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Abstract

This paper considersthe characteristicsof the aperture shape and size for launchingthe impul-
sive portionof approximate impulse-radiating-antenna(IRA) waveforms. Using complex-variable
techniques the electricfield on the aperture plane (early time) is assumed to have the distributionof a TEM
plane wave (inhornogeneous)on the aperture and is formulated as a complex field given by the derivative
of the complex potentialwith respect to the complex coordinate (two dimensional). The surface integral is

●
converted to a contour integral around the aperture for ease in evaluation. This is used to define
appropriatecharacteristiclengthsfor the aperture which can be maximized for best impulsiveoperation.
The aperture optimizationis applied to both TEM horns and TEM-fed reflectors,which are shown to have
complementary structureson the aperture plane.

impulse radiating antenna (I’M.), TEM waves, plane waves
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1. Introduction
o

In a previouspaper [4] itwas shownthat a step-risingtangential electricfield on an aperture& in a
plane Sgives a delta-function-likefield inthe far field for an observeras r + coalong a directionperpen- 0

dicularto the aperture. This is a plane-wave illuminatedaperturewhich can be extended to directionsof
propagationat arbitraryangles with respectto the aperture plane. This is not an exact delta functiondue
to the problemof transitionfrom near to far field in time domain sinces (complexfrequency) covers fre-
quencies extending to infinity. However, the area under the pulse (time integral) is well described by the
impulse (delta-function)formulas. Furthermore,practicalantennas fed by finite-energy pulsers alter the
aperture illuminationto give a low-frequencylimitationso that the total pulse has undershootto give a net
zero area. See [4] for a discussionof these limitationsand the form the pulsetakes off the main beam
(plane-wave aperture illuminationdirection).

As indicated in fig. 1.1 let there be an aperture Sa in the x, y plane denoted S. As developed in [4]
the far field is

s‘-”r [(7Z.7,) T-jzjr] . j~ae77r-7fif(zs) = ~zcr fit(7’,s) ds’

c = [).LOEO]-”*= speed of light

s = Laplace- transform variable

=(2+’

y.z.
c

ja = complex frequency

free space propagation constant

- = Laplace transform (two-sided) over time

7, = ~ , F = (X,y,z)
r

~ = ix ix + ~ ~ + ~ iz = dyadic identity

Specialize to an aperture distributionas

waveform on aperture

aperture spatial distribution

direction of propagation of plane-wave aperture distribution

focal direction in far field

(1.1)

(1.2)
Q
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Fig. 1.1. Aperturewith SpecifiedTangential ElectricField
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This gives

,

.

A = aperture area

.-
~(~ ,s) = ~(s) F=(} ,s) = far-field waveform function

= aperture function (1.3)

This can be evaluated for variouswaveformsand directionsir both on and off the focal direction

~0 in both frequency and time. An interestingspecial case is for ideal step-functionillumination

F(l,S) = Fa(l,s) (1.4)

so that the far-fieldtimedomain waveform is just ~a(ir,t). Lettingthe observer be on the focal direction

we have

i=Z

(1.5)

which is the ideal resultof a 6 functionradiator. Again notethat as discussedin [4], the correctfield is lim-
ited in amplitudeby the aperturefield with a small pulsewidthto give the correct impulse(or time integral)
as above. Note for the special case of boresight(normalto aperture)

(1.6)

Formallywe can define a modifieddelta functionappropriateto the aperture in questionwith ●
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e J’mda(r,t) ‘t = 1 - ‘(1.7)

where tla is a functionof r as well as t, its peak being proportionalto r and width proportionalto r-~. This
makes tia/r have a peak which is constantwith r (appropriateto large r) so that the peak field at early
retardedtimes is constantfor the simplecases discussed in [4]. This Sa(r,t) can be substitutedfor 6(t) in
(1.6) and calculatedfor specificcases if desired.
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II. Vector Size of Aperture Under TEM Illumination.
,

Now specifyour aperturefields as

J3t(r,t) = JE(X’,y’) u(t)

givingthe ideal far field as

@

(2.1)

(2.2)

(with use of ~a if desired). In orderto define some effectivenessfor the aperture as an impulse radiatorwe
need something related to the surface integral above.

Note that ~~ . fif/Zo is a powerdens.Ryinthe far field. Assuminga TEM-like field E(x, y) u(t)

on the aperture (at least for earfytimes) gives a power fed intothe antenna by integratingall such power
includingthat which does not illuminatethe aperture. So let us define

& j~%’) ds2
a

P~

1

[1

i.Jo~= (2.3)
— wave impedance of free space
=0

9

where Pin is the power fed intothe antenna immediatelyfollowingthe step rise. This gives some effective
area as can be seen by checkingthe units. More convenientlydefine

[. E(LY) a

“6=‘;Oql’z

As=+j .ii~ (2.4)

Thus Es containspolarizationinformationand is some effective length of the aperture, the far field im-
pulse (forjust this part of the waveform) scalingwith this parameter. One could have used voltage or cur-
rentfeeding the antenna for normalization,but an ideal transformercan scale these up or down arbitrarily.
Thus power seems more appropriate.

