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Abstract

This paper considers the characteristics of the aperture shape and size for launching the impul-
sive portion of approximate impulse-radiating-antenna (IRA) waveforms. Using complex-variable
techniques the electric field on the aperture plane (early time) is assumed to have the distribution of a TEM
plane wave (inhomogeneous) on the aperture and is formulated as a complex field given by the derivative
of the complex potential with respect to the complex coordinate (two dimensional). The surface integral is
converted to a contour integral around the aperture for ease in evaluation. This is used to define
appropriate characteristic lengths for the aperture which can be maximized for best impulsive operation.
The aperture optimization is applied to both TEM horns and TEM-fed reflectors, which are shown to have
complementary structures on the aperture plane.

impulse radiating antenna (IRA), TEM waves, plane waves




L Introduction

In a previous paper [4] it was shown that a step-rising tangential electric field on an aperture Sz ina
plane S gives a delta-function-like field in the far field for an observer as r — « along a direction perpen-
dicular to the aperture. This is a plane-wave illuminated aperture which can be extended to directions of
propagation at arbitrary angles with respect to the aperture plane. This is not an exact delta function due
to the problem of transition from near to far field in time domain since s (complex frequency) covers fre-
quencies extending to infinity. However, the area under the pulse (time integral) is well described by the
impulse (delta-function) formulas. Furthermore, practical antennas fed by finite-energy pulsers alter the
aperture illumination to give a low-frequency limitation so that the total pulse has undershoot to give a net
zero area. See [4] for a discussion of these limitations and the form the pulse takes off the main beam
(plane-wave aperture illumination direction).

As indicated in fig. 1.1 let there be an aperture S, in the x, y plane denoted S. As developed in [4]
the farfield is

Bs) = S [(03) =33 [ 77 Bis) o

]—1/ 2

¢ = [uo €0 = speed of light

[72]
[}

Laplace - transform variable

= Q + jo = complex frequency

= free space propagation constant

\Q
1]
[ I

~ = Laplace transform (itwo-sided) over time

RN .
1=1 % +1 % + 1 1, = dyadic identity (1.1)

Specialize to an aperture distribution as
E(s) = TOTE, F(s) #(F7)
f(s) = waveform on aperture
&)

T,, = direction of propagation of plane-wave apenture distribution

aperture spatial distribution

= focal direction in far field (1.2)




Fig. 1.1. Aperture with Specified Tangential Electric Field




This gives

e’ EoA F_—"(-i,,s)

Ep(F.s) = 2er

A = aperture area
F(Y.s) = of(s) Fa(3.5) = tar-field waveform function
an(;r,s) _ % [(;z_;r);_;ﬁr] _ JS{[Tr—L].;'g(?,) s’

(1.3)

aperture function

This can be evaluated for various waveforms and directions 7, both on and off the focal direction

'1'0 in both frequency and time. An interesting special case is for ideal step-function illumination

HORE

Hl
st

F(i.s) = Fa(%.9) (1.4)

so that the far-field time-domain waveform is just Fa(?,,z). Letting the observer be on the focal direction
we have

=1
Fy(tr) = 5_59 (%) 3-%%] - [, &) & (1.5)

which is the ideal result of a & function radiator. Again note that as discussed in {4], the correct field is lim-
ited in amplitude by the aperture field with a small pulse width to give the correct impulse (or time integral)
as above. Note for the special case of boresight (normal to aperture)

—

1 =—{o =:iz
Fafte) = 2 Jy, 5 &

E (o]
2ncr

Er(a) = 52 80) [ 8F) @ (1.6)

Formally we can define a modified delta function appropriate to the aperture in question with




. f;Sa(r,t) d=1 " | '(1.7)

where 8, is a function of » as well as ¢, its peak being proportional to  and width proportional to r1. This
makes 84/r have a peak which is constant with r (appropriate to large r) so that the peak field at early

retarded times is constant for the simple cases discussed in [4]. This 84(7,¢) can be substituted for §(z) in
(1.6) and calculated for specific cases if desired.




It Vector Size of Aperture Under TEM lllumination.

Now specify our aperture fields as
E(7.1) = E(x.Y) u(t) (2.1)

giving the ideal far field as
- . 5([) -
E = Y ’ 2.2
(F.t) Pmr {’SSaE(x ,y') dS (2.2)

(with use of 34 if desired). In order to define some effectiveness for the aperture as an impulse radiator we
need something related to the surface integral above.

Note that Ef - Ef[Z, isa power density in the far field. Assuming a TEM-like field E(x,y) u(t)

on the aperture (at least for early times) gives a power fed into the antenna by integrating alt such power
including that which does not illuminate the aperture. So let us define

1 2

-2

js E(x.y) ds

a
Py

>
)
i

1

> 2.3
Z, = [-‘-;-0—]2 = wave impedance of free space 23)
(7]

where P;, is the power fed into the antenna immediately following the step rise. This gives some effective
area as can be seen by checking the units. More conveniently define

-

[ E(xy) as
Sa
as = —————5—

1/2
(o Pan]
As=dg - dg (2.4)

Thus @ contains polarization information and is some effective length of the aperture, the far field im-
pulse (for just this part of the waveform) scaling with this parameter. One could have used voltage or cur-
rent feeding the antenna for normalization, but an ideal transformer can scale these up or down arbitrarily.
Thus power seems more appropriate.

