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Abstract

One form of Impulse Radiating Antenna (IRA) combines the technologies of the
Balanced Transmission-line Wave (BTW) sensor with TEM-fed paraboloidal reflector antennas.
The behavior of the IRA was calculated using a combination of the Method of Moments, using
the NEC Code, and Geometrical Optics. The results of NEC compare favorably to both high
and low frequency asymptotes. The frequency domain results were driven by an inverse
double exponential step function, in order to find the time domain radiated far field.

P 9L-1259



l. Introduction

There has recently been interest in radiating broadband pulses of electromagnetic
energy. Such a phenomenon is useful in a variety of applications, one of which is in a radar
system that looks at the ground from the air. One of the more difficult problems with such
a system, however, has been in finding a suitable antenna. This is due not only to the very
wide bandwidth of interest, but also to the necessity of preserving the shape of the pulse into
the far field. One candidate for such an antenna is the Impulse Radiating Antenna (IRA). The
purpose of this report is to analyze the properties of the IRA, and to provide a basis for
comparison to other candidate antennas.

The problem of how to radiate an impulse is difficult for a number of reasons. Antenna
designs normally need to span only a relatively narrow bandwidth, however, the antenna we
needed had to span two full decades of frequency; from about 20 MHz to 2 GHz. The
classical method of radiating broadband signals involves structures such as the log periodic
antennas commonly used in television antennas. Although these are broadband antennas,
they have the drawback of being dispersive. Thus, the high frequencies arrive at a target at
a different time than the low frequencies, so the shape of the impulse is not preserved.
Another possible candidate for radiating an impulse is the TEM horn.' Although this antenna
is nondispersive, it has the drawback that the phase front at the end of the antenna is
spherical, not planar, unless a lens is used. Maximum gain is achieved by having a planar
phase front. In order to make the phase front on a TEM horn as planar as possible, it is
necessary to build the horns with lengths that are large compared to the dimensions of their
apertures. Thus, a long antenna is required to maintain a planar phase front.

Another way to handle the problem is to force the phase front to be planar by focusing
it with a parabolic dish. This is the approach the IRA uses. The IRA was first proposed by
C. Baum?3# as a technique for radiating high frequencies with a TEM-fed dish, while doing
the best one can with the low frequencies by using a Balanced Transmission-line Wave (BTW)
sensor>®7? as an integrated feed. Thus, the IRA can be considered a blending of the two
technologies of dish antennas and BTWs. The BTW has an output on boresight similar to a
magnetic loop of the same area. Itis different off boresight, however, in that a magnetic loop
has a pattern of cos 8, while the BTW has pattern of 1 +cos@. Thus, the BTW provides
some directionality even at frequencies where the antenna is small compared to wavelength.

A diagram of an IRA is shown in Figure 1. This diagram shows an IRA for a single
polarization, however, we could achieve dual polarization by adding a second pair of feed arms
perpendicular to the first set. This would allow two arms to be charged positive and two
negative. One could alter the excitation to achieve both horizonal and vertical polarizations.
A diagram of this dual polarization arrangement is shown in Figure 2. Note that it is preferable
to drive the antenna with 2 pairs of arms rather than just one. This is because the input
impedance with two pairs of arms driven is half the input impedance with a single pair of arms

driven. This decrease in input impedance leads to a radiated far field increase of ﬁ,
assuming a constant voltage at the source.
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Figure 1. The Impulse Radiating Antenna (IRA)

Note also that the fields generated by a single pair of arms are orthogonal to those
generated by the other pair. This allows us to analyze the IRA as a device with a single pair
of arms. If we want to add the second pair of arms to the analysis, we simply rotate the dish
by 90 degrees, and add the fields using the principle of superposition.

To describe the performance of the IRA, a number of analysis methods were consid-
ered, including both time and frequency domain techniques. Among the time domain
techniques were a Finite Difference Time Domain code and the Thin Wire Time Domain code.
Among the frequency domain methods were the Method of Moments and Geometrical Optics.
All the techniques have their advantages and disadvantages, but some are easier to implement
than others. In particular, it was felt that both of the time domain techniques would require
either a very small cell size or a very short wire length in order to adequately describe the
geometry, due to the 250 ps risetime of the driving voltage. There is an additional difficulty
in describing a smooth reflector with blocks, since blocks will not be conformal with the
surface of the dish.

