
1.

08tol
06to 1

1.06to 1
1.07t0 1

L.

I1to1

121101
1.35t0 1
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Basic Description

of the Curve

smooth, constant slope
smooth, constant slope
smooth, constant slope
smooth, constant slope
smooth, constant slope

slow, smooth variations with
sidelobes present

(same as for 100 MHz)

- slow,smooth variations with a

deep null at x=10m

slow, smooth variations

rapid, small variations with a
smooth envelope

Table 4-2 Observations of the |Emc| plots
for line b of Figure 4-2

Basic Description
of the Curve

essentially flat
essentially flat
essentially flat
essentially flat
essentially flat
essentially flat
essentially flat
essentially flat
essentially flat
mostly flat but with
slow, smooth variation



Magnitude of Ey

Magnitude of Ey

Y Com;;onent FreqL'Jency=r1'OOKHrz
1 L

107 T —T —T

10720 L ) ’ 4
1072
107%%
1072 | .
1072
1072

1 0-7.70

4 g2

10-2.90

1 O—J.OO 1 - { L 1 N H ! L 1 i

-16.0 -14.0 -12.0 -10.0 -8.0 -8.0 -4.0 -2.0 0.0

Y(m)

Figure 4-2: Incident E Field along Line x=6m and z=0m

102 Y Component Frequency=500KHz

T T T

10-2.10
10-2.20 =
109723
10—2.40
10720
10—2.60
10-2.70

1 O-Z.BO

10729

1QT3ee — ; . L I ! . L

-16.0 -14.0 -12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0

Y(m)

Figure 4-3: Incident E Field along Line x=6m and z=Om

39



Magnilude of Ey

10200 Y Component  Frequency=1iMHz

i 1 o 1 T i

TO—LW L

10722

1g 2o

1 0-2.40

1072

Magnitude of Ey

107%%

1072

107

1Q29e

i O—.mo I 1 i ! L ! L " :

-160  -140  -120  -10.0 -8.0 -6.0 -4.0 -2.0 0.0
Y(n)

Figure 4-4: Incident E Field along Line x=6m and z=0m

| g2 Y Component F‘reguency=5MHz

T T T T T T T

10—2—10

1g=2*°

1072

{ O—ZAO

197

1728

1 O—ZTU

1Qrem

1072% L

1 0-5.00 I { ! ) ! 1 L

-16.0 -14.0 -12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0

Y{m)

Figure 4-5: Incident E Field along Line x=6m and z=0m

40




o

Magnitude of Ey

' llﬁagnilude of Ey

1072

Y Compo'nerr;t: v Frequency=10MHz

{ 0-2.10
107220
102w L
10-1.40
10-2%0
10-7.&) L
1 0—7-70
1gTz

1 O—Z.W

1 O-lm

3 1 1 T H 1 i

] n L " AL . i i . 1 L -

-16.0

10-1‘0

-140 =120 =100 -8.0 -8.0 -4.0 -2.0 0.0
Y(#n)
Figure 4-6: Incident E Field along Line x=6m and z=0m

Y Component Frequency=100MHz

1072 -

1O—|.4 L

1078

10718 -

10720 .

10722

10-2.4

] 0-2.6 L

1 O-Z.S L

10730

! T

-16.0

-140 =120  ~-10.0 -8.0 -8.0 ~4.0 -2.0 0.0
Y(m)

Figure 4-7: Incident E Field along Line x=6m and z=Om

41



Magnitude of Ey

Magnitude of Ey

1grae

Y Component Frequency=200MHz
T

1 O-Zlﬂ

107

197>

1 0-2‘.40

1972

107®

1 0-2.70

107>

1 O-lﬁ

1Q3

1 1 1 L

L : I 1 L I 1 " 1

-16.0

-140 =120  -100  -8.0 -6.0 -4.0 ~2.0
Y(m)
Figure 4-8: Incident E Field along Line x=6m and z=0m

Y Component Frequency=300MHz
]

¢.¢

10720

107%5 -

107 |

19733 |

1 0—4.0

1 0—4.5

\/ﬂf\/\

L H H ' H L

%

107%¢

-16.0

-14.0 -12.0 -10.0 -8.0 -6.0 -4.0 ~2.0
¥{m)