Now assume that the aperture is fed by the TEM mode of a cylindrical transmission line, an inho-
mogeneous TEM plane wave, the wave propagating paraliel to the z axis, and hence perpendicular to S.
As a practical matier this is a long conical fransmission line, sufficiently long that the fields arrive essentially
simultaneously on Sg, the time-of-arrival differences being smaller than all other times of interest.
Alternately, as discussed in [4], this conical transmission line can be shortened by use of a lens or
parabolic reflector to change the spherical TEM wave into a plane wave, with the TEM property at least
approximately retained.




Now let the fields on S be characterized by a TEM mode as on a two-conductor (perfectly conduct-
ing) cylindrical transmission line in free space. As discussed in Appendix A this is characterized by voltage

V and current I (after step rise) with

_‘Ii = Z, = f; Z, = characteristic impedance
Au . .
fo = = = geometrical impedance factor
\4
2
P =VI =1
Z;

Substituting these in (2.4) gives
. A% ¢ o=
= — E(x,y) dS
as = LE [ Ewy)

Going further let (as in Appendix B)

¢ = x + jy = complex coordinate

]

w({) = u + jv = complex potential

The electric field (tangential) is the gradient of a scalar potential as

. = 2 v .
E(x,y) = Ex% + Eyly = =VO(x,y) = e e{(x.y)

éy(x,y) = Vu(x,y)
This can also be set in complex form as

E({) = Ex — jEy = _XV; d";(f)

Now rewrite ag in complex form via

- —
-

as = as, 1 + as, 1,
as = ag, — Jas,

- - - J2 2
A5 = ds - ds = |@s|” = ag a3 = las|

Then (2.6) becomes

(2.5)

(2.6)

2.7)

(2.8)

(2.9)

(2.10)



—1/2 dw
= —~|Au Av — d§
a5 [ ] Isa dC.
Au = change in u between the two conductors
Av = change in v in going around either conductor (2.11)

(noting not to cross branch cut)

As we can now see ag is a function of w and the aperture S, basically a function of the TEM transmission
line and aperture geometries.

As shown in Appendix B the surface integral can be replaced by a contour integral around C,4, the
aperture boundary, giving various forms as

1
12 j s _ _ 2 £ *
—lAu A < d = — d

ar =
_.l .
= —[Au Av]77° ¢ ud?* —fy 2_4L oA udC
u 1
- —1/2 2
[Au Av]™ ¢ vde* é% vdl* (2.12)

See (B.6) through (B.9) for various other forms including those using dx and dy separately as well. Note
that C, should not cross branch cuts, but this is easily avoided by breaking up S, with C, as a set of con-
tours around the pieces.

We are now in a position to compare various antenna designs via ag. This can be converted to an
effICIency, if desired, by dividing by some linear dimension of the antenna, e.g. maximum linear dimen-
sion, cube root of the volume, etc.

An interesting question concerns the maximization of |a 6| by appropriate choice of S4 (and

hence C,). Appendix D shows how to evaluate ag for the case that S, is extended to all S via S., (radius
Yoo —>o0) @S




2 1 dw
= - — — dx d;
as,, Ie A J-Sm i ly

_ a2 1 + _ 12 1 *
= -if; . wl =1, . vt

Ay Av JC,,
_ _ =12 ke
= fg >

he = by, — jhey = equivalent height

mean charge separation distance

between two conductors (2.13)

where C,, is deformed as necessary to exclude branches.

Also in Appendix C it is shown that other shapes of aperture with size— o give different answers.

In particular one can increase |as| above that in (2.13). One may ask how big Jas| might be made by
appropriate choice of the shape of S, for a given k.. For this purpose let us define another length for the
aperture

hg = by, _jhay = __f;/2a§
1 [ dw j . 1 .
= — — dxdy = -2~ ud = ——— dl .
& Is, it TP T (ﬁca ¢ w R, (2.14)

and compare this for various aperture choices. As we have already seen

hy {1/2 for S.. aperture (Appendix D)

" | 1 for S, aperture (Appendix D)

e (2.15)

where the Sy aperture corresponds to using constant v contours with v=v, — 0 (filling up the plane) for
two wires in Appendix D.

Now S, does not have to be infinite. Various shapes can be investigated for application to

antenna design. An example in Appendix C2 is for a circular aperture of diameter |k, with wires feeding
two diametrically opposite parts of the aperture, right on the edge of the aperture. There it is shown that

he
= =& 2.1
ha ( 6)

which is the same as for the S, aperture.

In order to increase [as|, and hence |A,|, one can decide which portions of S to use. Define some

particular direction, say ?a as the direction of the principal field (tangential electric field on the aperture) of




interest. For cases of sufficient symmetry in the TEM feed and 5, this is an obvious direction antiparallel to

k.. Looking at the field on Sg, then wherever it is parallel to 3, (positive dot product) this field will con- ‘
tribute positively to the surface integral as in (2.2), so this region can be chosen as part of S,.

A simple but practical case of this has

- -

o =-1
i{a=h,,yiy o ha = ~jhay . hg <O

h, = e,

ol

’ he ="’jh

ey he, >0 (2.17)

Y

so that the principal field is in the -y direction. Assume that the x, z and y, z planes are planes of symmetry
for both the TEM conductors and S, to assure the resultant y components as above, as well as the reduc-

tion of the integration to a single quadrant of the { plane.

From (2.14) we now have for our symmetric case

1 1
hg, = —f2 =——@ udx = —— d
2y g~ a5y Av ¢Ca Av qscav Y
= A e L vddy (2.18)
Av Icg Av JC

where C, is the positive contour around S, that portion of S, in the upper right or first quadrant of the
plane. See an example in fig. C.2. Note that C strictly does not include the conductor cross sections
(the field here being zero anyway). This form using C; makes it easy to avoid crossing branch cuts.