Thus, we felt that a frequency domain method that used different approaches at low

and high frequencies would be more suitable. At low frequencies we used the Method of
Moments (MoM) as implemented in the Numerical Electromagnetics Code (NEC). This code
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Figure 2. Feed arms for a dual polarized IRA (a) and two orthogonal methods of
feeding it (b) :

models the structure with thin wires, circuit elements, and voltage sources. At high frequen-
cies we used Geometrical Optics (GO), since the behavior of the IRA is similar to a standard
dish at these frequencies. Once we had the frequency response over the low and high ends
of the frequency range, we drove the antenna with a time domain voltage and used a Fast
Fourier Transform (FFT) to get a time domain response.

In addition to MoM and GO, we were able to draw an analogy between the IRA and
a magnetic loop at low frequencies. Thus, the three techniques we considered involved a
low-frequency asymptote with a magnetic loop analysis, a high frequency asymptote with
Geometrical Optics, and the Numerical Electromagnetics Code to tie the two together. We
begin now with the low frequency analysis.




If. Low Frequency Analysis

In order to understand the low-frequency behavior of the IRA, it is first necessary to
understand the BTW. Although a detailed outline is provided in Reference 5, we review the
BTW's properties briefly here. :

Diagrams of the BTW are shown in Figure 3 and 4. It is very similar to a transmission
line with matched loads at either end. Consider a plane wave incident from the right upon the
structure of Figure 3b. The electric field drives either end of the structure similarly, i.e., with
the same polarization. The mechanism here is like inducing a voltage on a parallel-plate
capacitor in a changing electric field. The magnetic field, however, drives the two ends of
transmission line oppositely. The mechanism here is like that of driving current around a loop
with a changing magnetic field.

It is shown in [5] that the charges induced on the end nearest the incident field add,
while they cancel on the opposite end. This cancellation occurs as long as the wave on the
transmission line propagates at the speed of light. In practice, this means that there is little
or no dielectric material near the two plates.

When the BTW is in transmit mode, one needs to drive the end closest to the desired
direction of radiation. The radiated field on axis is the same as a loop with an area equal to
the cross section of the transmission line as viewed from the side. Again, this is demonstrat-
ed in [5].

If we consider once again the IRA of Figure 1, we see that the feed section is just a
transmission line, although now it is in spherical rather than rectangular coordinates.
Remembering that the BTW radiates in the direction closest to the feed, we see that the low
frequencies are radiated in the correct direction; the same direction as the high frequencies
are radiated after reflection off the dish.

It is shown in [5] that it is necessary for the transmission line to be matched correctly
in order to have behavior like a BTW. This can be approximated by using a resistance equal
to the characteristic impedance of the feed structure, or 200 Q on each arm. This is only an
approximation, however, because of the additional capacitance due to the reflector. In
practice, it will be necessary to match the load using either a TDR or an antenna measurement
to minimize the backiobe.

Let us return now to the IRA of Figure 1. The radiated field for a loop is found to be

Elw) = “"’,""' K, Gw? Viw) (1)
in the frequency domain, or
- K (2)
E(t) - 75 Vi(t)
in the time domain, where
5
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K, = 1A __ 3
' Z4nc? @

In the above equation, 7 is the characteristic impedance of free space, Z_ is the characteristic
impedance of the feed section (400 Q), and c is the speed of light. Thus, the output at low
frequencies is just the second derivative of the input voltage, times a constant.

Let us now assign some typical numbers to the above equations. If we assume

F/D = 0.4, and the dish radius, b = 0.6 m, then we find the area through the loop, A, to be
0.251 m?and K, = 2.01 x 10"® sec?. Hence, we have a simple expression of the expected
behavior at the low frequencies. The output is proportional to frequency squared. Off-axis,
this analysis has to be modified by a 1 +cos 8 factor. The above analysis is valid approxi-
mately up to a frequency where the length of the transmission line is less than or equal to
A/2m. This constraint was first provided by C. Baum® Thus, for our configuration, the
magnetic loop analogy is valid up to about 80 MHz. At higher frequencies it is necessary to
use either the Method of Moments (with NEC) or Geomaetrical Optics.