Figure 4-9: Incident E Field along Line x=6m and z=0m

42

Q.0




o

Magnitude of Ey

Magnitude of Ey

10740

10-'.10 L

1g=t®
107"
107140 L
10710
10~
1077 L
107140

107"

1T

Y Component Frequency=500MHz
t 3

T T T T T

\’W

. L i . i . L " $

-16.0 —-14.0 -12.0 -10.0 -8.0 -6.0 - =40 -2.0 0.0

10%%

Y(#n)
Figure 4-10: Incident E Field along Line x=6m and z=0m

Y Component Freauency=1.0GHz
0 1

10-0.10
10—0.20
1g7o0
10-0,50
10-0‘50
10-0.70
10-0.&0
1q-teo L
10-1.10 L
10—1.20 N
10-\..30 L
10-\.40 L
10-1,50
10—1.50

10-1.70
10-‘.50 r

1=t |

1072%

7 T T

A/v\/V\/\W WWWMWM

; ] : . : 1

-16.0

-14.0 -12.0 -10.0 -8.0 -6.0 -4.0 -2.0 Q.0
Y(m)
Figure 4-11: Incident E Field along Line x=6m and z=0m

43



Magnitude of Ey

Magnitude of Ey

1072
1 0-2.10
e
1072%
1 0—-140
19~
1 0—2.50
1 O-z.'m
1o
1072%0

10-.10:)

4.5

10'2.00

Y Cémponent Frequency=100KHz
1 1

1 L 13 L i [l

5.0 55 6.0 6.5 7.0
K{m)
Figure 4-12: Incident E Field along Line y=0m and z=0m

Y Component Frequency=200KHz

7.5

]O—Z.TQ

t 0-1.20

1 0-2.50

1 0—2.40

1 0—2.50

1 0—2‘50

1 0—2.70

1 0—2.50

1 0—2.90

1 0-3.00

T T 11 1

4.5

5.0 5.5 6.0 6.5 7.0
X(m)
Figure 4-13: Incident E Field along Line y=0m and z=0m

44

7.5




1Q™2™

Y Componerit Frequency=1MHz

‘. 10-2.!0 L
1072 |-
10729

1 0-2.40

1072

Magnitude of Ey

107280

172 L

197
1 O;zeo

1073

1 i ! 1

i . — !

10-7_00

5.0 5.5 8.0 6.5 - 7.0 75
X(m)
Figure 4-14: Incident E Field along Line y=0Om and z=0m

Y Component Freauency=5MHz

1Q7210
‘0-2.20
10-2..‘:0
1QTe%

1 O-ZASO ’_

1 0—2.50

Maganitude of Ey

1 0-2.70

10728

1 0-2.90

10 ~3.00

T

! !

4.5

5.0 5.5 8.0 8.5 7.0 7.5
X(m)

Figure 4-15: Incident E Field along Line y=0m and z=0m

45



Magnitude of Ey

Magnitude of Ey

120 ' ' Y Component Frequency=10MHz

T iy T

10-2.15

1072

107%%

10724

1972%

10730
10727
1072

107%%

1 O-J-m 1 : i , | ¢

45 5.0 5.5 6.0 . 65 7.0 75
X (m)
Figure 4-16: Incident E Field along Line y=0Om and z=0m

100 Y Component Frequency=100MHz
I O- ’ T « 0 1

10-1.10

1 O-LZO

| S I

iG_Lm
1074 L .
1074 &
g .

10-'% L i

1g-1% L i

1= L

10-200 . : .
4.5 5.0 5.5 6.0 6.5 7.0 7.5

X(n)

Figure 4-17: Incident E Field along Line y=0m and z=0Om

46




Mognitude of Ey

Magnitude of Ly

1g7@

Y Component Frequency=200MHz
i 1

10‘2.10 L
19
1072®
i 0-2.40
1072
107%%
10-1”
1g7x®

1QT

1073

e -t ! S— L !