Now assume that the aperture is fed by the TEM mode of a cylindricaltransmissionline, an inho-
mogeneous TEM plane wave, the wave propagatingparallelto the z axis, and hence perpendicularto S.
As a practicalmatterthis is a longconicaltransmissionline, sufficientlylongthat the fields arrive essentially
simultaneouslyon Sa, the time-of-arrivaldifferencesbeing smallerthan all other times of interest.
Alternately,as discussed in [4], this conicaltransmissionline can be shortened by use of a lens or
parabolicreflectorto change the sphericalTEM wave intoa plane wave, with the TEM propertyat least
approximately retained.
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e Now let the fields on S be characterized by a TEM mode as on a two-conductor(@rfectiy conduct-

0

ing) cylindricaltransmissionline in free space. As discussed in AppendixA this is characterized by voltage
V and currentZ (after step rise)with

Vz—=
Ic

= fg 20 = characteristicimpedance

fg=g = geometrical impedance factor

V2
P~ =Vz = --j-

C

Substitutingthese in (2.4) gives

Going further let (as in Appendix B)

~ = x + jy = complex coordinate

w(~) = u + J-J= complex potential

a
The electricfield (tangential) is the gradientof a scalar potentialas

E(x, y) = Exix + Eyiy = - v@(x, y) = -& %(%,y)

Z’.(x, y) = Vu(x, y)

This can also beset in complexform as

E(c) = EX -jEy=-~~

Now rewrite Za incomplexformvia

G& 7= a~x lx + aq ~

a~ = %$x - jasy

Then (2.6) becomes

●

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)
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●
Au = change in u between the two conductors

Av = change in v in going around either conductor (2.11)

(noting not to cross branch cut)

As we can now see a~ is a functionof w and the apertureSa,basicallya functionof the TEM transmission
line and aperture geometries.

As shown in Appendix B the surface integralcan be replaced by a contour integral around C=, the
aperture boundary, givingvar”nusforms as

1

(2.12)= [AU AV]-1f2+Ca vd~” = f;z + $&a VK*

See (B.6) through (B.9) for variousother forms includingthose using dx and dyseparately as well. Note
●

that Ca should notcrossbranchcuts, but this is easily avoided by breaking up Sawith Ca as a set of con-
tours around the pieces.

We are now in a positionto compare variousantenna designsvia a~. This can be convertedto an
efficiency, if desired, by dividingby some linear dimensionof the antenna, e.g. maximum linear dimen-
sion, cube root of the volume, etc.

IIAn interestingquestion concernsthe maximizationof a ~ by appropriatechoice of Sa (and

hence Ca). Appendix D shows howto evaluate ~ for the case that Sa is extended to all Svia S- (radius

Y.+=) as



,

.

_ f-112&
g 2

hex - Jky = equivalent height

mean charue se~aration distance.-.

between two conductors (2.13)

where C= is deformed as necessary to exclude branches.

Also in Appendix C it is shown that other shapes of aperture with size+ ~ give different answers.

In particularone can increase la~l above that in (2.13). One may ask how big la~l mght be made by
appropriate choice of the shape of Safor a given he. For this purpose let us define another length for the
aperture

ha = h=x – jhay = - f~’a~

(2.14)

and compare this for various aperture choices. As we have already seen

h~=

{

1/2 for S= aperture (Appendix D)

he 1 for S, aperture (Appendix D)

where the Svaperture correspondsto using constant
two wires in Appendix D.

(2.15)

v contourswith v = VO+ O (fillingup the plane) for

Now Sadoes not have to be infinite. Various shapes can be investigatedfor applicationto

antenna design. An example in Appendix C2 is for a circularaperture of diameter Ihel with wires feeding
two diametricallyopposite parts of the aperlure, righton the edge of the aperture. There it is shown that

h==+ (2.16)

which isthe same as for the S- aperture.

In order to increase la~[,and hence Ihel,one can decide which portionsof S to use. Define some

e
particulardirection,say ~, as the directionof the principalfield (tangential electricfield on the aperture) of
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interest. For cases of sufficientsymmetryin the TEM feed and Sa this is an obviousdirectionantiparallelto
,

Z=. Lookingat the field on Sa,then wherever it is parallelto 7= (positivedot product)this field will con-
tributepositivelyto the surface integralas in (2.2), so this regioncan be chosen as part of Sa. o

A simplebut practicalcase of this has

7== -$

~a=hay$ , ha=-jhay , haY<O

he = hey lY , he =-jhey , hey >0 (2.17)

so that the principalfield is inthe -y direction. Assumethat the x, z and y, z planes are planes of symmetry
for both the TEM conductorsand Sato assure the resultanty componentsas above, as well as the reduc-
tion of the integrationto a singlequadrant of the ~ plane.