A simple case has u = 0 on the x axis so that we can write

4  [¥max
hay = A Jlo ug dxg
xmax = Maximum extent of S; in +x direction
ug = electric potential along C; portion excluding x and y axes (2.19)

Thinking of u, as the integral fromy = 0 up to C, along a constant x of the negative of the electric field,
then (2.19) completes the integration over x. Note that if C; includes portions of the y axis both above

and below the upper conductor this formula is still appropriate, the integral along C;, around the conduc-
tor boundary giving zero due to the constant u there. Implicitly u, in (2.19) has been taken as single

valued (i.e. C; having only one y for each x away from the two axes). This is not a restriction in that (2.19)
can easily be modified to allow for such a case. Similarly the formula involving the magnetic potential v in
(2.18) can be cast into an appropriate integral over y analogous to (2.19). .

10




* Appendix C evaluates (2.19) for various aperture shapes for a symmetrical two-wire TEM aperture
. feed with equivalent line charges onthe y axis at b, on the edge of the aperture. Comparing to the circu-

lar aperture in (2.16) we have

[ .5 circular aperture

1 strip aperture (rectangular, infinitely wide)

hay
-— = 4.55 square aperture
hey

—oo  hyperbolic upper and lower y aperture

boundaries (infinitely wide) maximizing

{ integrand in (2.19)

he, = 2b (2.20)

11




H. Complementary Field Suppressors and Reflectors with TEM Transmission-Line Feeds

With the discussion in Section Il we can now see that there is a certain complementary relationship
on the aperture plane between TEM horns and TEM fed refiectors. The aperture S, is chosen so that the

locations on S with positive contributions to the integral for 4, (electric field with a component in the same

direction as the principal field, ——iz'e) are included in S, and other locations are excluded.

For an ideal TEM horn (infinitely long cylindrical TEM transmission line) as in fig. 3.1A, the portions
excluded from S, are covered with field suppressing (perfectly conducting) sheets. Conversely for the
ideal reflector in fig. 3.1B (planar with infinitely long TEM transmission line) S, is covered with field
reflecting (perfectly conducting) sheets. The aperture S, can be chosen the same for both except for
practical considerations of finite size for the conductors.

Practically and desirably the TEM waveguides can be conical so as to have finite length, say ¢,
from the aperture plane. As illustrated in fig. 3.2A, the equivalent height is appropriately (for present anal-
ysis) the spacing & of the conductors (charge centers) at the aperture plane. The length £ is chosen so
that the dispersion distance d [2]

d = [12 + \1'2]1/2 -l \P—f (3.1)

a

is small compared to both £ and ¥, (the largest radius of S, of interest) and is small enough that d/c is a
sufficiently short time that negligible broadening of the impulsive part of the radiated field occurs.
Alternatively a nondistorting transient lens [12] is placed just before the aperture plane to convert the
spherical TEM wave into a planar one at the aperture plane. The lens, of course, allows £ to be signifi-
cantly decreased while still having negligible dispersion time (time difference of arrival on the aperture
plane). Note the inclusion of field-suppressing conductors as discussed previously.

Consider now the TEM-fed reflector as in fig. 3.2B. In principle this can be planar, but with the
same restriction on large £ for small dispersion distance (over the entire reflector). Now the efiect of the
aperture blockage due to the conical TEM conductors should be considered. In the high-frequency limit
the blockage can be reduced by appropriate choice of the shape of the TEM conductors [5]. This may
also influence the choice of f, since a small value (low impedance) implies fat conductors which increase
the aperture blockage. Interms of ag the aperture blockage can be considered as a reduction in S, with
relevant portions being deleted from the integral. Note that the field reflected from S is the negative of
the incident field. Of course the reflector is best not a plane, but a paraboloid, allowing a significant reduc-
tion in £ for the reflected field to be a plane wave on an aperture plane just in front of the reflector. The
paraboloidal reflector serves the same function as a lens.

12




A. ldeal cylindrical transmission line with
suppressor sheets for undesired aperture fiekds

B. Ideal cylindrical transmission line with
reflector sheet for desired aperture fields

Fig. 3.1. Complementary Relationship of TEM Homs and TEM-Fed Reflectors
13




planar field
suppressors

A. TEM hom, possibly with lens

paraboloidal reflector
with feed apex
at focus

B. TEM fed reflector

Fig. 3.2. Practical Forms of TEM-Fed Apertures
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V. Finite-Length TEM Horns

Some further insight into the performance of an IRA for the impulsive part of the waveform can be
gained by looking at the early-time radiation from finite-length TEM horns. As indicated in fig. 3.2A let the
conical apex be placed behind the aperture plane (z = 0 plane) a distance ¢ with a step-rising voltage

Vu(t + £/c). Letthe TEM horn be composed of flat-sheet cones with a spacing # at the aperture plane
(equivalent height there). Then let the plate dimensions at the aperture plane be

2a = width

i

. (4.1)
2b = h = separation

One can roughly approximate the early field on the aperture (Ey) by -Vy/h with arrival time based on

the spherical wavefront (¢ = 0 being arrival in the center of the aperture) [6]. For a distant observer on the
+z axis the spherical wave can be extrapolated for early time as

Ef ~ —— 217, (4.2)

The width ¢, of this early pulse can be written as

1 w2 g
ct, =[‘£2 + ‘1'02]2 —£=2—;as —z‘-’-—>0 (4.3)

where ¥, is some effective radius of the aperture related to the time that the spherical wave arrives at the

plate intersection with the aperture. One might make a crude estimate for ¥, asa or \/az +b2 . Theim-
pulse or area under the radiated waveform is

2
- v ¥ - ¥
Ef o = —4—07 To 1y as To -0 (43)

Note for small ¥, / £ that this is independent of £. The pulse amplitude in (4.2) and the pulse width in
(4.3) depend on £, but not this impulse.