. 4.5

1072%®

5.0 5.5 8.0 8.5 7.0
x(m)

Figure 4-18: Incident E Field along Line y=0m and z=0m

Y Compenent Frequency=300MHz

7.5

1072
1070
107
10734
1072 r-
10720

10727

107

1070

1 O-lOO

- T

i - A 1 R

-

5.0 5.5 6.0 6.5 7.0

X(m)

Figure 4-19: Incident E Field along Line y=0Om and z=0m

47

~]
)



Magnitude of Ey

Magnitude of Ey

10-1.00

Y Component Frequency=500MHz_—
I3 1

TO—"W .

107'%

107

10-‘.40 .

107+

10190 L

1 0-1.70 .

1Q™'%e

107

1QT0e

T 1

_—

1 | | ] 1

1 00.00

5.0 5.5 6.0 6.5 7.0
*(m)
Figure 4-20: Incident E Field along Line y=0m and z=0m

Y Component Frequency=1.0GHz

7.5

1 0-0.10
10 L
1g7%
1QToe
107°%
1 o“’"."
1q-o70
1 0—0‘60

9 0—0.90

1o~

[ T T T

4.5

5.0 5.5 6.0 6.5 7.0
X(m)

Figure 4-21: Incident E Field along Line y=0m and z=0m

48

7.5




‘ 4.2 Measured Antenna Power Patterns

‘. What follows are the results obtained from measuring the antenna power
pattern of the exponentially tapered transmission line (ETTL) at frequencies of 300
MHz, 500 MHz, 800 MHz, and 1 GHz. The dimensions and construction of the

ETTL are detailed in section 3-6.

The apparatus used to measure the power pattern of the ETTL at each of the
four_frequencies consist mainly of two half-wave dipoles cut for the specific
frequency in use, a signal source with external 1000 Hz sinusoidal modulation to
drive the transmitting dipole, a detection circuit to receive the signal with either the
dipole or the ETTL, and a pattern plotter. The basic apparatus is illustrated in
Figure 4-22 below. Here, antenna (1) is a reference dipole and antenna (2) is the
ETTL.

Local
Oscillator
(L) £ + 32MHz

- AN
[ 4 P ORT e ]
7 Mixer
f TL =]

—>IN 0 -

1000
Hz

Pattemrn

Plotter

I1.F.
Amplifier

o —

Figure 4-22: Block Diagram of the Pattern Plotting Apparatus

Photographs of the apparatus as it is being used are presented in Figures 4-23
through 4-29 below.
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Figure 4-23: Transmitting Half-Wave Dipole Antenna
and its Signal Source with 1000 Hz External
Modulation. Frequency in Use Is 300 MHz.
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Figure 4-24:

l}fﬁ. 1 A l“i.! h‘y“

R RCE - LS O i i
!

ETTL on Pattern Plotter Turntable, Received Signal Is Being Input to the
Detection Circuit at the Left.
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Figure 4-25:

Another Angle of Figure 4-24,

52



T SEEETIRL NI e i g A e Y e

T “

g R

- --“-h'—-mq-‘-. T I,

Figure 4-26: Half-Wave Dipole Receiving at 1.0 GHz.

Ferrite Cores Were Used to Reduce Reflections

from the Coaxial Feedline.
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Figure 4-27:
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Detection Circuit Used to Detect the Received Signal. The Output of the
IF Amplifier Is Being Observed on an Oscillator for a Maximum Received
Signal Strength.- Once Tuned, This Signal Is Sent to the Pattern Plotter.
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Figure 4-28:  Half-Wave Dipole in Foreground at the Left Is Transmitting at 300 MHz.
The ETTL in the Distant Background (Indicated with an Arrow) Is
Receiving the Signal on the Turntable of the Pattem Plotter.

-
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Figure 4-29

.
.

Half-Wave Dipole on the Plotter Turntable
Receiving a Signal at 300 MHz from the
Transmitting Dipole in the Background
(Indicated with an Arrow).
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At each of the test frequencies, the power pattern for a half-wave dipole is
superimposed over that of the ETTL for 3 different configurations: (1) horizontal
polarization, (2) horizontal polarization with a large wire loop connected to the
ETTL, and (3) vertical polarization. The resulting plots follow in Figures 4-30
through 4-41. The large wire loop used in the second horizontally polarized test
consists simply of an approximately 40 ft length of 10 gauge solid copper wire
connected across the output terminals of the ETTL 'in the shape of a large

semicircle.