We should note here that the above analysis has some ambiguity built into it. The area
of the loop is not really a well-defined quantity, since current flowing from one arm to the
other can flow through either the center of the dish or around its rim. It seems that some
current will flow everywhere on the dish, so we have used the average of these two areas.
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Hl. High Frequency Analysis: Géométrical Optics

The next step in the analysis is to generate the high frequency asymptote of the
radiated field. One of the benefits of breaking the problem into high and low frequency
regions, is that the high frequency technique we use,-Geometrical Optics (GO), is very simple
to implement in the frequency domain. Indeed, in the frequency domain, the problem
becomes easier at higher frequencies, since GO is most valid when surfaces are large
compared to the wavelength. By contrast, time domain solutions become more difficult at
higher frequencies (faster risetimes), due to a requirement for a minimum number of cells or
wire segments per wavelength.

If we have a source at the focus of a parabolic dish, it will project a plane wave in front
of the dish. Thus, we need to find the field radiated from an aperture in a plane in front of
the dish. The geometry is shown in Figure 5. in the plane z=0%,

. e Tkr .
Ey=jw o (P, cosp + P, sing) (4)
O - Skt - i &)
E, =jw 5— cosf (P, cosp - P, sing)
where
Pe= | l E, (x,y)e & I it gy (6)
Py = I J; E, (x,y)e e el oyt dyt (7)
On boresight, where 8 =0, the above simplifies to
E, =jw &7 J’ E, (x',y) dxdy (8)
o 2mre o

Inthe above equations, it is necessary to generate an aperture field, E,(x,y’,w). This
is approximated by the cross sectional field of a transmission line consisting of two paraliel
cables set apart by the diameter of the dish and with a radius appropriate to keeping the
impedance at 400 Q. Since all the rays originating from a focus arrive at the aperture plane
at the same time, the aperture function is of the form

E (x,y) =E f(t)g(x.,y) (9)

where £, is the field at the center of the aperture, g/x,y/ is the variation within the aperture,
and f(t) is the time variation of the aperture electric field, and consequently, the variation of
the voltage at the apex.
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Figure 5. Geometry for Calculating the Radiated Fields Over an Aperture

Another way of thinking about the aperture field calculation is to reflect the feed
structure through the dish. Upon doing so, we find it is just two parallel wires arranged so
they form a transmission line of 400 Q characteristic impedance. A diagram of this is shown
in Figure 6. Since the fields for two parallel cylinders are well known, we can approximate

the aperture field as being that portion of the field formed by two cylinders that is within the
circle formed by the dish.

1

1
(8 | ()

Figure 6. The Effect of Reflecting the Feed Through the Dish. (a) Before
Reflection (b) After Reflection

Thus, the aperture field can be found from the field in a two-cylinder transmission line.
The characteristic impedance of such a configuration is

10




Z =1 cosh-' & (10)
m f

where f is the radius of the wires and b is the height of the wire above a center line. Thus,
for a 400 Q line, we need b/ = 74.03. If the radius of our dish is 0.6 m, then
a = 0.0428 m.

The field distribution for such an arrangement has been described by C. Baum'. A
diagram of the fields is shown in Figure 7, which is taken from [6]. We find

- 1 1 +y 1 -y (11)
g(pr) A[x2+(1+y)2+x2+(1-y)2]

which has been normalized to s/bz -2 =1, where bis the dish radius and fis the wire radius.
Furthermore, the field at the center of the dish is

Vv,

E = :
° Vb2 - 2 cosh™ .? (12)

By using these aperture fields, we can perform the integrals of Equation 8 numerically.
Thus, we find )

~jkr
E(w)=jwer’ K, Viw) (13)
in the frequency domain, or
K, o :
E(t) =2 2 v(t i (14)
(t) T (t) '
in the time domain, where
= 0.90 5 (15)
ke 27 C© .

and c is the speed of light.

This expression for K, is specific for a 400 Ohm feed. Thus we find for » = 0.6 m,

K, = 2.86 x 107" sec. This rather simple result indicates that the output of the IRA at high
frequencies is proportional to frequency, or to the derivative of the input voltage.

There are some approximations in our GO solution. When we integrated the field over
the aperture, we used conical feed arms to generate the aperture field instead of the flat
plates that will likely be used in the final design. Although this is an approximation, it should
not affect the results very much. Another approximation we used is that we ignored
diffraction from the edge of the dish. Edge diffraction is not normally significant in the main
beam, however, so it will not have a strong effect on our analysis. Finally, we ignored

11
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aperture blockage due to the feed structure. This can be minimized, however, by shaping the
feed arms properly.