The impulse in (4.3) depends on ‘I’f /a a characteristic dimension of the aperture, since for a

given aperture shape ¥, /a is a dimensionless constant. This says that the impulse depends on the lin-

ear dimensions of the aperture, and is proportional to & (or a or ¥,). So to first order it is the aperture size
and not £ (the length of the feeding conical transmission line) which is important for the impulse.

Compare this formula for the impulse to the one for a plane-wave illuminated aperture in (2.2),
(2.6), and (2.14) as

15




0+ - = ol o ’
J._wEf(r,t)dt Y- ISaE(x ,y') dS

= V2
2ncr fg %
1 - 1 -
= - Vhg=-——Vh (4.4)
2mcr e 2ncr ay b
Noting the common factors we have
n 2 2 2
=2 "o =1£
hay =5 =2 . Y [n a hay] (4.5)

where hay has been defined in terms of an integral over the aperture. This can be considered to define

¥, (the effective radius of the aperture). Substituting back in (4.3) then gives the effective width of the
radiated impulse for the TEM horn.

16




V. Concluding Remarks

Here the behavior of the impulsive part of an IRA waveform has been characterized in terms of the
integral of the tangential electric field on the aperture, ideally a step function turning on at ¢ = 0, simultane-
ously over the entire aperture. This has been converted to normalized forms as characteristic dimensions

of the aperture as and &, the latter closely related to the equivalent height of the TEM transmission-line
feed, while the former also includes the geometric factor in the feeding TEM-transmission-line impedance.

The analysis here applies to both TEM horns (perhaps with lenses) and TEM-fed reflectors. Best
performance (narrow impulse) is obtained by a fast rising pulse on the aperture with a simultaneity of arrival
(plane wave) to a time shorter than the rise time. To accomplish this, a TEM horn can be made very long, or
a lens included near the aperture. A paraboloidal reflector can efficiently accomplish the same purpose.
With these considerations in mind, one can design a short feed with a large aperture, noting that the radi-
ated impulse is proportional to the aperture size. Depending on the design details the aperture fields will
approximate a TEM field distribution to various degrees. A more exact analysis may take this into account.

There is a complementary relationship between the TEM horn and TEM-fed aperture on the aper-
ture plane. In designing an optimum aperture S; one wishes to utilize portions of S (the aperture plane)
that contribute to the relevant integrals by having a field component in the direction of the principal electric
field. (Symmetry helps here.) Then for the TEM hon, field suppressing conducting sheets can be placed
on portions of S not included in the optimum S, while for the TEM-fed reflector the reflector is placed on

portions of the optimum Sg.

One can carry this concept further by using other than perfectly conducting sheets for reflectors
and field suppressors. Uniconducting sheets (constructed as grids of (locally) parallel closely spaced
wires) can be used to reflect or transmit desired components of the fields incident on the aperture plane.
While this can be used to increase the contribution to the surface integral of the tangential electric field,
the increase may not be great, particularly when compared to the increased difficulty of construction and
other parasitic effects (e.g. resonances on the grid).

This paper has considered the impulsive part of the IRA waveform. There are various other por-
tions of interest as discussed in [4]. These are affected by various features of the antenna design, includ-
ing the design of the feed, terminations, and pulser. These affect the lower frequency portions of the
response including pattern, as a general broadband radiator [5]. While our attention here has been
focused on the high-frequency performance in the center of the beam, off center characteristics are also
of interest as in [4]. In addition sidelobes (say due to the feed spillover past the reflector) need to be con-
sidered and perhaps suppressed by strategic placement of absorbing materials, perhaps in the region of §
outside S, where the fields are still large.
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Appendix A. Complex Potentials and Fields for Two-Dimensional TEM-Mode Description

For TEM modes propagating in the z direction we have the complex coordinate and potential as

[2]
=x+Jy

w(g) = u(g) + jv(¢) (A1)

With w an analytic function of { (appropriate to solutions of the Laplace equation in two dimensions) we
have the Cauchy-Riemann conditions

du_ v ou_
x oy oy ox (A2

In terms of vector fields we have electric and magnetic normalized fields

Z(xy) = Va(xy) . h(xy) = V()

W(x,y) = Vw(x,y) (A.3)
In complex form we have

eo(g) = eox(xry) - jeoy (x:y) s ho(g) = hox(x»y) - jhoy (x'y)

Cog (1.3) = hoy (53) 1 €y (53) = =ho, (327)

eold) = olg) = 24E) (a4

Given two conductors (assumed perfect) with cross sections for constant z as indicated in fig. A.1,
we have potentials on the two conductors with

V=0, -0 , Au=u —u
|4
D(x,y) = ~ u(x,y)

E() = - Vo(3) = - &) (A5)

Similarly we have a magnetic potential with

18




C,= ¢, Uc,Uc_Ue,

Fig. A.1. Two Conductors with Zero Net Charge Per Unit Length and Current
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I=0,Pc = —d')m!DC*_ , A= v = —v([)c_"_

@y (x,7) ZI; v(x,y)

A(x,y) = - V@u(1y) = —Aiv Fol(%,7) (A.6)

