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ABSTRACT

report, a method is prcscntcd to cxlrapolatc mcasurerncnts from Nuclear Electromagnetic -

assessments directly in the time domain. This method is based on a time-domain extrapol6-

tion function which is obtained from the Singularity Expansion Method representation of the measured.

incident field of the hTEMP simulator.

Once the time-domain extrapolation function is determined, the responses recorded during *

assessment can be extrapolated simply by convolving them with the time-domain extrapolation function.

It is found that 10 obtain useful cxtraPolaLccl responses, the incident-field measurement needs to

bc made minimum phase; otherwise unbounded results can be ob~ined.

Results obtained with this tcchniqw are prcscntcd, using data from actual assessments.

..

1 The :csurch of wltic!I [hc mulls arc prcscntcd in lhis note was mrricd out during a stay at the Dcfcncc Research

Esmblishmcnt Ottawa. Omwa. Ontio, Canada
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●
1 INTRODUCTION

Most Nuclear Electmma~etic Wlse(~W) simtiatom donotreprodu& tieex~ckd~~ -

threat as layed down by AEP 4, 19S4 [1]. They fail to reproduce both the waveform and the peak field

strength of the perceived threat level (also known as the criterion environment), which includes reflections

from the earth for ground-based facilities, but not so for airborne systems. To compensate for these

shortcomings, the measured responses in NEMP assessments have to be corrected (extrapolated) to

calculate the response that would be expected from a NEMP.

This is a particular problem for radiating and hybrid simulators, which produce a waveform that

is significantly different from the waveform of the perceived threat. The measurements obtained from

NEMP assessments using such simulators have therefore always to be extrapolated.

In this report, what is known as incidenr-j?kldextrapolation will be addressed (see 13aum[2], type

3A). This type of extrapolation not only corrects for the difference in waveform, but also tries to correct

the different spatial behaviour of the incident field of the simulator compared with the criterion

environment. An extrapolation function which is an average over the space of interes~ i.e., the test volume

of the simulator, is therefore constructed.

An overview of the basic incident-field extrapolation method is given in Chapter 2, and some

properties of the extrapolation Iimction based on signal theory considerations are derived. How the

●
incident-field extrapolation method has been implemented in the past is also addressed in Chapter 2.

Traditional implementations are without exception based on frequency-domain techniques.

An extrapolation technique which uses time-domain techniques is presented in Chapter 3. This

technique constructs the extrapolation function entirely in the time domain. Results are presented in

Chapter 4.
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2 INCIDENT-FIELD EXTRAPOLATION

With incident-field extrapolation, an extrapolation function is constructed which is an average over

the space of interest, i.e., the test volume of the simulator. Furthermore, the Equipment Under Test (EUT)

is assumed to be configured in the normal operating-mode for the system, and the interaction between the

simulator structure and the object is neglected.

Extrapolation to correct differences in polarization, angle of incidence, or direction of propagation

of the incident field between the criterion environment and the simulation will not be addressed in this

report. This simplifies the analysis and notation. Also geometrical differences between the test environment

and the normal operating environment most impofianfly the presence or absence of the influence of the

earth, will not be considered. Therefore, the type of extrapolation addressed in this report is limited to

airborne systems in bounded wave simulators and ground-based facilities for radiating simulatom

2.1 The Basic Formulation

Let the response of a linear and time-invariant system in its normal o~rating-mode and

environment to an incident NEMP be denoted by g(r). The response g(t) can be, for example, an electric

or a magnetic field, a current or

environment, and is given b~

g(t)

a voltage. Then g(f) is the response of the system in the criterion

f
=

J
h(r + eMP(@ d~ = h(f) * emP(O, (1)

o

where the asterisk denotes the convolution operator, and h(t) is the impulse response of the system. When

necessa~, the latter takes into account reflections from the earth. Furthermore, e~#) is the waveform

of the perceived threat of the NEMP, and

a high-altitude NEMP environment, the

waveform)

em,(t) = A(e + - e ‘b,

can bc the incident electric or the

incident electric field is usually

incident magnetic field. For

given by (Bell Laboratory

(2)

with

A = 5.278xl@ [V/m],
a = 3.705x10G [s ‘1],
~ = 3.908x108 [s ‘l].