From (2.14) we now have for our symmetriccase

h . -f:fz ~a = _l
aY Y $Av C=

udx=-.J-
$

vdy
Av C~

4=——
+

udx= -~
$

vdy (2.18)
Av C& Av C;

●
where C: is the positivecontouraround S:, that portionof Sa in the upper rightor firstquadrant of the ~

plane. See an example infig. C.2. Note that C: strictlydoes not includethe conductorcross sections

(the field here being zero anyway). This form using C; makes it easy to avoidcrossingbranchcuts.

A simplecase has u = 0 on the x axis so that we can write

%m~ = maximum extent of S; in + x direction

Ua = electric potential along C; portion excluding x and y axes (2.19)

Thinkingof ~a as the integralfromy = 0 up to C: along a constantx of the negative of the electricfield,

then (2.19) completes the integrationover x. Note that if C: includesportionsof the y axis both above

and below the upper conductorthis formula is stillappropriate,the integral along C: around the conduc-
tor boundary givingzero due to the constantu there. Implicitly~a in (2.19) has been taken as single

valued (i.e. C: havingonlyone y for each x away fromthe two axes). This is not a restrict-kminthat (2.19)
can easily be modifiedto allowfor such a case. Similarlythe formula involvingthe magneticpotentialv in
(2.18) can be cast into an appropriateintegralover y analogousto (2.19).
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. Appendix C evaluates (2.19) for variousaperture shapes for a symmetricaltwo-wire TEM aperture

@

feed with equivalent line charges onthe y axis at #e on the edge of the aperture. Comparing to the circu-
lar apefture in (2.16) we have

“ .5

1

‘aY
—=* .55
hey

+CO

circular aperture

strip aperture (rectangular, infinitely wide)

square aperture

hyperbolic upper and lower y aperture

boundaries (infinitely wide) maximizing

integrand in (2.19)

&y = 2be (2.20)
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Ill. Complementary Field Suppressorsand Reflectorswith TEM Transmission-Line Feeds ,
#

Wtih the discussionin Section II we can now see that there is a certain complementaryrelationship
on the aperture plane between TEM hornsand TEM fed reflectors. The aperture Sa is chosen so that the ●
locationson S with positivecontributionsto the integralfor ha (electricfield with a component in the same

directionas the principalfield, -;=) are includedin Sa and other locationsare excluded.

For an ideal TEM horn(infinitelylongcylindricalTEM transmissionline) as infig. 3.1A, the portions
excluded from Sa are covered with field suppressing(perfectlyconducting) sheets. Conversely for the
ideal reflectorin fig. 3.1B (planarwith infinitelylongTEM transmissionline) S=is covered with field
reflecting(perfectly conducting)sheets. The aperture Sacan be chosen the same for both except for
practicalconsiderationsof finite size for the conductors.

Practicallyand desirablythe TEM wavegukfes can be conicalso as to have finite length, say f,
fromthe aperture plane. As illustratedin fig. 3.2A, the equivalent height is appropriately(for present anal-
ysis) the spacing h of the mnductors (charge centers) at the aperture plane. The length 1 is chosen so
that the dispersiondistance d [2]

[

112
d=12+Y:

1

is smallcomparedto both t

(3.1)

and y= (the largestradiusof Saof interest)and is smallenoughthat d/c is a
sufficientlyshort time that negligiblebroadening of the impulsivepart of the radiated field occurs.
Alternativelya nondistortingtransient lens[12] is placed just before the aperture plane to convert the
sphericalTEM wave intoa planarone at the apertureplane. The lens, of course, allows t to be s.@nifi-
cantly decreased while stillhaving negligibledispersiontime (time differenceof arrivalon the aperture
plane). Note the inclusionof field-suppressingconductorsas discussed previously.

Consider now the TEM-fed reflectoras in fig. 3.2B. In principlethis can be planar, but with the
same restrictionon large .4 for smalldispersiondistance (over the entire reflector). Now the effect of the
aperture blockage due to the conical TEM conductorsshould be considered. In the high-frequencylimit
the blockage can be reduced by appropriatechoice of the shape of the TEM conductors[5]. This may
also influencethe choice of~’ since a smallvalue (low impedance) impliesfat conductorswhich increase
the aperture blockage. In terms of a~ the aperture blockagecan be consideredas a reductionin Sawith
relevant portionsbeing deleted from the integral. Note that the field reflected from Sa is the negative of
the incidentfield. Of coursethe reflectoris best not a plane, but a paraboloid,allowinga significantreduc-
tion in 4 for the reflectedfield to be a plane wave on an aperture plane just in front of the reflector. The
paraboloidalreflectorserves the same functionas a lens.