Here the change in the functions ®,, and v around the contour is taken in the positive sense as indi-
cated in fig. A.1. We have taken the "upper" conductor as positive with current out of the page (+2).
There is a branch cut connecting the two conductors so that v can be defined in a single-valued way. Note
that C, and C. do not cross this cut, but approach it arbitrarily close on both sides. These end points

are used to define the change around the contours as in (A.6). Aliernately one could define the branch
cut as two branch cuts, one running from each conductor to infinity. In terms of these parameters we
have, assuming the medium is free space,

fo = A" _ geometrical impedance factor
Ay
|4 T
Z.=fg Z = 7= characteristic impedance

Z = [&]2 = wave impedance

€o (A.7)

L’ = u, fg = inductance per unit length

C’ —Gfi = capacitance per unit length

4

c = [uo eo]—1/2 = [’ C']—1/2 = speed of light

In our present class of problems we assume that the net current and charge per unit length on the
conductors are zero, i.e.

¢ =q=-q. , I=1I,=-I (A.8)

This allows w({) to be single valued in going around the set of conductors on both

Co (00 [¢] = ¥ > ) and

¢, = C.UcUC_Uc, (A.9)

Note the inclusion of C, and C, (with indicated orientations) on both sides of the branch cut.

Note that vector fields (transverse to z) can now be replaced by complex fields as

20




H(E) = = ho(t) = — i eolt) = Hyx — jHy

21

(A.10)




Appendix B. Surface Integral of TEM Fields in a Plane

A fundamental quantity of interest is the integral of the tangential electric field over the aperture

Y = Yeip + Yy'f, = J.S E(x,y)dS = Js E(x,y)dxdy (B.1)
a a

with units Vm here. Using the complex field (Appendix A) we have

Y =Y - Yy = jsa E(¢)dxdy = J‘Sa [Ex ~ jEy)axay
14 v ¢ daw(l) (B.2)
= —— = — st d
Au Isa Coddy Au Js; d¢ dxdy

Our problem is then reduced to evaluating

. aw({)

W, =W, — jW, = | —22 dxd (B.3)

a x — JWy jsa ac y
Note first that we have [7]
aw(¢) oW _ . O

i ox & U

ow ov du
= j¥ (B.4)

as expressions for the complex derivative which can be used with the Cauchy-Riemann conditions in

(A.2). Nextwe use Green's theorem on a plane [11] which says that for ¥ and ¥, continuously differ-
entiable on §

Iy
2 dxdy = d
5, S gbcamy

[, B = v

d d
b3 - 5 e =y e vasd

with C, the positive contour around S,. Multiply connected regions are also allowed, e.g. the region

between C., (outside) and C, (inside) by interpreting C, as C..U(-C, ), noting now the negative orienta-
tionof C,.

Applying the various form of (B.5) to (B.3) we find for C, enclosing S,
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W = -[sa:% dxdy = js M ixay =(f)cawdy

2 OX
[ ow ] (B.6)
= - — dxdy = dx
i, 5 o = iy
Combining these we have
dw 1
W=]| — dxdy = — jdx + d
Sq df i’ 2 ¢ca wlJ b]
=1 * (B.7)
Compare this to the Cauchy theorem for w analytic in S,
(ﬁ wdl = 0 (B.8)
Ca
which is consistent since (B.7) has the conjugate d¢*. Other forms in terms of z and v are
du v
Re|w,| = —dxdy = —dxdy
[Wa] -[sa ax jsaay
= udy = —
e, =~ Pus
du ov
Imw,|=-] —dxdy = — dxd
[Wal S, dy Isa o
= Qudx = d:
W= i wdt® = — et (B.9)
1., wt* =~ vag
These results are a kind of Stoke's theorem applied to analytic functions in the complex plane.
Some supporting results are found by special choice of w as
df =0 B.10
Pt (B.10)
which implies
— — * —
vj)cdx_o,(ﬁcdy_o,cﬁcdc_o (B.11)
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Appendix C. Symmetrical Two-Wire Transmission Line as Antenna Feed

To illustrate some of the oonbepts let us consider a two-wire cylindrical transmission line for the
TEM mode to use in our calculations [1]. Let these wires of radius a be centered at y=1b on the y,z plane
(x =0). The z = 0 plane is taken as the aperture plane. (See fig. C.1.)

1. General formulas

As in (A.5) we have

o=V -4 _ 49 v _4q
Au C' A Cf, bu g Av
-
w = Ln|—£ = 2jarccot £
1 be
b,
Av = 21 (C.1)

Now as discussed in [1] the equivalent charge (or current) position is

by = [b2 - az]% (C.2)

The separate potentials are

r N2 2
) (i)
_ 2 \ “e e
u = in . ) , 5
—_ + 1__
\beJ ( be]
X
= arctan| ZZ (C.3)
vy = arc ; 5 5 5
= 2| -1
_(be) ¥ (be)

On the conductors we have

1
2 2
u, = —u. = arccosh (2) = {n b + [(ﬁ) _1)
a a a

Au=2u, = —-2u_ (C.4)

giving
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Figure C.1. Potential Distribution for Symmetrical Two-Wire Transmission Line
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I

I
=4
&
7]
>

|

S

= —17; arcsinh (-l;i) (C.5)

From (2.11, (2.12) and (B.6) through (B.9) the aperture effective length is

1
~ [au AV] T2 W,

j(j)ca udt* = -—¢C vdt* (C.6)

a

as

Wa

Here restricting S, to be symmetric with respect to the y axis we have only a y component for the surface
integral of the field as in (2.6) and hence only an imaginary component of ag as

as = —jas,
ag = [AuAv]—V 2 (ﬁg{fx = [AuAv]—1/2 ¢Ca vdy
- g2 1 = g2 1 (C.7)
fe ™" 2% (ﬁé‘f‘ T 22 ¢ca"dy