The impulse response h(r) of the system during the simulation will

response during its normal operating-mode, only if the following three conditions are satisfied:

m

(3)

be the same as the impulse

—

3 For simplicity a scalar notation has been employed throughout Ihe text..
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●
the interaction between the EUT and the simulator. structure can be neglected,

the system is configured the same as during its normal operating-mode,

the test environment is the same as the normal operating-mode environment (i.e., an airborne

system must be tested without the influence of the earth, and vice versa for a ground-based

system).

Assuming that during the NEMP assessment the above mentioned conditions are satisfied, the response

of the system in the NEMP simulator is given by (assuming a linear system)

g,i~(f) = ~(f) * e,im(O, (4)

where e,im(t)is the incident electric or incident magnetic field of the simulator. In WIScontext, the incident

field is the field in the working volume of the simulator in absence of the EUT, and without any

reflections from the earth’s surface. See Farr et al. [3] and Farr [4] for details on how to measure the

incident field of a NEMP simdator. See also Section 3.3 of this report. Furthermore, the system responseg,i~(t)

is the same physical quantity as g(t) in Eq.(1).

It is well known that an approximation to the response g(r) can be reconstructed in the following

way (see Baum [2], type 3A)

●
g,(r) = W {X(.s)G,im(,s)}, (5)

where gX(r)denotes the extrapolated response, which is, unfortunately, not necessarily equal to g(t). The

difference between gX(t) and g(t) is the (unknown) error in the extrapolation. Furthermore in Eq.(5), a

quantity indicated with a capital letter denotes a complex frequency-domain quantity, $f-l{.] denotes the

inverse Laplacc transform operator, and s denotes the complex-flequcncy variable s = a + @. X(s)

denotes the extrapolation transfer function given by,

x(s) = EEMp(.s)/E,im(.Y).

Instead of using Eq.(5), another representation for the extra@ated

g=(f) = x(t) * g,im(r).

(6)

response is

(7)

Eqs.(5) and (7) clearly show that X(s) plays the role of a transfer function, and x(r) that of the impulse

response pertaining to the transfer function X(s).

5
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The extrapolation impulse response is determined by

x(t) = $4?-’{x(s)}= sr’{EMp(.s)/E,im(s)},

or directly in the time domain

x(t) = emp(t) * e,jl(t)j

in which e,j~(t) is the inverse signal of e,i~(t), defined by

e,j~(f) - St-’{ 1/E,i#) ).

Note that e,i~(t) and e,;(t) are related by

e,i~(t) * e,~(f) = 6(0,

(9)

(lo)

(11)

where ~(t) denotes the Dirac delta function.

When the incident field of the simulator not only differs in waveform and peak field strength from

the criterion environment, but also exhibits a different spatial behaviour, the extrapolation transfer function

depends on the point of observation also. This is usually the case with NEMP assessments of large

systems with radiating simulators such as TNO-FEL’S EMIS-3. Such simulators radiate a spherical wave

instead of a plane wave. It is advantageous, however, to define an “average” extrapolation function which

will be used for all positions in the test volume. In that case, E~i#) may be taken as a geometrical ●
average, i.e., the average of several field-mapping measurements at different positions in the test volume.

2.2 Some Properties of the Extrapolation Function

Although the formulation of the incident-field extrapolation is quite straightforward, some

difficulties arise which we will address in this chapter. But before we do so, we first introduce some

definitions (Zadeh et al. [5]).

Definition 1: A signal fit)is said to be bounded if and only if there exists a finite positive constant M,

such that

\fit) I <’M, Vt.

Definition 2: A transfer function H(s) is said to be stable if and only if its impulse response h(r) is

bounded.

The latter definition does not give any information on the response of the system. Therefore, the following

definition is introduced: ●

6
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Definition 3: A transfer function H(s) is said to be strictly stable if and only if its response to a bounded

input is bounded.

Definition 3 leads to the following theorem:

Theorem 1: A transfer function H(s) is strictly stable if and only if its impulse response h(t) satisfies the

inequality

~ ,h(t,, d,<-.

The extrapolation process can be called successful and of practical use, only if the extrapolated

response is causal and bounded. Fmm Eq.(7) and Definition 3, we conclude that the extrapolation impulse

response x(t) must then be causal, and the extrapolation tiansfer function X(s) strictly stable.

