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Abstract

When designing an antenna system for radiating a transient pulse, it is necessary to
have a simple model for each of the competing antennas, in order to make comparisons.
Previous work on TEM horns has provided numerical models, however no simple model
exists. The purpose of this paper is to provide such a simple model. The model consists of -
approximating the TEM horn by a continuum of electric and magnetic dipoles, and summing
their contributions. High frequency contributions are accounted for approximately by
including an additional step-function term. Approximate plots of the fields in both the time
and frequency domains are provided. It is demonstrated that “at low frequencies a TEM horn
acts like an electric dipole. Finally, a number of suggestions are provided for improving the
response of the TEM horn.
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L Introduction

There is currently a need for a simple model of the TEM horn. This
one wants to compare a TEM horn to other candidate antennas for radiating

t

need arises when
a transient pulse, 8

such as the Impulse Radiating Antenna (IRA) [1-3]. Although some published literature
exists, i.e. [4,5], they are generally done numerically, so their results are not easily adapted
to other configurations for comparison. The analysis in this paper provides the general
behavior of small-angle TEM horns, and shows the asymptotes in the frequency domain.
Although this technique is less rigorous than the numerical methods of [4-5] (except in the
high frequency limit where it is exact), it should be in a more convenient and usable form.

A model similar to that of the present paper (for intermediate and low frequencies) is
developed in [6,71. For the early-time behavior the present paper provides a more accurate
description, due to the non-ideal reflection at the end of the horn and the matching to the
aperture integral in [2].

A simple analysis of an Impulse Radiating Antenna, which consists of a paraboloidal
reflector fed by a conical TEM feed, is provided in [3], which in turn uses results from [2].
The purpose of this note is to provide a comparably simple model of a TEM horn.

A diagram of a TEM horn is shown in Figure 1. It consists of a conical TEM trans-
mission line of constant impedance. The analysis to be presented here will be most valid in
the limit of small ~.

9

We begin with a simple transmission line model of a TEM horn. This model then
requires a modification for high frequencies, which we provide. Although the theory is at first
generated for fields on boresight, this is then expanded to include the off-boresight fields at
low frequencies. It is shown that the behavior of a TEM horn at very low frequencies is just
the same as a short electric dipole. Finally, we provide suggestions on how to improve the
response of the TEM horn.
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Figure 1 A TEM Horn.
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IL Transmission Line Model of the TEM Horn

The first step in the analysis is to provide a low-frequency model of the TEM horn. At
low frequencies, the TEM horn looks like an open circuited transmission line. A diagram
showing this in Figure 2.

Note that the source is a voltage step of magnitude 2V0 After passing through the
matched load, half the voltage is lost, and a voltage step of V. & actually launched onto the
antenna. This matched load is important for proper behavior of the antenna, in order to
prevent multiple reflections. It does, however, create a loss of half the voltage. There may be
ways of eliminating the factor of 2 loss in voltage, i.e., by using a high-frequency bypass
capacitor, as discussed in Section VI of this paper. For our purposes, it is simplest to just
assume that a voltage step of V. is launched onto the antenna, with some method of absorbing
(at the apex) reflections from the aperture.

A diagram of the open-circuited model of the TEM horn is shown in Figure 2. We
may express the current and voltage on the line as a function of time as

I(z’,t) = ; [u(t-z’/c-//c) - Z@+z’/c-l/c) ] (2.1)

e

V(.z’,t) = ; [u(t-z’/c-//c) + Z.4(t+z’/c-l?/c) ] (2.2)

where u(t) is a unit step function and ZCis the characteristic impedance of the TEM horn. The
value of ZCfor a given geometry may be found from the methods in [8]. It turns out that the
charge per unit length is more useful that the voltage, so this is simply expressed as

Q’(z,t) = C’v(z,t)

= ~ [ u(t-z’/c-l/c) + Z4(t+z’/c-l/c) ]
c

(2.3)

where C’= I/(cZc ) is the capacitance per unit length of the transmission line, and c is the
speed of light.