The resulting antenna power patterns yield very similar results for the 500
MHz, 800 MHz, and 1 GHz cases. In each of these cases the horizontal
polarization tests, both with and without the large wire loop, yield half-power
beamwidths of 34 to 35 degrees. The vertical polarization tests yield half-power
beamwidths of 42 degrees and 45 degrees in each of these three cases. The 300
MH2z case yields no measurable half-power beamwidth when horizontally polarized
due to its nearly constant gain, but when vertically polarized it yields a 64 degree

half-power beamwidth.

In the antenna power pattern plots that follow, the horizontal scaling is in

3 degree steps and the smallest vertical divisions are 0.2 dB each.

Some similarities between the incident electric plots and the antenna power
pattern plots can be noted. The angles to the first null along line a of Figure 4-1
at 500 MHz and 1 GHz (see Figures 4-10 and 4-11) are approximately 26.6 degrees
and 33 degrees respectively, both of which match closely their corresponding
antenna power patter plots. The half-power beamwidth along line a of Figure 4-1
at 1 GHz is approximately 36 degrees, which again is close to that measured for the
ETTL. Along line b of Figure 4-1 at 300 MHz and 500 MHz (see Figures 4-19 and
4-20), the half-power beamwidths are 55.1 degrees and 41.3 degrees respectively.

These also fall reasonably close to the measured values for the ETTL.
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Figure 4-30: Antenna Power Pattern of the ETTL and

a Half-Wave Dipole at 300 MHz with
Horizontal Polarization.
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Figure 4-31: Antenna Power Pattern of the ETTL and
a Half-Wave Dipole at 300 MHz with

Horizontal Polarization and a Large
Wire Loop Connected to the ETTL.
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| Figure 4-34: Antenna Power Pattern of the ETTL and

R a Half-Wave Dipole at 500 MHz with

-‘ Horizontal Polarization and a Large

JE Wire Loop Connected to the ETTL.
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igure 4-35:

Antenna Power Pattern of the ETTL and
a Half-Wave Dipole at 500 MHz with
Vertical Polarization.
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a Half-Wave Dipole at 800 MHz with
Vertical Polarization.
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Figure 4-40: Antenna Power Pattern of the ETTL and
a Half-Wave Dipole at 1 GHz with
Horizontal Polarization and a Large
Wu'e Loop Connectea to the ETTL.
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F1gure 4-41: Antenna Power Pattern‘of the ETTL and
a Half-Wave Dipole at 1 GHz with
Vertical Polarization.
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4.3 Input Impedance Calculation

The input impedance for the ETTL is derived earlier in section 3-1 and the .
method for using the results of the NEC-2 modeling to compute the input
impedance for the EI is described. The resulting computed input impedances of the

EI are tabulated in Table 4-3 below.

Table 4-3 Calculated input impedances of the EI
.using results obtained from the NEC-2
modeling at various frequencies.

FREQUENCY (MHz) INPUT IMPEDANCE (CHMS)  VSWR
0.1 1854.6 - j 50.5 37.1
0.2 1834.9 - j 132.3 36.9
0.3 1894.0 - j 257.3 38.0
0.4 1873.3 - 4152 39.3
0.5 1846.6 - | 635.4 413
0.6 1778.2 - j 8202 43.1
0.7 1628.9 - j 994.4 447
0.8 1426.1 - j 1125.4 46.3
0.9 1230.1 - j 1209.4 48.4
1.0 1014.8 - j 11882 48.1
5.0 203.8 - j 364.3 17.3
10.0 78.6 - j 236.7 16.4
100.0 10.8 -j 1.3 4.6
200.0 82.4 +j 161.4 6.6
300.0 20.1 + 18.6 2.9
500.0 13.6 - j 11.7 3.9
1000.0 56.8 - j 75.9 3.8

4.4 Input Impedance Measurement

Results of measuring the S parameters of the ETTL with a network analyzer
and computing the corresponding input impedances are presented in this section.