Since the extrapolation impulse response is a convolution of two causal signals, causality is always

guaranteed. Whether or not the extrapolation transfer function is strictly stable, however, depends on

e,~~(t).In fac~ it is easy to show that X(s) is strictly stable if and only if e,~~(t)is bounded. This puts

some reshictions on e,~(t)4.

To analyze the restrictions wc have to impose on e,:(t), consider a bounded signal jlj).In

principle, the Laplace transform F(s) of fit)has a number of poles, a number of zeros, and some branch

points in the compIex-ffequency p1ane5.It can be proven easily that a necessary (but not sufficient)

requirement forj(t) to be bounded is, that its poles must be located in the left half-plane or on the jm-axis

of the complex-frequency plane. Since F ‘l(s) = l/F(s), the poles of F(s) are the zeros of F ‘l(s). But

what is more important, the zeros of F’(s) are the poles of F “(s). Hence, for ~-l(t) to be unbounded the

zeros of F(s) must also be located in the lefl half-plane of the complex-frequency plane. This yields the

following theorem:

Theorem 2: For a bounded signal fit) to have a bounded inverse signal ~-l(t), whereflt) *~-l(t)=?@,

it is necessary but not sufficient that all poles and zeros of its Laplace tmnsform F(s) lie in the lefi half-

plane or on the @-axis of the complex-frequency plane.

A signal whose Laplace transform F(s) has the above mentioned properties is called a minimum-

phase signal. See Zadeh et al. [5] for a more elaborate treatment of minimum-phase signals.

From the above discussion, we conclude that for the extmpolation transfer function X(s) to be

strictly stable, E,iJs) needs to be a minimum-phase signal, or needs to be made minimum phase if it is

not. With respect to the latter remark, it is important to obseme that the magnitude of the spectrum of a

signal whose Laplace transform has some zeros located in the right half-plane, is the same as that of a

4Note that e,~~(t)# l/e,im(t).
,,

./

s Observe that the number of poles and zeros can also be Wii’;te.,.
..-
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minimum-phase sigrd whose LapIace transform has those zeros reflected with respect to the jo-axis into

the left half-plane. <

Note that if F(s) in Theorem 2 is a rational function, it is sufficient for ~-l(t) to be bounded that

its poles and zeros are located in the left half-plane, as a rational function does not have branch points.

2.3 Traditional Implementations of Incident-Field Extrapolation

Traditional implementations of incident-field extrapolation compute the extrapolated response=

by applying the inverse Fast Fourier Transform (FJ?T) to X@) G,i@o). The difference is the way in

which X(joI) is computed. We mention the following tie methods for det.erminingX(@) =~MPO~)/E,i~u~)

(see also Tttble I):

1. compute E,i#m) with a I?FC

2. compute l?,i~(jco)with a F13T,but use a minimum-phase fit of the magnitude of E,i#m) (see

Fisher et al. [6]);

3. approximate e,i~(t) by a Singularity Expansion Method (SEM) representation, then E,i#6)) is also

known (see Van de Sande [7]).

For an elaborate treatment of the SEM the reader is referred to Baum [8].

Method 1 has the disadvantage that it can yield an unstabIe extrapolation transfer function, as has

been pointed out in Section 2.2. To circumvent this, Method 2 has been employed. In this method, the

magnitude of the spectnun of E,i@) is computed from the FFI’ of e,i~(t). Subsequently, the phase is

obtained from the Hilbert transform applied to log lE,i~(@)1.The resulting signal is then a minimum-phase

signal. This assures a strictly stable extrqmlation transfer function. For more details on how to construct

the phase of a signal from the magnitude of its spectrum see Oppenheim et al. [9].

The advantages of Method 3 are that no aliasing error occurs, that no high-frequency quantization

noise and no high-tlequency noise as a result of a tnmcated time window are introduced. However,

Method 3 does not guarantee a stable extrapolation transfer function. Whh care these difficulties can be

overcome and an extrapolation procedure based on Method 3 and the considerations given in Section 2.2

will be developed in the next chapter.

—..



Table I Summary of traditional extrapolation techniques.