We now break the line up into a continuum of incremental electric and magnetic
dipoles. A diagram of this is shown in Figure 3. The incremental dipoles are constructed
from each differential length of the transmission line, and its associated current and charge per
unit length. Thus we find

dmx(z’,t) = I(z’,t) GM(z’) (2.4)

dpy(z’,t) = Q’(z’,t) h(Z’) dz’ (2.5)

where fi(z’) is the local equivalent height, and &i(z’) = h(z’)dz’ is the incremental loop area.

m Thus, the incremental magnetic dipole becomes
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Figure 2. The low-frequency model of a TEM horn
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Figure 3. A differential length-of transmission line showing the currents and charges that
generate the differential electric and magnetic dipoles.
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$ dmx(z’,t) = ~(z’,t) h(Z’) dz’

We note also that

h(z’) = 2(z’+/) tan(p)

~ (2.6)

(2.7)

We now define a constant for convenience

10 =
2~tan(p) . 2~ tan(p)

Zc Z &
(2.8)

where ~~ =2= /20 is the geometrical impedance factor, and 20 is the impedance of free space.

Combining the previous equations we fmd

dmx(z’,t)
[ (-w ‘(’+wdz’

= 1.(2’ +1) u t

dpy(z’,t) =
[ (-%+ u(’+adz’

:(Z’+1) u t

(2.9)

(2. 10)

Thus, we have found the differential magnetic and electric dipoles formed by the transmission
line.

In the frequency domain, the above equations have a simple form. Thus,

diiz (Z’,S) = ~. (21 +/) A [ ~-s(z’k+flc) _ ~s(z’k-fk) ] ~z,

s
(2.11)

djy (Z’,S) = : (z) +/) : [ ~-~(z’/~f@ + ~s(z”k-fk) ] dz, (2.12)
s

Later, we show that the total radiation on boresight from a single differential element is equal
to the difference of its electric and magnetic dipoles. We identify the following result for
future reference

dfi~(Z’,S) – cdjy(z’,s) = –210 (z’ +1) ~ es(z’’c-f”) dz’ (2.13)

Note that the contribution due to the forward-going wave cancels out, while that of the wave
returning from the open circuit adds. This is analogous to the behavior of the Balanced
Transmission-line Wave (BTW) sensor [9].

Let us now identify the radiation due to the differential electric and magnetic dipoles.
We adapt here some formulas from [10,11] to the case of a short magnetic dipole located at

e

z = z’ and an observation point on boresight at (O,O,Z). Thus, we fmd that the radiated field
from one of the differential magnetic dipoles is
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d~; (2,2’,S) = &2 dtiix(z’,s)
4?L? c

(2.14)

This result is valid for z>> 1 and Isl bounded. To be strictly rigorous, one would have to

multiply the above equation by [1+ O(z’ / z)]. Furthermore, the field on boresight due to a

differential electric dipole is

-S(z-z’)[c

dk:(z,z’,s) = –e ~= /.toS2 d>y(Z’,S) (2.15)

with restrictions similar to those for the magnetic dipole. If we sum the last two equations, we
get the total field on boresight at (O,O,Z)due to both the electric and magnetic dipoles for a
differential section of the transmission line. Thus,

-s(z–z’)/c

d~~(z,z’,s) = e
4?rz :s2 [ ‘m’(z”s) – c ‘~Y@”@ 1 (2.16)

Now we see why we generated the difference of electric and magnetic dipoles in (2. 13). If we
combine (2. 13) and (2. 16), and integrate over the length of the TEM horn (with res~t to z’),
we fmd

W’yz>z’,s) =
pJo ~-s(z+t)lc.—

Y 2nZc
s j (z’+~) e(2S’C)<dz’

–f

After a little math, the integral is evaluated, and we find

If we recall the definition of 10 in (2.8), we note that pJOl = ~h / (c&). Substituting

the above equation, and replacing z with r on boresight, we find

iyy (1-,s) = - ;~e-~(z+”’c[l-::(l-e-.z’’c)]Vh

(2.17) o

(2.18)

this into

(2.19)

This is the final answer we have been looking for in the frequency domain.

It is now necessary to convert the above result to the time domain. In order to do so,
we specify a retarded time gr such that

2+1
tr= t-—

c
(2.20)

0
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The inverse transform is easily given by

yh
qwvr) = ‘——

[
a(tr) + ;[-u(t) + U(t -2Uc)] 1 (2.21)

r 4@~
r r

This is the simple model we have been looking for. It suggests that the step response of a
TEM horn has a component due to a 5 function, and another component due to a pulse
function. A sketch of this function is shown in Figure 4.