Referring to fig. C.2 now let the aperture be symmetric with respect to both x and y axes. Using
the contour integration results in Appendix B, the contour integral over C4 can be replaced by a set of
contour integrals around separate parts of the aperture S;. The contour integrals should not cross branch
cuts, or more specifically u or v as required in (C.6) and (C.7) have to be single valued over the aperture or
appropriate portions thereof. Then with both wires of radius a centered on the y axis at +b we can con-

sider one quadrant (x>0, y>0) of the { plane. Call this subaperture S} with contour C; as indicated. Then

we have precisely one quarter of the aperture integral from S, for ag, giving
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Fig. C.2. Aperture Integration for Symmetrical Two-Wire Transmission Line

27

Y




as, = 4[AuAv]"1/2 ¢54ax = 4[AuAv]—1/2 q)C(’, vdy

-2 2 /2 2
— Qudx = - vd (C.8)
fg z 3¢, fg r Jc, 4

For convenience another parameter h, from Section Il here is

by = hax - jhay
_ _ 2 __2 - _2
hay = fg asy = —— C&udx =z % vdy (C.9)

As will be seen this is closely related to the equivalent height 4, where for the present problem

he = —jhey + ey = 2be (C.10)

2. Sz bounded by circular arcs of constant v

First consider the inverse of the transformation in (C.1), i.e. [1]
- ool ) - soon(3)
= = cot| —<w | = jcothl —
b, 2N A ¢

x sin(v)
b,  cosh(u)—cos(v)

> _ sinh(u) (C.11)
b, cosh(u) —cos{v)

Curves of constant u (electric equipotentials) are circular given by

2 2 ‘
(-g—) + [bl - coth(u)} = csch?(u) (C.12)

Similarly curves of constant v (magnetic equipotentials) are also circles, but given by

[-;— - 2oot(v)]2+ (Zy—)z = csc?(u) (C.13)

(4 €

and passing through the equivalent line charge on the y axis at £ be.

So now let C; have its upper right portion a curve of constant v-v,. Note that for large fg the upper
conductor has a circular contour of small radius a. The integral over v (between v, and w) on the conductor

portion of C; is small. So using
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2 ' '
=— . Cc.14
hay ﬁc& de . ( )

we have for small a

ha, = %[n—vo] b, [1+0(—Z—)] as 5;--»0 (C.15)

the value of von the y axis (between the conductors) being = (limit from the right). An interesting special
case has a contour

Vo = =, x2 + y2 = b2 (circular disk S,) (C.16)

Ny

For such a circular aperture we have

hay = be [1+0(%)] as §—>o (C.17)

Letting v, — 0 then S fills the upper right quadrant of the { plane (excluding the wire) and we
have

hay = 2b, [1+o(%)] as %—m (C.18)

i.e. twice as much as for the circular aperture of radius b.. Stated another way the circular aperture is half as
efficient in contributing to the surface integral of the tangential electric field as the entire plane S, provided
S is defined by the limit as v, —» 0.

3. §;including all of S,

For the case that S; covers all of S in the sense of S., (i.e. of radius '¥,, — «=) we have from
Appendix D

1 12 172 »2 )4 b\ 2
agyw = —E fg hey = —fg b, = —a((z) -—1] [; arCCOSh(;)] (C.19)

We can ask from this what is a good choice for b/a but then we have to decide what dimension to keep
fixed. If we fix b then write
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<
It
8 o

= cosh(&)

1

- (v2 -1)% l:l arccosh( )] 2
aaym p \4

\4

1
~b tanh(£) [-&’5]2 (C.20)

Differentiating with respect to £ foran extremum at &, we find

sinh(2&,) = 4&, , &, ~ 1.09

fo = .347 (: 131 Q in free space} (C.21)

This is only illustrative since other parameters {e.q. b+a) could be kept fired, giving a different optimum.

4. S, with hyperbolic boundary

Now we need not integrate over all S but restrict S, to something more practical. Noting that S, can
be chosen as the aperture for a long TEM horn, parts of § can be covered with a conductor to remove tan-

gential electric field with a component opposite to that of the principal field. For use with a reflector the
metal includes portions of S with components in the principal field direction, i.e. in the -y direction.

As discussed in Section 1l for x, z and y, z symmetry planes for S, we have

4 {*max 2 (*max
= — = £ 22
hg y Ay JO ugdx il Ugdx, (C.22)

where u4 is the electric potential along the upper edge of S5. So let us find u, (x4) such that it is maximized

for each x, at a position y,. Differentiating « in (C.3) with respect to y and setting to zero for an extremum
gives the C, contour as

2 2
(y_a) 14 (35_) (C.23)
be be

which is a hyperbola, applying outside the conductors. Note in limiting cases {first quadrant)
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1 for small %‘-‘-

Y e
i (C.24)

b, Xq X
=2 for large <%
b, 9 b,

If we extend this shape of S, to « it occupies one half of S., as ¥.. — «. Note that a small region is
excluded (circular of radius a centered on y=b). Note also that this contour can be found on fig. C.1 by
considering each contour of constant « and finding its right most extremum (i.e. maximum value achieved