.,

Measure incident field e,ti(t) in the
simulator with EUT removed

Method 1: e Spectrum of incident jield E,Jj(i))

Method 2: =+ Spectrum of incident jield E~ti(jo)

Construct minimum-phase spectrum of
E,~(jci))

Method 3:

Approximate incident field with SEM Construct spectrum of incident jield
(Prony’s method) E,JjcI)) from poles and residues of

SEM representation

Determine extrapolation tranqier func-
tion X(jtD) = E&jcO I &J@)

Repeat for all measurements

System response in simulator g,Jt) * Spectrum of system response in simu-
lator G,ti(jm)

Extrapolated system response gX(t) * GX(jco)= X(jm) G,k(j@)

Until done

.-. .

9
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3 TIME-DOMAIN INCIDENT-FIELD EXTRAPOLATION

Method 3 of Section 2.3 has some useful properties. We mention

the extrapolation fransfer function contains no aliasing errors;

the extrapolation transfer function contains no quantizat.ion noise, and no high-li’equency noise due

to a truncated lime windowc

the extrapolation transfer function is lmown for all frequencies, which enhances the low-frequency

resolution.

When the SEM representation is used to represent the incident field of the simulator, the extrapolation

transfer function is known analytically. Then it is possible to perform the extrapolation entirely in the time

domain. This has the added advantage lhat time truncated signals can be extrapolated as well. Once the

extrapolation impulse response is computed, the extrapolated responses can be found by convolving the

measured signals with the extrapolation impulse response. This idea will be pursued in the subsequent

sections.
..

3.1 The SEM Representation of a Transient Signal

The SEMpostulates that a transient signal can be written as a series of exponential with complex-

valued arguments. So, according to the SEM a causal transient signal fit) can be represented as

fit) = S AjesS’U(t),
id

(12)

with

- Si : a simple pole,

- Ai : the residue pertaining to the pole Si,

- U(t) : the Heaviside step-function,

-N : number of poles.

In genesal, the poles and residues are complex valued, but since the signal fit) is real valued they occur

in complex-conjugate pairs. For j(t) to be bounded, all the poles Si have to lie in the left half-plane or

on the Jo-axis of the complex-f~quency plane, i.e., {si = C 5R(si)< 0].

To extract the poles and residues of a transient signal, several methods are known. We mention

Pxwny’s method (see Kay [10]), and the Pencil-Of-Functions (POF) technique (see MacKay [11]).

Treatment of these methods is beyond the scope of thk report.

Once the poles and residues of fit) are computed with either Prony’s method or the POF

technique, the Laplace transform of the signal is also known. It is given by (pafiial-tiction expansion)

. .

10 .
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This representation was used

function was then constructed

F(s) = ~ Ai~.
i-l s -Si

(13)

in Van de Sande [7] to approximate E,i.(s). The extrapolation transfer

using the Laplace transform of Eq.(2), and the extrapolated response was

computed by applying the inverse ITT to X(j@)G,i~(@) (see Table I, Method 3).

The inverse FFT, however, can be circumvented entirely by determining the extrapolation impulse

response analytically. For that purpose, the partial-fraction expansion of Eq.( 13) will be tasted in a rational

form, i.e.,

F(s) = ~ Aifi (S-S~/fi (S-S) = ~,
j-1 ;-1
@i

(14)

where p(s) is the polynomial of the numerator which is of degree N-1, and q(s) is the pol~omial of the

denominator and is of degree N. The polynomial p(s) is given by

● and

in which

p(s) = ~ Aipi(s),
i-1

q(s) = fi (s-s),
j-l

pi(s) = fi (s -s) = @)—.
j-l (s -Si)
$i

(15)

(16)

(17)

As the complex poles and residues occur in complex-conjugate pairs, it can be proven that the coefficients

of both p(s) and q(s) are real valued.

Generally, the polynomial p(s) is of degree N-1’, so it has N-1 zeros. This allows the following

representation for p(s)

N-1

p(s) = c~ (s -Zj), (18)
j-1

where the Zj’s are the zeros of p(s) (and of F(s)), i.e., p(zj) = O and c is a proportionality constant to

●
be determined later. It can be shown that c ~ R, which also follows from the fact that the complex poles

‘It can be proven that if fiO) = O, p(s) is of degree N-2

11



and residues occur in complex-conjugate pairs.