12
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F’
B. TEM fed reflector
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Fg. 3.2. PracticalFormsofTEM-Fed Apertures
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* Iv. Finite-Length TEM Horns

● Some further insightintothe-performanceof an IRA for the impulsivepart of the waveform can be
gained by lookingat the early-time radiationfrom finite-lengthTEM horns. As indicated in fig. 3.2A let the
conicalapex be placed behindthe aperture plane (z= O plane) a distance 1 with a step-risingvoltage

V u(t + 4/c). Let the TEM horn be composed of flat-sheet cones with a spacing hat the aperture plane
(equivalent height there). Then let the plate dimensions at the aperture plane be

2a = width

2b = h = separation
(4.1)

One can roughlyapproximatethe early field on the aperture (.EY)by -VO/hwith arrivaltime based on
the sphericalwavefront (t = 0 being arrival inthe center of the aperture) [6]. For a distant observer on the
+Z axis the sphericalwave can be extrapolatedfor early time as

v&-
Ef z---r -$

The width toof this early pulse can be written as

(4.2)

(4.3)

●
where YO is some effective radiusof the aperture related to the time that the sphericalwave arrivesat the

-. Theim-plate intersectionwith the aperture. One might make a cmde estimate for WO asa or a + b
pulse or area under the radiatedwaveform is

vY:Ta/po+o
Efto=-— —

4cr a y T
(4.3)

Note for small !PO/ .Cthat this is independent of 1. The pulse ampliiude in (4.2) and the pulse width in

(4.3) depend on Z, but not this impulse.

The impulse in (4.3) depends cm VJ~/a a characteristicdimensionof the aperture, since for a

given aperture shape Ye/a is a dimensionlessconstant. This says that the impulse depends on the lin-

ear dimensionsof the aperture, and is propmtionalto h (or a or WO). So to firstorder it is the aperture size
and not 4 (the length of the feeding conical transmissionline) which is importantfor the impulse.

Compare this formula for the impulseto the one for a plane-wave illuminatedaperture in (2.2),
(2.6), and (2.14) as

15



J’::%(ZM=+ J-.=WY’)ds’

1
1=—

27rcr
v f;~

Notingthe common factorswe have

where ha, has been defined interms of an integralover the aperture. This can be considered to define

WO (the effeotive radiusof the aperture). Substitutingback in (4.3) then gives the effective width of the
radiated impulsefor the TEM horn.

?

(4.5)
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* v. Concluding Remarks

e Here the behaviorof the impulsivepart of an IRA waveform has been characterized in terms of the
integralof the tangential electricfield on the aperture, ideally a step functionturningon at t = O,simultane-
ously over the entire aperture. This has been convertedto normalizedforms as characteristicdimensions

of the aperture as and ha, the latter closely related to the equivalent height of the TEM transmission-line
feed, while the former also includesthe geometric factor in the feeding TEM-transmission-line impedance.

The analysis here applies to both TEM horns (perhaps with lenses) and TEM-fed reflectors. Best
performance(narrow impulse) is obtained by a fast risingpulse on the aperture with a simultaneityof arrival
(plane wave) to a time shorterthan the risetime. To accomplishthis, a TEM horncan be made very long,or
a lens included near the aperture. A paraboloidal reflectorcan efficientlyaccomplishthe same purpose.
With these considerationsin mind, one catI design a shortfeed with a large aperture, notingthat the radi-
ated impulse is proportionalto the aperture size. Depending on the design details the aperture fields will
approximatea TEM field distributionto variousdegrees. A more exact analysis may take this into account.

There is a complementary relationshipbetween the TEM horn and TEM-fed aperture on the aper-
ture plane. In designing an optimum aperture Sa one wishes to utilize podions of S (the aperture plane)
that contributeto the relevant integralsby having afield component in the direction of the principal electric
field. (Symmetry helps here.) Then for the TEM horn, field suppressingconducting sheets can be placed
on portionsof S not included in the optimumSa,while for the TEM-fed reflectorthe reflector is placed on
portionsof the optimum Sa.

One can carry this concept further by using other than perfectly conducting sheets for reflectors
and field suppressors. Uniconductingsheets (constructedas grids of (locally) parallel closely spaced
wires) can be used to reflect or transmit desired components of the fields incidenton the aperture plane.
While this can be used to increase the contributionto the surface integralof the tangential electric field,

a

the increase may not be great, particularlywhen compared to the increased difficultyof constructionand
other parasitic effects (e.g. resonances on the grid).

This paper has consideredthe impulsivepart of the IRA waveform. There are various other por-
tions of interest as discussed in [4]. These are affected by variousfeatures of the antenna design, includ-
ing the design of the feed, terminations, and pulser. These affect the lower frequency portionsof the
response includingpattern, as a general broadband radiator[5]. While our attention here has been
focused on the high-frequency performance in the center of the beam, off center characteristics are also
of interest as in [4]. In addtiion sidelobes (say due to the feed spilloverpast the reflector) need to be con-
sidered and perhaps suppressed by strategicplacement of absorbing materials, perhaps in the region of S
outsideSa where the fields are still large.
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Appendix A. Complex Potentialsand Fieldsfor Two-DimensionalTEM-Mode Description

For TEM modes propagatingin the z directionwe have the complex coordinate and potential as
[2]

W@) = Z&) + p(;)
(Al)