We can check the validity of the above result (2.21) in two ways. First, we note that
the total area under the curve is zero, a necessary condition for any radiated field. Second, we
can check the magnitude of the &function against results given in [2]. In [2], it was shown
that the field radiated from the aperture formed by two cylindrical conductors is given by

Vh
E(r,t) = Q — d=(t)

r 47rCf8
(2.22)

In this equation, ~a(t) is a specialized form of the Dirac delta function whose area is constant
but whose pulse width decreases as I/r. At large distances from the antenna, it is essentially
equivalent to the usual &function. The result of (2.22) assumes an aperture where the voltage
between the two conductors is VoZ@. It also assumes a characteristic dimension of the

aperture is ha=hJ2. Since the magnitude of the 5-functions in both (2.21) and (2.22) agrw,
we have some confidence that our result is correct.

Another interesting comparison one can make is to compare (2.21) to the response of
an IRA (with a reflector). In [3] it is shown that a good approximation for the IRA radiation
is

~D
Ey’(r,tr) = — -

[
*[ -@r) + u(t, -2F/c) ] +6(tr-2F/c) 1 (2.23)

r 4 zfg

where D is the diameter of the reflector, fg is the ratio of the feed impedance to the impedance
of free space, and F is the focal length of the reflector. It might be expected that these
antennas have the similar forms for their radiated fields, although when we add the correction
for high frequencies the similarities will be reduced.

While the result in (2.21) is certainly simple, it is actually a bit too simple. The &
function part of the above response is a derivative of the input voltage. This model is correct

for frequencies with h<< %/ (2z) (where A=c/j due to the transmission-line approximation.
The &function is incorrect except for the area that it represents. In fact, the very early-time
part of the radiated waveform should be proportional to the driving function itself (due to a
non-zero ~) which in our case is a step function. In the section that follows, we make

e corrections for the early-time high-frequency behavior.
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Figure 4. Step response of a narrow angle TEM horn using the simplified low-frequency
model.
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m. Correction for High Frequencies

There is a time span during which the field radiated from the TEM horn has the same
shape as the input voltage waveform. Since we are using a step function to drive the antenna,
at early times the our radiated waveform must be a step. Apparently, our model requires a
modification.

In [2] it is shown that the area under the delta function in (2.21) is correct, but the@
magnitude needs to be that of a step function. An illustration of this is shown in Figure 5.
For a certain clear time, an observer on boresight cannot see effects due to the end of the TEM
horn. For small angles, this clear time is

= h2
tc

8tc ‘

h
7

+0 (3.1)

In order to be rigorous, the above equation should be multiplied by [1+ O(h / 4)2]. Thus, if

the TEM horn is driven with a step function, for a time tcone should see a step function in the
radiated field on boresight. The magnitude of the step is just proportional to the field in the
center of the horn. The field in the center of the horn is approximately VJh. Thus, until the
clear time, the field is

E(r,t) =
%4

– u(t) E;m , tctc (3.2)
rh

where EYY’”is the field in the center of the aperture of the TEM horn, normalized to V. /h.

For many configurations (low impedances), E;’’” s 1, so it can be ignored. This is

demonstrated in greater detail in [12]. For the remainder of this paper, we will adopt that
approximation as well.

We are now in a position to modify the ideal low frequency waveform. Although the 6
function of (2.21) is incorrect, its area is correct. Thus, we have a waveform that, until the
clear time, looks like a step function, and afterward drops off to zero in some unknown
manner. However, the area under the total initial portion of the waveform is the same as the
area under the &function of (2.21). This is followed by the pulse function as earlier shown in
(2.21). A diagram of this is shown in Figure 6.

Since we know the peak magnitude of the radiated field from (3.2), and we also know
the area under the “broadened” delta function (the same as the area under the delta function in
(2.21)), we can define an equivalent pulse width. This pulse width is just

9
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Y a _ Pulse Area = 4W~ h’
ta=—=

Max height = 4nW?E;”
(3.3)

c ; ~;”

The problem of the effective width of an impulse is described in more detail in [2], and our
symbols are consistent with [2]. Note that ta is much smaller than the overall duration of the
signal, 21/c. This is especially true when ~ is small.

. . ............... . .

Ctc

Figure 5. Clear Time associated with the initial phase of the TEM horn radiation.
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Figure 6. Broadening of the S-function in the step response of the TEM horn.

