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This paper considers a technique for bending TEM waves by subdividing the
space between two infinitely wide parallel perfectly conducting plates by the
insertion of additional perfectly conducting sheets. With close spacing these
can be bent in various ways to make a transient/broad-band lens.
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I. Introduction *

A previous paper [1] has shown a special case of a wedge dielectric lens ‘0
which can bend a transient TEM plane wave between two parallel perfectly
conducting sheets without distortion (no reflections, dispersion, etc.). The
wave satisfies the Maxwell equations and boundary conditions with radian
wavelength X (or characteristic times) short compared to plate spacing as well
as for lower frequencies for which a transmission-lineapproximation can be
used (with the same results).

This paper considers an alternate type of lens in which a set of
conducting sheets, parallel with small–spacing A, is used to make an
anisotropic lens which can also be used to bend the propagation of the TEM
wave. This is another example of such an anisotropic lens, similar to those
discussed in,[3].
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II. TEM Propagation on Set of Parallel Perfectly Conduction Sheets

As indicated in Fig. 2.1, one can propagate a plane wave between two
parallel perfectly conducting sheets (separation A) with

..

my , W-IX)
(2.1)

(2xi7)//iz(propagation direction)

the sheets being perpendicular to lY. Given a set of such sheets spaced A
apart (although this can be a spacing ~, i.e. different spacing between
different pairs of sheets) it is possible to have such a wave between each
adjacent pair of sheets. However, they need not have the same amplitude and
phase (in frequency domain) at a given plane of constant z,

For present purposes the medium between the plates is characterized by a
permeability Vt and permittivity Ct, both real and frequency-independent
(lossless). The sheets being assumed infinitely wide in the x direction for
present analytical purposes, the waves between the two sheets have an
admittance per unit width

(2.2)

Furthermore, the waves are assumed to all have the same amplitude but
progressively delayed (or advanced) so that there is some effective wavefront
as a plane parallel to t~e x axis, but tilted with respect to the z axis and
thereby not parallel to E. This is quite possible since energy cannot be
transported through any of the perfectly conducting sheets. For this purpose,
A is assumed small compared to radian wavelengths X of interest in the “lens”
medium with propagation speed

(2,3)

So non-zero A represents some high-frequency/small-time-changelimit on the
behavior of this wave ensemble as representing a skewed TEM macroscopic (many
A) wave with effective wavefront as in Fig. 2.1.

Now consider how to launch this skewed TEM wave on the multiple-
parallel-sheet region, or what we can think of as an anisotropic lens. As in
Fig, 2.2, consider an incident TEM wave on the left of the lens boundary,
between two parallel plates of spacing d in a medium of permeability p and
permittivity c. Let the direction of incidence of this wave make an angle of
$Iwith respect to the normal to this lens boundary (7r/2- +Iwith respect to
the lens-boundary plane). The admittance per unit width is
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Fig. 2.3 Skewed TEM Wave Propagating
on Set of Parallel Perfectly
Conducting Sheets
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The wave in this region propagates with speed

‘=7%

.
(2.4)

●

(2.5)

To the right of Che lens boundary we have the lens region with a set of
perfectly conducting sheets as discussed before. These divide the region
between two sheets of spacing dt into N regions of thickness A with

dl = NA (2.6} . .

and overall admittance per unit width

Matching impedance on both sides of the lens boundary gives

Matching distances along the lens boundary gives

d d~

Cos(qrl) - Cos ($J

(2,7)

(2.8)

(2.9)
●

where @t as in Fig 2.2 gives the direction of the transmitted wave with
respect to the normal to the lens boundary. Combining the above gives

1 FJ!. 1 C1%
cos(ql) e Cos(qrt) ~

(2.10)

relating the angles on both sides of the lens boundary. The total bend angle
is

~b-~l+qt (2.11)

Specifying ~ and the constitutive parameters then determines +1 and +t,

Considering an
2,2, there is still
lens boundary of

incident wavefront just reaching the lens boundary in Fig.
a distance for the farthest=position to still reach the

t~- dtan(qrl) (2.12)
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As the incident wavefront reaches all of the lens boundary, the farthest

e
penetration lz of the wavefront into the lens is

!2 !lI—.—
Vt VI

‘4%1-E’’’”’*J
(2.13)

This gives an angle *W for the wavefront propagating into the lens as (law of
sines)

4 -[cos:w’)lsin(: - ‘4-VW)
sin($w)

cos(qfl)cos($~+ *.)
d

sin($v) - : COS(*l)COS(*, + *W)
(2.14)

Note that this wavefront in the lens is defined in a limiting sense as A + O
or N -+W.

One can note that this type of bend can be referred to as an E-plane bend
in the usual waveguide convention. The bend angle is in a plane containing
the electric field polarization both before and after the bend.

As a simple special case let the media be the same, i.e.