Wtih w an analyticfunctionof ~ (appropriateto solutionsof the Laplace equation intwo dimensions)we
have the Cauchy-Riemann conditions

In terms of vectorfieldswe have electricand magneticnormalizedfields

ZO(x,y) = Vu(x, y) , io(x,y) = v+, y)

J?(X,y) = Vw(x, y)

[n complexformwe have

eo(O = eOX(x,Y) - @OY(x,Y) , ~o(~)= ~ox(xjY)- j~oy(xlY)

eox(ZY) = ~oy(XSY) , eoy(4Y) = -%X (-v)

(A.3)

(A.4)

Given two conductors(assumed perfect)with crosssectionsfor constantz as indicated in fig. A.1,
we have potentials on the two conductorswith

v =@+ -o_ , Au=u+ -u-

CD(x,y) = : U(x,y)

E(X,y) = – Wb(x, y) = -: Zo(x,y) (A.5)

v

Similarlywe have a magnetc potentialwith
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Fg. Al. TwoComiuctorswithZeroNetChargePerUnitLengthandCunE?m
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1 = cDmQc_ = –%NDC+~ Av = V@C_ = - v~c+

@m(x,y) = + V(%,y)

R(x, y) = (A.6)- v@m(x, y) = -; &(XY)

Here the change in the functions @m and v aroundthe contour is taken in the Positivesense as indi-
cated in fig. A.1. We have taken the “upper”conductoras positivewith current out of the page (+2).
There is a branch cut connectingthe two conductorss that v can be defined in a single-valuedway. Note

that C+ and C- do not crossthis cut, but approach it arbitrarilyclose on both sides. These end points
are used to define the change around the contoursas in (A.6). Alternately one could define the branch
cut as two branch cuts, one runningfrom each conductorto infinity. In terms of these parameters we
have, assumingthe medium isfree space,

fg=g = geometrical impedance factor

vZc=fgz=y. characteristic impedance

1

[1‘O 2 = wave impedancez=—
E.

L’ = #o fg = inductance per unit length

c’===
fg

capacitance per unit length

c = [Uo =.]-1’2 = [L’ C’]-1’2 = speed of light

In our present class of problemswe assume that the net current and charge per unit length on the
conductorsare zero, i.e.

q’=q; =–qi , I= I+=– Z_ (A.8)

This allowsw(&jto be single valued in going around the set of conductorson both

(A.7) a

Cm (on 1~] = Y?=+M) and

co = c+ucfuc-ucr

Note the inclusionof Cr and C~

(A.9)

(with indicatedorientations)on both sides of the branch cut.

Note that vectorfields (transverseto Z) can now be replaced by complexfields as

20
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H(r) = -~ ho(~) = -j-& eo(~) = Hx - jlfy

E(c) _ .~ Av .Z=
H(J) ‘I~=Jfg

- jZo (A.1O)

21
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Appendix B. Surface Integralof TEM Fields in a Plane
.

A fundamental quantityof interest is the integralof the tangential electricfield over the aperture o

i? = Y.?’

with units Vm here.

Y =Yx–

v=——

Using the complexfield (AppendixA) we have

J HJyy = s= ‘(r)&dY = ~= ‘X - jEy]dxdy

Our problem is then reducedto evaluating

Note firstthat we have [71

(B.1)

(B.2)

(B.3)

(B.4) ●
as expressionsfor the complex derivativewhich can be used with the Cauchy-Riemann conditionsin

(A.2). Next we use Green’stheoremonaplane[11] whch says that for v, and V2 continuouslydiffer-
entiable on S

(B.5)

with Ca the positivecontour around S=. Multiplyconnected regionsare also allowed, e.g. the region

between C= (outside) and Co (inside) by interpretingCa as CmlJ(-CO), noting now the negative orienta-

tion of CO.

Applyingthe variousform of (B.5) to (B.3) we find for C= enclosing Sa

22



Combining these we have

Compare thisto the Cauchy theorem for w analytic in Sa

$C wd~ = O
a

which is consistent since (B.7) has the conjugate dg*. Other formsinterms of u and v are

&&y . JSU$4
‘e[wul = jsa ~x

+ $Udy=- Vdx
= Ca Ca

=+$x =$cavdy

(B.6)

W=j $Ca ‘C* = - $Ca vd~”

These resultsare a kind of Stoke’s theorem applied to analytic functions in the complex plane.

Some supportingresults are found by special choice of w as

which implies

(B.7)

(B.8)

(B.9)

(B.1O)

(B.11)
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AppendixC. SymmetricalTwo-Wire TransmissionLine as Antenna Feed

To illustratesome of the concepts let us considera two-wire cylindricaltransmissionline for the
TEM mode to use in our calculations[1]. Let these wires of radiusa be centered at y=~b on the y,z plane

●
(x= O). The z = Oplane istaken as the apertureplane. (See fig. C-l.)