Let us consider how best to shape the feed arms to minimize aperture blockage. Three
variations on the shape of the feed arms are shown in Figure 8. One can have either conical
arms, or one can have triangle-shaped plates in either the plane of symmetry or perpendicular
to it. By laying the plate in the plane of symmetry, as shown in Figure 8c, the aperture field
is disturbed as little as possible. It has been demonstrated by D. Giri and C. Baum that when
a plate is sufficiently high above a ground plane, the fields can be approximated by a cylinder
whose diameter is half the strip width''. One can use this fact to determine the appropriate
angles for the edges of the plates.

It is of some interest at this point to calculate the amount of energy that is lost due to
aperture spillage. We can calculate this by integrating the field over the aperture, and

comparing the power in the integrated field to the power in the driving voltage. Thus we find
the aperture efficiency to be

1/n J'l EX(x,y)dS
v/ Z, .

(16)
e =

The integral was carried out numerically, using the expressions for the electric field provided
above. We found for our test configuration an aperture loss of 4.5 dB. This calculation is
independent of the F/D ratio and the aperture diameter. It is dependent upon the characteris-
tic impedance of the feed structure, however, it is likely that this will remain as 400 Q.

In conclusion, we see that the high-frequency portion of the analysis leads to a simple
result; that the radiated waveform is proportional to the derivative of the input voltage. The
next step in the analysis is to tie the high and low frequency asymptotes together with a
numerical code. !
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Figure 8. Various Choices for the Shape of the Feed Arms
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Iv. Intermediate-Frequency Analysis: Method of Moments

We can tie the high- and low-frequency results together by using the Method of
Moments as implemented by the computer code NEC'2. Although it becomes difficult to use
NEC much higher than 200 MHz, it is helpful to see what happens below there. NEC, as it
is being used here, is a code that models a structure as a collection of thin wires, and can add
- voltage sources and loads as well. The most important limitation on the use of NEC is that
it can only work for wires that are short compared to a wavelength at the frequency of
interest. Thus, there is an upper limit on the frequencies we can study with NEC.

A diagram of the wire structure used to simulate the IRA is shown in Figure 9.
Although the mesh is somewhat sparse, we are able to achieve reasonable results up into the
region where the high frequency solution holds. NEC was run for both a tapered feed and for
a uniform feed. Although the tapered feed is a better representation of the actual feed, there
may be numerical problems with continuity of the current at the junction of wires of different
radii. ‘

/)
g

/

Figure 9. Wire Structure Used for the NEC Modeling
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The diameter of the dish was 0.6 m and the F/d ratio ws 0.4. A voltage source was
at the focus of the reflector. The radii of all the wires in the reflector were 12 mm, as were
the wire radii in the feed with straight sections. With the tapered feed, the wire diameters
went from 4.26 mm to 38.34 mm in five sections. The section of the feed closest to the
reflector was loaded with a 200 Q resistance. The extended thin-wire kernel was used in NEC
in order to enhance accuracy.

A graph of the output of NEC appears in Figure 10, along with the calculations of the
high- and low-frequency approximations discussed earlier. It is clear that the NEC results
begin to follow the high-frequency approximation at the high end, so we feel confident in the
application of Geometrical Optics at higher frequencies. This is necessary in order to provide
the conversion to the time domain. Atlow frequencies, the NEC results are a little higher than
the low-frequency asymptote we predicted earlier.

The discrepancy at low frequencies could be explained by several things. One
possibility is that our matching circuit is too crude. We used a simple 200 Q load there, while
we know that there will have to be some reactive elements there to offset the additional
capacitance of the dish. A second cause is the ambiguity in the definition of the area of the
loop, as discussed in Section 1l of this report. A third cause might be that too few antenna
wires were used when modeling the feed. The feed section was modeled with just four wire
segments laid end to end, with successively larger radii. A better approach might be to use
a set of wires to model the flat plate that will be the actual shape of the feed.

16
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Figure 10. Output of NEC Compared to the High- and Low-Frequency Asymptotes
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V. Time Domain Analysis

Finally, we performed an inverse Fast Fourier Transform (FFT) on the frequency domain
result to generate a time domain waveform. We wanted to drive the antenna with a step
function, or something that looked similar to it. For numerical reasons, we needed a function
with at least a continuous first derivative and an analytic Fourier Transform. Thus we drove
the antenna with an inverse double exponential waveform'?® with a fast risetime and slow
decay time. It was of the form

1) = 1 (17)

e-(r-t,)lr, + e(t-t,)lr,

where t, = 20 ns, r, = 56.82 ps, and 7, = 217.4 ns. This gives a 10-90 risetime of 250 ps
and a time to decay to 10 % of the peak of 500 ns. A graph of this function is shown in
Figure 11.