Noting that the contour meets the conductor at

la =%a + jyg=a+jb
ug = uy (C.25)
then (C.22) becomes
2 Xmax
hay = ;{au.,. + L uadxa}
r r _ 1 _2 - 3
wz + 1+[1+ WZ]E
2 b, {¥Ymax
= — + = L = =1 d
”4 aug > J.'I’o n - 1_2 v
y/2+ 1-[1+ WZ]Z
L L 1]
'd r 1
oTs
2 b, {¥max [1+V ]2+1
= —QUy + — ln———-—1—— dy
T 2y, 215
2 —
L L[1+yz ] 1
2 Vmax
=— +b, arccsch
”{au+ eJ. Yo © (!I/)dllf}
= Za =2 = Xmax C.26
V=9, 0 Yo T v ¥max b, (C.26)

Using standard tables [8, 9] we have
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Yo

{au+ + b, [wmaxarocsch(wmax)+arcsinh(wmax)

aln

—yearccsch(y,) — arcsinh(wo)]}

For small a/b we have

auy -0, y,—>0, x, >0

arcsinh(y,) = v, + O(wf)

2
warcesch(y,) = wotn[—w—) + O(wg)

o
giving
ha, =be %{y/maxarCCSCh( Wmax )+ arcsinh( ¥max )}

as x,—0
Now consider how large one may wish to make such a reflector. For large xmax We have

Xmax > » Vmax >

arcsinh(¥max) = £n(2¥max) + O(Wr;ix)

Vmaxarcesch(ymax) = 1 + O(V’azax)

giving (for negligible x,)

2 _
hay = -;{1 + £n(2¥max) + o(wmix)}

2 2x -2
= ;be{1 + ln(—z’"ix-) + O(xmax)}

(4

32

(C.27)

(C.28)

(C.29)

(C.30)

(C.31)




The point is that this diverges, so hay can be made (in principle) as large as one wishes by appropriaté
choice of xmax-

In practice as xmgy is made larger and larger the structure is inefficient in that be could be made

larger instead, &, y being first order in b, instead of only logarithmic in xpgx (for large xmax/be). In addition

the largest radius of S, determines the required length of a conical transmission line and/or size of lens or
reflector to produce an acceptable wave planarity (simutaneity of arrival) over the aperture.

5. Rectangular aperture
Another shape we can consider is a rectangle with boundaries

X =*Xpax ,» Y = *b, (C.32)

Then we have the x coordinate as x, where the contour meets the conductor in the first quadrant as

Vo b, ' =3
1
u, = arccosh(v) = fn v+(v2 —1)2
=L o1+ ay2
—-é' n[+ I[fo]

= J§(v2 - 1)_5 v+ (v2—1)§
1 1
- [
qa a
- -bf- = v~ for small % (targe v) (C.33)

From (C.22) we then have
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2 *max
hay = -;{xou_’_ + Ixo uadxa}

% Xy + j;" g2 ln[1 + 52] d§}

552]@_,5052&’5152% (C.34)
Xa *o Xmax
Integrating by parts gives
- 4 -1
ay = %{xou_,_ = bt 714+ ¢2] §:+ 2bej§10[1 + 52] dé}

_ %xou+ ) %be ln[1+§12] ) zn[1+§§]

§1 éo

+ 2 arctan(é o ) - 2arctan(§1 )} (C.35)

For small x, we have
Eo o

5 ln[1 + gf]

h, =b,—
r &

ay +m —2 arctan(&y)

as x, >0 (C.36)

Now look at how wide one may wish to make the rectangular reflector. One can make it infinitely
wide in which case

& - 0+

Again we get back to the equivalent height.

A special case of a rectangle is a square for which
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Xmax =be ,» &1 =2

nﬁ"
l

5
= be{z + t—':(z—) - % arctan(2)} as x, > 0

fad 1.10 be (0.38)

which is slightly more than for the circular aperture in (C.17).
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Appendix D. Surface Integral over All S in Terms of Equivalent Height

Using the transformation in Appendix C for two wires, let us extend the results to more general ‘
cases. Consider the quantity
2
by, = — vd. D.1
y =7 Yo 'Y (D.1)

in the limit as the radius of the wire goes to zero. With C; around the first quadrant of the { plane we find
that

by = 2b, (D.2)

asin (C.15) with v, = 0. This is just the separation between the two line charges, or the equivalent
height. Note that this applies when S, is extended to the entire plane §, but in a limiting sense where

v, — 0. Since the lines of constant v are circles described by (C.13), extending in the first quadrant

approximately twice as far in the +x direction (for smali v,) as in the +y direction, the result applies for such
an aperture shape, and may not give the same result as for a large circular aperture (to be discussed later).

Generalizing this, note that in complex form the effective length of the aperture is

V2 g g2 Wa

as = — [Au AvV]” ' A -

Wa

A = S

Rearrange this for the case that S, is extended to the entire plane S as

W,
he = fg1/2 ag = _—A%
= hey = Jhe, (D.4)

where Wy, indicates the sense of the limit as v, — 0. In Appendix C this takes special forms due to the
symmetry of the particular problem and the fact that Av is 2r. Here we have using the general forms in
Appendix B

W, 1 aw({)
by = —=% = ~— | —2 dxd
¢ Av Av Js, d¢ dxdy
J * 1 *
= —J_ wdt* = — d D5
AV (ﬁcv ¢ =5 P, v (D-5)

where Cy, is now interpreted as a contour with v, — 0 with appropriate deformation as in Appendix B to
avoid branch cuts. Furthermore this contour has to be aligned according to the orientation of he.