1. General formulas

As in (A.5) we have

Av = 2X

Now as discussed in [1] the equivalentcharge (or current)positionis

1

be = [b2 – a2]~

The separate potentialsare

I

..;,n (:7 ‘(’+:7”

(:T ‘0-:s

100”
be

v = arcta 2 2
x z -1

<+be

On the conductorswe have

-=arc~sh(:)=’n[:+[(:r-lf]*.–U

Au = 2U+ = –2u–

(Cl)

(C.2)

(C.3)

(C.4)

0giving
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Forue.5 z, uandv areinincrementsof .05z
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Figure C.1. Potential Distributionfor Symmetrical Two-Wire Transmission Line
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.

()= ~ arccosh ~
a

()b
= ~ arcsinh ~

n a

From (2.11, (2.12) and (B.6) through (B.9) the aperture effective length is

ad = - [Au Av]-~ Wa

w= = j+= U@ = - $CavdC*
a

(C.5)

(C.6)

Here restrictingSato be symmetricwith respectto the y axis we have only a y componentfor the surface
integralof the field as in (2.6) and hence only an imaginarycomponentof a~ as

o

aa = [AUAV]-1/2$& = [AUAV]-”2$Ca vdy

(C.7)

Referringto fig. C.2 now let the aperture be symmetricwith respectto bothx and y axes. Using
the contour integrationresults in Appendix B, the contour integralover Ca can be replaced by a set of
contour integralsaround separate parts of the aperture Sa. The contour integralsshould not cross branch
cuts, or more specificallyu or v as requiredin (C.6) and (C.7) have to be singlevalued over the apertureor
appropriateportionsthereof. Then with bothwires of radiusa centered on the y axis at ~b we can con-

sider one quadrant (-0, y>O)of the ~ plane. Call this subaperture s; with contour C: as indicated. Then

we have preciselyone quarter of the aperture integralfrom S: for ady giving
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as
Y

= 4[AuAv]-”2*= 4[AUAV]-1’2$C,vd,

For convenience anotherparameter ha from Section II here is

ha = hax – jhay

As will be seen this is closely related to the equivalent height he where for the present problem

he = – jhey , hey = *be

2. Saboundedby circulararcs of constantv

Firstconsiderthe inverse of the transformationin (Cl ), i.e. [1]

x sin(v)
—=
be cosh(u)– COS(V)

Y sinh(u)—=
be cosh(u)– COS(V)

Curves of constant u (electricequipotentials)are circulargiven by

(:7‘[~-c0th(u)~=csc”2(u)
Similarlycurves of constant v (magnetic equipotentials)are also circles,but given by

[

2 2
x——
be 102cot(v) + : = CSC2(U)

e

(C.8)

(C.9)

(C.lo)

(C.11)

(C.12)

(C.13)

and passingthroughthe equivalent line charge on they axis at A be.

So now let CA have its upper rightportiona curve of constantV-vo. Note that for lar9efg the uPPer

conductorhas a circularcontourof small radiusa. The integralover v (between V. and@ on the conductor

portion of C: is small. Sousing
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—
we have for smalla

h
[ 01=~[z-vO] be 1+0 ~ as ~+0

aY ~

(C.14)

(C.15)

the value of v on the y axis (between the conductors)being n (limitfrom the right). An interestingspecial
case has a contour

b2 (circular disk S=)V*=,
2

Xz+yp=e

For such a circularaperturewe have

h
[ 01

= be 1+0~ as fi+O
aY b

(C.16)

(Cl 7)

Letting VO-+ O then S: fillsthe upper rightquadrant of the ~ plane (excludingthe wire) and we
have

‘aJ
[ 01=2be 1+0 ~ as ~+0

b
(C.18)

*
i.e. twice as much as for the circularapertureof radiusbe. Stated anotherway the circularaperture is half as
efficient in contributingto the surface integralof the tangential electric field as the entire plane S, provided

S is defined by the limitas VO+ O.

3. Sa includingall of S-

Forthe case that Sacovers all of S in the sense of S- (i.e. of radius Wm--+00) we have from
Appendix D

(C.19)

We can ask from this what is a good choice for b/a but then we have to decide what dimensionto keep
fixed. If we fii b then write
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v= : = cosh(~) -

.

.

as
Y-

= -: (?-l); [: mcosh(v$

Differentiatingwith respect to { foran extremumat ~0 we find

sinh(2~O) = 4~0 , CO --1.09

b
– s 1.65
a

fg
(

= .347 E 131 Q in free space
)

(C.20)

(C.21)

m

This is only illustrativesince other parameters (e.g. b+a) could be kept fired, givinga differentoptimum.

4. Sawith hyperbolicboundary

Now we need not integrateoveralls but restrictSato somethingmore practical. Notingthat Sacan
be chosen as the aperturefor a longTEM horn,parts of Scan be covered with a conductorto remove tan-
gential electricfield with a componentoppositeto that of the principalfield. For use with a reflectorthe
metal includes portionsof Swith components in the principalfield direction, i.e. in the -y direction.