The ETTL is tested inside a laboratory room in two different positions within the




o

room. Also, a large wire, no. 12 AW.G,, loop (about 4m in diameter), is placed
as a load on the output terminals of the ETTL (as is done in the antenna pattern
measurements of section 4-2) in one of the two positions. The different positions
are used to try to gauge the affects of the test being conducted indoors in close
proximity to possible sources of perturbation. The wire loop is used in one case
to observe possible affects of connecting the ETTL to the EI structure as a

transition section.

Of the four S parameters measured, S,, alone is used to compute the input
impedance of the ETTL. These measurements are made from 100 MHz to 1 GHz ~
in 50 MHz steps. The resulting values of Z, are tabulated in Table 4-4 below.
Apparently, the connection to the wire loop provides only a small perturbation in
the input impedance measurement. Moreover, it appears that the input impedance

at high frequency is near the design goal of 50%.

Photographs of the testing apparatus are presented in Figures 4-42 and 4-43

respectively.

4.5 Current Computation

The output data of the NEC modeling of the EI also contains the computed
currents on the structure. By observing the magnitude of these currents at different
frequencies, the portions of the structure that are contributing most strongly to the

radiated fields can be seen.

Plots of the magnitude of these currents from NEC models at 200 MHz up
to 1 GHz are presented in Figures 4-44 through 4-47. On each plot, the junction
of the main EI structure with the transition section is indicated. Note that the wire
current amplitude decreases rapidly with distance from the driving point at high

frequency.
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Table 4-4 Measured input impedances of the ETTL
A: in one position within the lab room
B: in same position with large wire loop added
C: in a second position within the lab room

FREQUENCY INPUT IMPEDANCE INPUT IMPEDANCE INPUT IMPEDANCE

(MHz)

100
150
200
250
300
350
400
450
500
350
600
650
700
750
800
850
900
950
1000

FOR TEST A FOR TEST B _
29.89 -j 12.01 60.50 +j 3.09
156.04 + j 163.58 74.82 +] 0.92
8434 - 45.31 75.36 - 7.22
1596 +§ 4.96 63.08 +j 0.96
107.29 +j 52.30 112.07 + 11.99
232.07 - j 45.83 98.66 - j 3.29
2908 +j 2.96 51.40 +j 0.22
40.14 -j 5.10 4737 - 1.04
105.57 - 20.79 66.27 -j 5.29
52.85-] 143 5292 -j 0.64
44.68 - 091 66.33 +j 1.53
134.60 +j 20.85 110.72 +j 2.05
72.64 -7 6.14 60.86 - 0.29
39.41-j 101 52.64 +j 0.42
50.10 +j 0.02 50.50 +j 0.07
80.73-j 8.31 70.05 - j 3.88
2962+ 023 3440 - 0.76
70.48 +j 0.39 78.02 - 0.94
70.48 + 0.39 78.02 - 0.94
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FOR TEST C

30.07 -j 11.76
153.85 + j 173.23
84.94 - j 45.75
1516 +] 5.22
101.81 + 48.12
236.44 -j 69.42
3079 +] 2.72
39.95-j 5.07
104.40 - j 22.35
52.17-j 1.14
41.81-j 114
138.56 +j 22.33
70.08 -j 491
39.01-j 098
49.13-j 021
80.80-j 8.11
28.80 +j 0.20
68.19+] 0.56
68.19 +j 0.56
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Figure 4-42:  Network Analyzer Used to Measure the S Parameters of the ETTL.
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Figure 4-43:

Measuring the S Parameters of the ETTL.
Presented in Table 4-2).

(This Particular Position Is not
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Figure 4-47: Current on 1/2 Structure at 1 GHz
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V Conclusion

Numerical techniques have been utilized to examine the electromagnetic
fields that can be developed in the working volume of the CW Ellipticus antenna
operated at frequencies ranging from approximately 100 KHz to 1 GHz with an
exponentially tapered input section. The NEC code is used to analyze the Ellipticus
configuration with the transition section present. The input transition section is
needed for impedance matching and to drive efficiently the Ellipticus antenna.

A prototype of the input transition section was designed, constructed, and
tested at Mississippi State University. The calculated design is verified by
measurements done within the antsnna pattern range' and by impedance
measurements. Calculations from the NEC code indicate that field uniformity is

achieved within the working volume of the Ellipticus antenna.
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