Now we can think of generalizing this result to arbitrary shapes of the two conductors (+ and -} in '
fig. A.1. Essentially we move the line charge around the surface of the conductor, weight 4. by the local
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charge density on the conductor, and integrate over the conductors. This makes %, the average charge

separation distance, the equivalent height for the more general case. This is just a superposition result
regarding the integral of the fields over Sy as the sum of integrals for each part of the surface charge distri-

bution.

An alternate approach to this integral and its relation to 4, is found by considering a circular aper-
ture of radius ¥,, andlet ¥, — . For this purpose let us use the electric - potential form and evaluate

12 __ We 1 aw({)
= -2 o o— ) 2L gud
o Iy A K ar O
J * 1 *
= —--L uwdt” = — d D.6
Av JC,, ¢ Ay va ¢ (D6}

where C,, acircle of radius ¥, — « with deformation as in fig. A.1 to avoid branch cuts.

Consider the contribution from the contour C, in fig. A.1. Note that inside C, the electric fields

are zero (inside the conductors) or cover zero area (between C, and C;). On the conductors the electric
potential is constant so we have (from (B.11))

gf)c+ wdl* = 0= uwa (D.7)

The electric potential is continuous across the branch cut so we have

(j>c+ udl* + gSC_ wdl* = 0 (D.8)

So for the contribution from C, we have

Wo =j<f)c udf* = 0 (D.9)

(4

and we have for the entire plane

W, = j(ﬁc udl* (D.10)

where now C.. is just the circle of radius C.,, this result applying to the electric potential.

So now we need the asymptotic behavior of « for large [¢]. In terms of the electric potential we
have in cylindrical coordinates [10]
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x = Yoos(g) , y = ¥sin(g)

)
"

[ape + bo]v[coln(‘l') + d, ]

-

+ Z[ancos(mp) + b, sin n¢)] P +d,,‘I""] (D.11)
n=1

Reject the £n(¥) term as applying fo non-zero net charge per unit length and the ¢ term as applying to the

corresponding &, for non-zero net current. Reject the ¥ terms since there is no charge at «. This
leaves the form

= by + Z[ancos(mp) + b, sin(ng)| ;" (D-12)
n=1
with remaining acceptable terms.

Write (D.10) interms of ® as
Woo = lim jehy udl* Im — @d D.13
‘Pool—ioojécoo C ! J ¢ C ( )

Apply this to each term in (D.12). By (B.11) the constant term gives zero. So do all terms with n> 2, being

o(wZ"*"). Thus we have

*

Weo

lim j""" a1 cos(¢) + b15'"(¢)]

Y, —

J% J’oz"[m cos(¢) + bysin(¢)] [d(cos(9)) - jd(sin(9))]

J%"- J:”[m cos(¢) + b1sin(¢)] [—sin(¢) - jcos(¢)]d¢

%nh—m] (D.14)

Consider a line dipole of strength

P o=qh (D.15)

As indicated in fig. A.1 the equivalent height 4, measures the mean charge separation distance on the
conductors and is illustrated here oriented in the y direction. The potential for such a dipole in the limit of

small &, with
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) P =0r (D.16)
. can be evaluated as the potential of two closely spaced, oppositely charged, line charges. From
Appendix C we have for two line charges of +¢” spaced &, /2 along the y axis
Au C" Au  Cfy, Av g &v
I
=7 h)’
wEmBr .
o J
y
Av = 21 (D.17)
Expanding the potential for large |{| we have
Jhy
1+ —= 2
2f _hy (h )
w=n—=2| = j—= + 0| £
N ¢ ( ¢
2
q 2 . 2
. hy, y h hy sin(¢) h
=27 e 4 =27 Ze D.18
u o2 +O[(\P) J 5 +O(‘P) ( )
This gives an electric potential
=Py [sin(e) | of ke (D.19)
2re,| ¥ p2

and we canlet i, — 0 for a simple form of the potential. As one should expect the potential at large ¥ is
dominated (for zero net charge) by the line dipole moment.

Comparing this potential to that in (D.12) observe that

Py Au Py
= W = —j— D.20
b 2re, ! V 2¢, ( )
Similarly choosing an x directed line dipole of strength p; replaces sin{¢) by cos(9) in (D.19) giving
Px Au py
= , W, = —j— D.21
“ 2rne, J V 2e, ( )

. Combining these gives
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Then we have
wo =Du p _Augh . Ch
TV 2¢, V 26¢ 2¢,
= Auh Ay D.23

While the particular transformation (D.17) has a Av of 2x, the result is cast in the form of a general Av for
greater generality.

Comparing to (A.4) we now have

a5 = ~f, 2 -==-f2 % | (D.24)

i.e., a factor of two smaller result. So for a circular S, with ¥, — « the result is reduced by half from that for
the special aperture shape Sy based on constant v contours. The result for an infinite aperture then
depends on the way the limit to « is taken. In integral form we also have

_oWe _ 12
h, = 2 A o 2fg as
_ ;2 * (D.25)
J Ay ¢C°° udC

This can be put in terms of the magnetic potential also if we include the C,, contribution.

The result for an infinite circular aperture is an appropriate one to use because it models a practical
physical situation. Consider that the aperture illumination comes from some finite source, such as a coni-
cal transmission line of finite length. This means that the entire aperture plane cannot be simultaneously
filled with electric field. The finite propagation speed of light c means that signals from the conical apex
(faunch point) arrive on S, filling out a circular portion with radius expanding as time increases. For a given
circle the fill time (from first to last arrival) can be made arbitrarily short if the length of the conical launcher (in
the z direction) is made sufficiently large.
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