As discussedin Section II forx, z and y, z symmetryplanes for Sawe have

h
4 J

Xmax 2 Xm*

aY=zo
Uaak = — J Uadxa

Zo
(C.22)

where ua is the electricpotential along the upper edge of s:. So let us find ua (~a)suchthat it is maximized
for each Xa at a positionya. Differentiatingu in (C.3) with respectto y and settingto zero for an extremum
gives the Ca contour as

(C.23)

which is a hyperbola, applyingoutsidethe conductors. Note in limitingcases (firstquadrant)
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*

[

1 for small ~ .
Ya ) f?
be

~ for large ~
e e

(C.24)

[fwe extend this shape of S=to 00 it occupiesone half of S- as W- + ~. Note that a small regionis
excluded (circularof radiusa centered on y=b). Note also that this contourcan be found on fig. C.1 by
consideringeach contourof constant u and finding its rightmost extremum (i.e. maximum value achieved
by X/befor ally/be).

Noting that the contour meets the conductor at

~a=xa+jya=a+jb

u= = u+

then (C.22) becomes

2

[

= — au+
z [1

1

[1l+yzzl
.ln 1

[1
I+yzz-1

2 {J=—au++be 1‘m=arccsch(~)d~
z Yo

~=~, %fyl~
VO’:9 ~ma = ~

e e e

Using standard tables [8, 9] we have

dy

1

(C.25)

(C.26)
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{ 1}hay=. ~ au+ + b=[~rccsch(y)] ~=

2=—
{au+ + be [~m=arccsch( Vmw ) + arcsinh(~m= )

z

-~Oarccsch(VO) - arcsinh(~O)]}

Forsmalla/b we have

au++O , yo+O , xo+O

giving

haY= be~{tymaarccsch(~m=)+ arcsinh(wm=)}

as XO-+O

Now considerhow large one may wishto make such a reflector. For large~max we have

Xm~+- , Vmax+”

~m=mxwh(tyma) = 1 + o(IYi&)

giving (for negligibleXo)

hay = ~~ + I.(ZVmax) + ‘(YI%x)}

e{(%?)+%%)}=~bl+ln

(C.28)

(C.27)

(C.29) e

(C.30)

as Xma -+ C= (C.31)
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w

e The point is that this diverges, so hay can be made (in principle)as large‘asone wishes by appropriate

choice of xma.

In practiceas ~ma is made largerand largerthe structureis inefficientin that be could be made

larger instead, hay being firstorder inbe insteadof only logarithmicinXm (for largexmax/be). In addition

the largest radiusof Sadetermines the required length of a conical transmissionline and/or size of lens or
reflectorto produce an acceptable wave planarity (simultaneityof arrival) over the aperture.

5. Rectangular aperture

Another shape we can consider is a rectanglewith boundaries

x = *Xm~ , y = Abe (C.32)

Then we have the x coordinate as X. where the contour meets the conductor in the first quadrant as

[ -“;lu+ = arccosh(v) = Zn v + (V2

1

[1
1 -~

= JZ(V2 - 1)3 v + (V2-I)E

a ‘1 for small ~ (large v)
‘~=v

(C.33)

From (C.22) we then have
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+ 2arctan(~o )- 2arctan($ )}

(C.34)

(C.35)

ForsmallX. we have

go-+-

{

h _ b 2 ‘n[’+‘f]+~‘2 ardan(~l)
ay— e;

43
}

as XO-+O (C.36)

Now look at howwide one may wishto make the rectangularreflector. One can make it infinitely
wide in which case

gl + o+

‘ay = 2be = hey asxo+O

x~~ + ~

Again we get back to the equivalent height.

A specialcase of a rectangleis a squareforwhich

(C.37)

9’
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4n(5) 4
‘ay =be2+ —-– 1arctan(2) as XO + O

z n

s 1.10 be
(C.38)

which is slightlymore than for the circularaperture in (Cl 7).
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Appendix D. Surface Integralover All S in Terms of EquivalentHeight
w

Using the transformationin Appendix C for two wires, let us extend the resultsto more general
cases. Consider the quantity

●
by+ vdy

z c;
(D.1)

inthe limitas the radiusof the wire goes to zero. Wtih C: aroundthe firstquadrant of the { plane we find
that

by = 2be (D.2)

as in (Cl 5) with VO = O. This is just the separation between the two line charges, or the equivalent
height. Note that this applieswhen Sa is extended to the entire plane S, but in a limitingsense where

VO + O. Since the lines of constant v are circlesdescribedby (Cl 3), extending in the first quadrant
approximatelytwice as far in the +x direction(for smallVo)as inthe +y direction,the resultappliesfor such
an apertureshape, and may notgive the same resultas for a large circularaperture (to be discussedlater).