Then we have

(2.15)

(2.16)



which gives a symmetrical geometry with respect to the lens boundary.
Furthermore, (2.14) reduces to

which for small #l gives

(2.17)

(2.14)

Another way CO see how this lens boundary works is to imagine the
extension of the perfectly conduction sheets over into the incident-wave
region as indicated in Fig. 2,2. The incident wave enters into the region
between adjacent sheets with no distortion and admit~ance per unit width NY~w~
(from (2,4)). On reaching the lens boundary the impedance is matched (per
(2.8)) into a similar region on the lens side of the boundary. This impedance
matching is, of course, a transmission-lineconcept which does not apply for
wavelengths short compared to A. But this is precisely the point of
introducing the perfectly conducting sheets in the lens region. By making A
sufficiently small one can make the eff-ectivebandwidth for transporting the
TEM wave into the lens as high as desired. Wavelengths can be small compared
eo both d and de with distortionless transmission from the TEM wave into the
skewed TEM wave in the lens.
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f III. Lateral Displacement Lens

● As an application of the concept discussed above, consider the case of
two lens boundaries as in Fig. 3,1. Here, symmetry is employed to assure that
the waves in the lens leave to the second parallel-plate waveguide (spacing d,
like the first) in a way to give a wave propagating parallel to the plates.
Note the two-fold rotation axis (C2 symmetry) around which the structure can
be rotated by x to leave the
as in the previous section.
A) in the lens is the same.
depends on L and ~ = til+ v~

geometry unchanged, The parameters are the same
Note that the length L of each subguide (spacing
HOV7much displacement L sin(~)~)is achieved
as discussed previously.

9
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8
IV. Bending Lens

● Another example is the bending lens (E-plane bend) illustrated in Fig,
4.1, Now take the wavefront-in the lens as in Figs. 2.1 and 2,2 as a symmetry
plane and bend the conducting sheets to form equal angles on both sides of one
such wavefront. Note that the spacing A (and hence admittance per unit width)
is maintained between adjacent plates, giving no reflection at the synmetry
plane (in the transmission-line approximation appropriate for X < A).

The various angles are treated in Section II. As a simple case one can
let the permeability and permittivity in the lens be the same as that outside.
This gives the simpler results in (2.15) through (2.18). Referring to Fig.
4.1 the total angle of bend is

(4.1)

This can be combined with (2.14) to give ~~ in terms of ~1 or ~W separately.
For the special case of same permeability and permittivity (2.17) gives

*B
[

-291 - arctan
(

sin($l)cos(@l)
1 + sin2(~l) 1

which for small angles with (2.18) reduces to

(4.2)

(4.3)

So in this case, *I needs to be large for a significant,bend. An extreme
limiting case has

Note also that at the symmetry plane there is ideally no net current
crossing on the conducting sheets except the outermost (spacing d~). On the
internal sheets the surface current density (or magnetic field) is the same on
both sides since this symmetry plane is a common phase surface for all
subguides. Stated another way the wave arrives at the symmetry plane at the
same time in all subguides. Of course, we are considering A < X so that we
are neglecting small times (order A/c),

One of-the potential problems with a set of finite-length parallel plate
regions is the possibility of resonances with same number of half wavelengths
along the length of the subguide. Some of these (odd number of half
wavelengths) can be suppressed by insertion of resistors (or short resistive
sheets) in the conducting
not couple to the desired
these resistors are zero,
and opposite crossing the

sheets at the symmetry plane. These resistors do
mode of propagation in which the currents through
the currents on each side of the sheets being equal
symmetry plane.

11



--------
-------------------

----- I

d

\

symmetry plane
and wave front
with damping
resistors -14-

.-=

.

Fig. 4.1 Bending Lens



Q

b v. Concluding Remarks

The lens represents yet another way to control TEM wave propagation in a
way that allows X < parallel plate spacing in the original waveguide. Of
course, as a two-dimensional structure which cannot be practically of infinite
width, there are fringe fields at the edges of the plates which are not
accommodated by the two-dimensional lens structure. Depending on the ratio of
plate spacing to width, the lens intercepts some fraction of the energy in the
incident TEM wave, roughly that between the plates. For a large intercepted
fraction (near 1) one may expect good lens performance.

While this kind of lens can have various (ideally lossless and
dispersionless) materials between the conducting sheets, one application may
lie in evacuated transmission systems. At very high electric fields one
sometimes uses intense magnetic fields to retard electron notion (from field
emission) parallel to the electric field. Such magnetic insulation is
appropriate in some cases that dielectric insulation is not sufficient.

In this paper the added conducting sheets are discussed for cases that-
they are flat. This technique also allows for curved sheets such as in [2] ,
except that here we have TEM propagation instead of the HI,Omode
characteristic.of a rectangular waveguide. The basic concept still carries
through for plate spacing < X, impedance matching into and out of each
subguide, constant impedance along each subguide, and equal transit times
between TEM wavefronts on each side of the lens.
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