11



t

A

Iv. Frequency Response

Having identified an idealized response and a corrected response with a broadened &
function, it is now necessary to show the frequency domain response. In addition, we will

8

show that the step response in the frequency domain is flat in the middle, and rolls off at
20 dB/decade at break frequencies at both the low and high ends,

Taking the transform of (2.21), we find the ideal response on boresight is

iqr,s) = – ~
+$[:-alr 4 q

(4.1)

Next, we identify the low-frequency 3 dB point for the cutoff. By expanding the above
equation for small u, we find the low frequency response is just

~h!~
E(r,s) ‘ - — —– ?

r 47ufg c

wheres =ja.). At mid frequencies in the

ii(r,s) =

The intersection occurs at~l, where

simplified model,

yh-——
r 4wfg

c
= 2nY

Thus, we see that in order to decrease the low-end
length of the TEM horn (at the expense of space).

O.)< <c// (4.2)

the response is just a constant,

(4.3)
9

(4.4)

Finally, we identify a high-end 3 dB frequency.
is the step response of (3.2). Therefore at very early
response is

3 dB frequency, we can only increase the

Vll
ii(r,s) = - ‘– – l?~m

rhs

We note that at early times, the field
times and very high frequencies, the

(4.5)

where we recall E~m G 1, as discussed in the previous section. This generates a high

frequency rolloff. The intersection of this equation with the “ideal” high frequency result of
(4.3) occurs at

21cf Eymm
h= ;2 (4.6)

e

12



*

s

$

0

We may now sketch the asymptotes of the frequency domain step response of the TEM horn.
These are shown in Figure 7. We show here both the “ideal” response, which does not
account for the broadening of the &function, and the actual response, which does take this into
account.

If we wish, we may correct our frequency domain transfer function for the broadening
of the d-function. Although this must be considered approximate, it does provides the correct
high-frequency asymptotes. Thus, we simply multiply the ideal frequency domain result of
(2. 19) by an extra pole to account for the high frequency rolloff. This gives

y h ~_,cZ+,),C
Ey(r,s) = “ — —

r 4nqfg [l-::(l-e-s’’’c)]l+:,a,

where Oz = 2@2, andfz is defined in (4.6).

(4.7)

Based on these results, one can clearly see a problem with using a TEM horn as a
radiator of transient signals. In order to keep fz high, it is necessary to use a small h.
However, a small h has the additional unwanted effect of reducing the mid-frequency
response, as shown in (4.1), One can help this problem a great deal by using a lens in the
aperture, as described in [1]. In fact, by using the right lens, one should be able to get close
to the ideal response of Figure 7. However, then one faces the problem of the additional
weight of the lens.

Since there is a tradeoff in h, one might ask how to pick the optimal h for a given
situation. Let us assume that we are required to radiate a signal with a frequency content that
goes up to some important maximum frequency, f~a. Under these circumstances, the best
performance is achieved when ~_ is equal to the high-frequency break point j_2. Assuming a
constant 1 and fg, the optimal height is simply determined from (4.6) with f2 =fM as

h
i

21c&E;””=
opt

fm
(4.8)

Thus, we see that in order to keep our signal within the mid-band portions of Figure 7 (i.e.
operating as an ideal differentiator), there is a maximum limit on h.

Another way of saying this is as follows. If one needs twice the output (while keeping
fg constant), one may double the height, h. But if one does so, then it is necessary to also
quadruple the length 1 of the TEM horn, in order to maintain the same high frequency cutoff
& Thus, it is possible for TEM horn antennas to get very long, very fast. Note that at least
one competitor to the TEM horn, the reflector IRA, does not suffer from this problem, since it
has no high-frequency rolloff problem.

13
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Figure 7. Frequency response asymptotes of the TEM horn with step excitation.
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v. Low-Frequency Response Off Boresight

It is of some interest to identify the low-frequency response of a TEM horn for all dir-
ections, instead of just on boresight. In doing so, we will show that at low frequencies, the
response is just that of a short electric dipole. This can be used to show that a TEM horn does
not have any directivity at low frequencies, unlike some competing antennas such as an IRA.