Generalizing this, note that in complexform the effective length of the aperture is

(D.3)

*

w.= $= u@*= -$c @*
a a

Rearrange this for the case that Sa is extended to the entire plane S as

he = f~i2 a~ = –~

= hex – jhey (D.4)

where Wv indicatesthe sense of the limitas VO + O. in AppendixC this takes specialforms due to the
symmetryof the particularproblemand the fact that AV is 2n. Here we have usingthe general forms in
Appendix B

(D.5)

where Cv is now interpretedas a contourwith V. + O with appropriatedeformationas in Appendix B to
avoid branch cuts. Furthermorethis contour has to be aligned accordingto the orientationof he.

Now we can think of generalizingthis resultto arbiiraryshapes of the two conductors(+ and -) in
fig. A.1. Essentiallywe move the line charge around the surtace of the conductor,weight heby the local 9
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charge density on the conductor, and integrate over the conductors. This makes he the average cha,rge
separation distance, the equivalent height for the more general case. This is just a superpositionresult
regardingthe integralof the fields over Svas the sum of integralsfor each part of the surface charge distri-
bution.

An alternate approachto this integraland its relationto ~ is found by consideringa circularaper-

ture of radius Y- and let Y.. + 00. For this purpose let us use the electric- potential form and evaluate

(D.6)

where C- a circleof radiusV- + C-Jwith deformationas in fig. A.1 to avoid branch cuts.

Consider the contributionfrom the contour CO infig. A.1. Note that inside CO the electricfields

are zero (insidethe conductors)or cover zero area (between Cr and Cl). On the conductorsthe electric
potential is constant so we have (from (B.11))

$C+U+K*= o=fj&f{*

The electric potential is continuousacross the branch cut so we have

So for the contributionfrom CO we have

W* $=j~UC& = o
0

and we have for the entire plane

where now Cm isjust the circleof radius Cm, this resultapplyingto the electric potential.

(D.7)

(D.8)

(D.9)

(D.1O)

So now we need the asymptoticbehavior of u for large 1~1.In terms of the electricpotentialwe
have in cylindricalcoordinates [10]
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Wcos(@) , y = Vsin(@)

[%d + Q] [%~~(y) + %]

+ i[wc+f$)+~nsin(no)][cnyn+~ny;n]
n=l

(D.11)

Reject the in(W) term as applyingto non-zero net charge per unit length and the ~ term as applyingto the

corresponding@mfor non-zero net current. Reject the W terms since there is no charge at co. This
leaves the form

with remainingacceptable terms.

Write (D.1O)intermsof @as

(D.12)

(D.13)

Applythis to each term in (D.12). By(B.11) the constantterm gives zero. So do all termswithn22, being

o (Y:~+’). Thus we have a

(D.14)

Consider a line dipole of strength

-,
P = q’ le (D.15)

As indicated in fig. A.1 the equivalent height Fe measuresthe mean charge separationdistance on the
conductorsand is illustratedhere oriented in they direction. The potentialfor such a dipole in the limitof

.SJ@ ;= with
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e can be evaluated as the potential of two closely spaced, oppositelycharged, line charges. From

Appendix C we have for two line charges of *q’ spaced *LIY/ 2 alongthey axis

w=

Av = 2Z

Expanding the potential for large 1<1we have

hy y

[()]

2
&

[())

= hy sin(@) + * he 2
-—+0U–V2 Y Y F

This gives an electric potential

(D.17)

(D.18)

(D.19)

and we can let hy + O for a simpleform of the potential. As one should expect the potential at large W is

dominated (for zero net charge) by the line dipole moment.

Comparing this potential to that in (D.12) observe that

(D.20)

Similarlychoosing an x directed line dipole of strength p: replaces sin(@)by cos(~) in (D.19) giving

al Pi Au p;
=—, W==-j— —

2?rGo v 2E0
(D.21)

a
Combining these gives
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he = hx – jhy

Then we have
Au p’ & q’he

w.=——=——=
~ Che

v 2=0 v 2E0 ~

Au he fhI

*h
=—— =—

fg 2 e

q

o

(D.22)

(D.23)

While the particulartransformation(D.17) has a AV of 2x,the resultis cast in the form of a general Av for
greater generality.

Comparingto (A.4) we now have

(D.24)

i.e., a factorof two smallerresult. SOfor a circularSawith W- + m the resultis reduced by half from that for ‘m
the special aperture shape Svbased on constant v contours. The resultfor an infiniteaperture then
depends on the way the limitto co istaken. In integralformwe also have

This can be put in terms of the magnetic potential also if we includethe COcontribution.

(D.25)

The resultfor an infinitecircularaperture is an appropriateone to use because it models a practical
physicalsituation. Considerthat the aperture illuminationcomes from some finite source, such as a coni-
cal transmissionline of finite length. This means that the entire aperture plane cannot be simultaneously
filledwith electricfield. The finite propagationspeed of lightcmeans that signalsfrom the conical apex
(launchpoint) arriveon S,fillingout a circularportionwith radiusexpandingas time increases. For a given
circlethe filltime (fromfirstto lastarrival)can be made arbitrarilyshort ifthe lengthof the conical launcher(in
the z direction)is made sufficientlylarge.
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