The zeros Zj can be found from

p(s) = ~ Aipi(s) = O, (19)
i-l

and have to be determined numerically with a root find algorithm, such as the IMSL subroutine ZPLRC

(see [12]). Observe that the zeros depend on the poles and residues, but a direct relation cannot be

established.

Once the zeros Zj are known, the constant c can be found from the value of F(s) ats = O. After

substituting Eq.(18) in Eq.(14), we find

N-1

c~ (s -z)

F’(s) = f!# = ‘-’
q(s) ‘

and after equating this result with Eq.(1 3), this yields for c at s = O

(20)

(21)

a

3.2 The Extrapolation Impulse Response

To determine the extrapolation impulse response, the incident field of the simulator e,i~(t) is

approximated with a SEM representation. To be able to do so, first the poles and residues of e,i~(r) have

to be determined with a pole extraction method, e.g. with Prony ’s method or the POF-technique.

Subsequently, the zeros of E,i~(s) are determined from its poles and residues in the way that has been

described in Section 3.1. This yields the following representation for E,i~(s) (cf. Eq.(14))

E,im(s) = #, (22)

where q(s) and p(s) are given by Eqs.( 16) and (18), respectively. The roots of q(s) are the poles of

E,i~(s), while the roots of p(s) are the zeros of E,i~(s). Since e,j~(t) is a real-valued signal, any complex-

valued zeros occur in complex-conjugate pairs.

It was proven in Section 2.2 that, for the extrapolation transfer function to be strictly stable, every

zero of l?,i~(s) is required to lie in the left half-plane. In general, this is not the case, so that E,im(s)has

to be made minimum phase simpIy by negating the real part of any offending zeros. m

Using the representation of Eq.(22) for E,im(s), the extrapolation transfer function is given by

12
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@)Ewp(s)ox(s)= —
p(s)

(23)

If the double-exponential waveform of Eq.(2) is used as the waveform to which the response is required,

we tlnd for E-P(s)

(24)

After substituting Eq.(24) in Eq.(23), and after applying a partial-fraction expansion of X(s), we finally

get

N+l

X(s) = ~ Bi~,
i-l s -Zi

(25)

in which we have ordered the zeros so that {zi G ~ i=l, . .. . N-1 } are the zeros of the minimum-phase

signal of E,i@), ZN= -a, and ZN+l= +3. B, e C denotes the residue pertaining to the zero z, given by

N

~ (Zi-sj)

B, = lim (s -z,) X(s) = ~(~ -a) j-’ .
s+ z; c N+l

~ (Zi-zj)
j-l
j* i

(26)

The corresponding extrapolation impulse response is easily found from Eq.(25). It is given by

N+l

(27)x(t) = ~ Bie ‘“U(t).
i-1

Since x(t) is real valued, any complex-valued zeros Zi and residues Bi occur in complex-conjugate pairs.

Obviously, since {zi c C 91(z.J < O}, X(s) is strictly stable, which follows from Theorem 1.

If the criterion waveform does not have a simple Laplace transform as in Eq.(24) (which is the

case with the reciprocal double-exponential wavcfonn), x(t) can be determined, either analytically or

numerically, from Eq.(9).

The extrapolated responses can now be fou,nd (see Eq.(7)) by convolving the measured signals

with the extrapolation impulse response of Eq.(27).

3.3 The Extrapolation Procedure

● To summarize the results of this chapter, we have depicted the complete time-domain extrapolation

procedure in Table II. The first step is to measure the incident field of the NEMP simulator, which usually

involves measuring both the electric and the magnetic fields in the working volume of the simulator with

13
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the EUT removed (see Farr [4]). The incident electric field can then be found by adding the normalized

measured magnetic field (normalized by 20 = 377 !il) to the measured electric field, and after dividing a
this result by two. The incident magnetic field can be found in a similar way. This technique is based on

the property that the reflected electric field adds to the incident electic field, while the reflected magnetic

field subtracts from the incident magnetic field.

A novel approach to determine the incident field is to use an “incident-field sensor” (see Farr et

al. [3]). Such a sensor has a directional dependent sensitivity, so that it ignores ground reflections.

After the incident field has been determined, the second step is to compensate for sensor droop

(see Klaasen [13]) which is due to the low-cutoff frequency of the field sensor. The steps 3-6 in Table

II have already been discussed in this chapter. After the extrapolation impulse response has been

determined, the system responses measured during the simulation have to be extrapolated by convolution

with the extrapolation impulse response.