We begin with the expressions we found earlier for the frequency domain electric and
magnetic dipoles (2. 11 - 2,12). For convenience, we repeat them here

(m(z’,s) = ~. (Z1 + /) ~ [ ~-$(Z’/C+~@ _ ~-S(Z’/C-f/C) ] dz)

s

dj(z’,s) = L (z~+/) 1 [ ~-+’l~~fc)+ ~-S(Z’/C-t/C) ] dz,

c s

In the limit of low frequencies, we may expand the exponential. Thus, we

21
diix(Z’,S) = - & / (2’+/) dz’

.aT 1

(5.1)

(5.2)

find

(5.3)

djy (2’,S) = +:(/ + ~) dz’

e

Clearly, at low frequencies, the magnetic ;i~le is less significant than the electric dipole, so
we may ignore it. The total electric dipole moment may be found by integrating over dz’, and
we find

Io~2 1
j,(s) = y;

or substituting from (2.8) for ZO,

Finally, in the time domain, we find

y&ohl
p, (t) =

&?
u(t)

(5.4)

(5.5)

(5.6)

Thus, our final result is that a TEM horn looks like a short electric dipole at late times, with a
known magnitude. One could easily use the above two equations in the standard formulas for
radiation from electrically small dipoles [10], but the result is already well known. One gets a
doughnut-shaped cosine pattern, with nulls above and below the TEM horn (~ y-direction).
The output is proportional to the second derivative of the input waveform.

There may be times when one wants an antenna for radiating a transient that has some

o
directivity at low frequencies. This may be useful in reducing interference with one’s own
equipment. This characteristic is available with antennas of the IRA class as described in

15
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[1-3]. We have just demonstrated that a TEM horn does not provide such low-frequency
directivity.
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VI. Moditlcations for Better High-Frequency Performance

One can think of two ways that the response of the TEM horn could be improved. We
would like to suggest these now,

The most obvious improvement one could add would be to add a lens. The resulting
antenna would then have characteristics more similar to the IRA of [1-3] than to the TEM
horn. In fact, this idea was suggested in [1]. The characteristics of the resulting antenna
would approach the “ideal.” model of the TEM horn in Figure 7. A diagram of a possible
configuration is shown in Figure 8. If a perfect lens were available, then the “ideal” response
would be accurate. Since perfect lenses are difficult to build (since they require a continuously
varying p and e [13]), reflections will be present at the aperture. This is primarily due to
reflections at the lens boundaries, say for a dielectric lens. These reflections result in a
radiated field somewhat below the horizontal line of the ideal response of Figure 7 at high
frequencies.

A second improvement involves the loss of voltage at the apex of the TEM horn due to
the presence of the matched load. One way around this might be to bypass the matched load
with a capacitor. This would in theory allow all the early-time voltage through, but still
provide an approximately matched load in order to eliminate reflections from the aperture. A
diagram of this is shown in Figure 9. Times of order ZCCought to be large enough to get the

o

early part of the pulse through with negligible attenuation, but small enough compared to 4?/c
to still terminate the resonances of an otherwise lossless transmission line. The result of this is
that in order to launch a wave of magnitude V’ onto the feed, it would now only be necessary
to use a voltage source of magnitude Vo, rather than the 2V0 used in Figure 2. This brings the
response of the TEM horn more in line with that of the reflector IRA, except for the low-
frequency pattern. The analysis of the resulting configuration (with capacitive bypass) is a bit
more complicated than the present case, and is probably best left for a later paper.
Nevertheless, it is worthwhile to point out that such a possibility exists.
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Figure8. lXms IRA: Addition of a lens to aTEM horn for improving high-frequency
response, from [l].
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VII. Conclusions and Recommendations

A simple model has been generated that provides the approximate behavior of a
narrow-angle TEM horn. This model should be useful to system designers who are
considering using TEM horns for radiating a transient pulse. It identifies the magnitude of the
mid-band response, and 3 dB frequencies for upper and lower frequency rolloffs. In addition,
recommendations are made for improving the response of the TEM horn.

Since the tools are now in place, it is straightforward to carry out a direct comparison
between an IRA (reflector or lens) and a TEM horn (no lens). Such a comparison will appear
in another paper soon.

A TEM horn will probably not be competitive if a loss of half the signal is a
requirement (as was dictated by the matching circuit in this paper). Therefore, further work
will be necessary to further develop the capacitive shunt idea that was mentioned briefly in
Section VI of this paper.
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