In order to take the inverse FFT it was necessary to interpolate the frequencies
calculated with NEC. We used NEC to calculate frequencies from 20 MHz to 200 MHz in
steps of 20 MHz. Above 200 MHz, we extrapolated magnitude proportional to frequency as
described in Equation 13, and the phase was forced to 90 degrees. Below 20 MHz we

" extrapolated magnitude proportional to frequency squared, as described in Equation 180, and
the phase was 180 degrees.

A diagram of the resulting time domain waveform is shown in Figure 12. This
waveform is normalized to a distance of 1 m and a peak driving voltage of 1 V. We can also
plot the magnitude on a logarithmic scale, and this is shown in Figure 13. What we see in
the time domain is a small undershoot at early times corresponding to the leading edge,
followed by the main portion of the impulse. At later times there is some further undershoot,
which may be expected because the integral of the radiated waveform must be zero.

We can get an idea of the accuracy of this technique by looking at the early time
waveform. For the time it takes the wavefront to make the round trip between the focus and
the reflector, the radiated electric field can be calculated analytically. This is possible because
for this period of time the radiated field is just the field due to a bicone whose axes are not
parallel. A diagram of this problem is shown in Figure 14. A solution to the backward
radiation has been provided by Latham et al'*. They demonstrate that the power radiated
in the backward directioninthecone 8, < 6 = rmis

cospf - cosa cosf,
_ cosa - cosp cosd, (18)
2 cosh™' (sinag/sing) i

where « and P are the cone angles as defined in Figure 14, and P, is the total input power.
This gives the power radiated over a 1 degree cone. To get the electric field radiated we use

the relationship P, = EfA /1 n.where A is the surface area of a section of a sphere subtended
by 1 degree with a radius of 1 m.
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Figure 14. Geometry for the Leading Edge Calculation

If we know the field of the bent bicone in a quasistatic sense, we know the radiated
far field during the clear time; i.e., the time it takes for radiation to travel from the focus to
the reflector and back. From this, we can find the ratio of the peak radiated field to the
leading edge. For our configuration, using the inverse double exponential with a risetime of
250 ps, we find the Peak/Leading edge ratio to be about 25. Thus, for the first 2.7 ns of the
signal, the field is in the opposite direction from the peak, at a level of 1/25th of the peak.
This is shown in Figure 12, where the straight line for the first 2.7 ns shows the leading edge.
This can be used as an indicator of the accuracy of the NEC result. Although the NEC result
attempts to show an early-time leading edge, it is not as flat or as long as we know it needs
to be. '

It is also of some interest to compare the output of the IRA to a hypothetical antenna
that has a simple derivative waveform. If we assumed that the antenna function was just the
high-frequency asymptote as calculated in Section llf, we find the radiated waveform of
Figure 15. Of course, this can only be hypothetical, since this waveform is always greater
than zero. Real radiated waveforms have to have an integral over time equal to zero. It is
nevertheless interesting how similar the hypothetical waveform is the to actual waveform.
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L
VI, Conclusions and Recommendations

An antenna has been analyzed'that appears to have great potential for radiating
impulse-like fields. The Impulse Radiating Antenna (IRA) combines the best of high and low
frequency antennas by incorporating a Balanced Transmission-line Wave (BTW) sensor to feed
a dish.

An approximate analysis procedure was carried out by combining high-frequency and
low-frequency techniques; i.e., the Method of Moments and Geometrical Optics. Having
generated a frequency domain response of the IRA, we then drove the antenna with a step-
like function and inverse transformed to get a time domain response.

Overall, the results are about what we expect. The radiated waveform closely
resembles the derivative of the input voltage, however, there are extra features in the
waveform associated with the need for the radiated waveform to integrate out to zero.

The next step in this investigation should consider two areas. First, there may be
interest in refining the numerical models further, since experimentation is somewhat
expensive. This might involve using more frequencies for the NEC calculations, and using
finer detail in the modeling of the feed structure. Beside further analysis, however, the next
step should include a measurement of a typical IRA. Only with a measurement will we be
able to determine the nature of the approximations are in the numerical analysis. Furthermore,

it seems likely that the only way to perform a complete optimization of the matching circuit
will be to build the antenna and test it.
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