Table II Summary of the complete time-domain incident-field extrapolation procedure.

1.

2.

3.

4.

5.

6.

7.

Measure incident field of simulator (EUT removed)

Compensate measurement for sensor droop

Approximate incident jield with SEM representation (Prony’s method)

Compute the zeros from the poles and the residues of the SEM representation

Make the SEM representation of the incident jield minimum phase

Compute the extrapolation impulse response

Repeat for all measurements

If necessary, compensate measurement for sensor droop

Convolve measurement with extrapolation impulse response

Until done

...-..- . ., . .... ...
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●
4 NUMERICAL RESULTS

A good test for extrapolation methods is to extrapolate the incident-field measurement itself. When

this signal is extrapolated, the result should be approximately equal to the waveform of the criterion

environment. The procedure outlined in the previous chapter has been employed to a field mapping of the

Vertically Polarized Dipole (VPD) version of TNO-FEL’S EMIS-3 simulator (a transportable radiating

simulator). We will use the double-exponential waveform given by Eq.(2) as the waveform to which the

response is required (the criterion environment). This waveform is depicted in Figure 1.

Figure 2 shows an incident magnetic field

measurement of the above mentioned simulator.

The telemetry system that was used has a

bandwidth of 500 MHz, and a signal-to-noise ratio

of 35-40 dB. The digitizer has a record length of

512 samples, and an eight-bit resolution. Observe

that since the rise time of the incident field of the

simulator is larger than that of the criterion envi-

ronment waveform, wc are extrapolating a signal

with a smaller bandwidth to a signal with a higher

●
bandwidth.

Firstly, the field-mapping measurement

has been approximated with a SEM representation

Figure 1 The prevailing waveform in the
criterion environment.

using Prony’s method. The number of poles (and resi-

dues) to approximate the original signal is 17. The signal that has been reconstructed using the 17 poles

and residues is shown in F@ure 3.

Secondly, using the poles and residues generated by the Prony program, the zeros and the

proportionality constant of the rational representation of the SEM approximated signal have been

determined. It is found that some zeros arc located in the right half-plane of the complex-frequency plane,

so that a minimum-phase signal has been constructed simply by negating the real part of the offending

zeros. The resulting minimum-phase signal is shown in Figure 4. The magnitude of the spectrum of the

minimum-phase signal is not shown, because it is the same as that of Figure 3b. To make the comparison

easier, the SEM approximated signal is repeated in Flgurc 4a. Flgurc 4a shows that the only noticeable

difference between the two signals is around the peak value.

Subsequently, the extrapolation impulse response has been constructed using the double-

exponential waveform and the minimum-phase signal of Figure 4a. Figure 5a shows the results. The

magnitude and the phase of the spectrum of the corresponding extrapolation transfer function are depicted

in Figures 5b and 5c, respectively. Figure 5C shows the phase of the non-stable extrapolation transfer

function also. Note that the extrapolation impulse response is completely noise free.

●
Fma.lly, to show the effects of each step in the process of obtaining the extrapolation impulse

response, the extrapolation impulse response has been convolved with the following three signals:

15
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1. the mi~mum-phase signal of Figure 4a,

2. the SEM approximated signal of Figure 3a,

3. the incident magnetic field measurement of Figure 2a.

Figures 6, 7 and 8, respectively, depict the results. The convolution has been determined with the

procedure described in Appendix A. Each of the first two data sets contains the same numkr of samples

as the original signal, i.e., 512 samples.

Obviously, convolving the minimum-phase signal with the extrapolation impulse response, which

has been constructed from the minimum-phase signal, yields exactly the same waveform as the criterion

environment. This is shown in Figure 6 (compare this figure with Figure 1).

The influence on the extrapolated signal of making the SEM approximated signal minimum phase

can be seen from Figure 7. This shows that (in this case) the effect is small.

The total influence of approximating the original signal with a SEM representation, and making

the resulting signal minimum phase is depicted in Figure 8. When judging this last plot, one has to keep

in mind that the extrapolation transfer function enhances the high frequencies by a factor of approximately

100 (the incident field has a smaller bandwidth than the criterion waveform), so that noise and

quantization errors in the original signal are amplified. Obviously, any extrapolation technique fails if the

high-frequency content of the incident field of the NEMP-simulator is below the noise level of the

measuring equipment. An exact criterion is difficult to give.
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Figure 2 Incident magnetic field of the EMIS-3 simulator.

a) time domain,
b) magnitude of the spectrum,
c) phase of the spectrum.
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SEM approximated incident magnetic field (17 poles).
a) time domain,
b) magnitude of the spectrum,
c) phase of the spectrum.
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Figure 4 Minimum-phase signal of SEM approximated incident magnetic field.

a) time domain,
b) phase of the spectrum.
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Figure 5 The extrapolation function pertaining to the signal of Figure 2a:
a) extrapolation impulse response,
b) magnitude of the extrapolation transfer function,
c) phase of the stable and the non-stable extrapolation transfer fi,mction.
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Figure 6 Result of the convolution of the extrapolation impulse response with the minimum-phase
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Figure 8
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5 CONCLUSIONS

A method has been developed and implemented to perform the incident-field extrapolation.

A necessary requirement for the extrapolation transfer function to be strictly stable, is that it is

a minimum-phase signal. Making the extrapolation transfer function minimum phase can be accomplished

very easily with this method.

Because the method which has been presented does not use a Fast Fourier Transform, the

extrapolation transfer function is free of aliasing’ errors, high-frequency quantization noise and high-

frequency noise duc to a truncated time window. With this method, time truncated signals can be

extrapolated.

Further research is needed to investigate the relation between the zeros of a signal, and its poles

and residues; and how these relate for a minimum-phase signal. It is also desirable to investigate how pole

extraction methods can approximate a signal in a minimum-phase sense.
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*i.

A EVALUATION OF THE CONVOLUTION INTEGRAL

●
The time scales of the extrapolation impulse response x(t) and the signal to be extrapolated g,i~(t)

can differ significantly, so that special care has to be taken to compute the convolution integral given by

(cf. Eq.(7))

t

gx(t) = x(f) * g,im(t) = J g,im(t-T) x(z) (it (Al)
o

Using the fact that the extrapolation impulse response is known in analytical form, however, the con-

volution integral can bc computed very accurately.

Let t = nAt, where Ar is the time step of the sampled data g~i~(t),then gX(n) = gX(nAt)is given

by

i&

g,(n) = ~ ~ g,i~(nAt -7) X(T) h. (A.2)
i-l (i-~~

The time step At is assumed to be small over the interval of integration [(i-l)At, iAt], so that g,im(nAt_)

may be approximated by

g,i~(~z-i+l) ‘gjl~(n-O ●g,iJnAt -~) = (iAt -z) + g,i~(n -i). (A.3)
At

After substituting Eq.(A.3) in Eq.(A.2), this yields

g=(n) = ~ gsjmot-zlx,(i)- g.i~(lz-i+l) ‘~(i-l)
i-l

+ g,im(n-i+l) ‘g,i~(~l-i) ‘N
At J

X1(T) d~,
(i-l)&

where xl(i) denotes the integrated extrapolation impulse res~nse given by

“1 B.
xl(i) = xl(iAt) = ‘lx(z) d~ = ~ ~(e” ‘i-1).

o J

Using the notation X2(Z) for the twice integrated extrapolation impulse response, i.e.,

(A.4)

(A.5)
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;&

J
N+]” B s ;&

x2(i) - x2(iAt) = x,(T) dz = ~ ~(~ - iAr),
o j-l ‘j ‘j

we obtain

g=(n) = St?,;m(n+~l(i) - g,im(n-i+l) X.,(i-1)
i-1

(A.6)

(A.7)
+ g.im(n-i+l) ‘gsi~oz-~

At
(%(0-X-$i-1)).

After collecting terms, Eq.(A.7) is finally rewritten as

x’(l) -X,(o)
gx(n)= -[x,(o) - At lg$i~(~z)+ [X,(12)- “(n)~~(n-])]g,im(0)

n>l (A.8)

+ S ‘2(i-1)-2~~+x2(i+1) gsim(’l-l)-
i-1

Note that XI(0) = XZ(0)= O, and that Ihe only value of xl(i) in Eq.(A.8) is xl(n).
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