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Abstract

We describe here a simple process for calibrating a transient scattering range. The process
uses a paraboloidal scatterer to transform an axially incident plane wave into a spherical wave.
Since the magnitude of the scattered field is known analytically, one can simply calibrate a meas-
urement system. In order to calculate the scattered field, we use a stereographic projection that
has previously been called the reflector transform.

This technique provides three advantages over traditional calibration with a sphere. First,
it is potentially more accurate, since the scattering characteristics of a paraboloid are independent
of frequency. There is no need to convert the measured time domain data to the frequency do-
main in order to deconvolve the characteristics of the scattere~ the entire process takes place in
the time domain. Second, this technique is simpler to implement. Finally, this technique is appro-
priate for certain anechoic chambers built of two-wire and four-wire transmission lines, where the
incident field is not quite uniform.



I. Introduction

When measuring the transient scattering properties o~an object~it is usefhl to compare the
measured results to a known standard; a scatterer with well-known and simply calculable proper-
ties. Cument practice is to use a sphere as a known object for surface field measurements and for
scattering, and deconvolve the frequency dependence of the sphere from the measurement [1,2],
We propose here an alternative scatterer particularly well suited to time domain measurements, a
parabola of revolution, or paraboloid. This method should be simpler to implement than earlier
methods, and may also be more accurate, In addition, it handles certain new anechoic chamber
designs, in which the incident field is slightly nonuniform.

The idea behind this paper is very simple, If a plane wave is incident upon a convex pa-
raboloid from the end-on direction, then a spherical wave is reflected from the paraboloid. The
magnitude of the scattered spherical wave is proportional to 217/(r(1+cos(9)), where F is the fo-
cal length of the parabola, 8 is the spherical angle from the z axis, and the incident plane wave
approaches from an angle of 6’=0. This result is true until the edges of the paraboloid become
apparent in the measurement. A diagram showing an approximate experimental layout is shown
in Figure 1. The frequency dependence is flat and accurate over a theoretically infinite frequency
range.

The importance of this new calibration process is its potential for higher accuracy. Nor-
mally, one would have to make measurements in the time domain, convert these to the frequency
domain, remove the frequency-dependent properties of the scatterer (e.g., a sphere), and inverse
transform back into the time domain, With the new calibration technique, the calibration process
remains entirely in the time domain, since the scattering properties of the paraboloid are inde-
pendent of frequency. As an added bonus, not only is the frequency response flat, but it is also
trivial to calculate.

We point out that a parabola of revolution, or paraboloid, is the same shape as is used in
many reflector antennas. The difference is that the new technique uses the convex side of the pa-
raboloid, rather than the concave side. Thus, the shape we propose here is not particularly exotic,
nor should it be difficult to build.

Since we envision this method as a replacement for calibration with a sphere, perhaps it is
worthwhile to comment on why a sphere is currently used in time domain range calibrations. It
seems likely that the use of a sphere carried over from frequency domain measurements. In the
frequency domain, the sphere is the only finite-size target one can use whose properties are simply
calculable, In the time domain, however, it is unnecessary to have a finite target. One can very
easily use some portion of an infkite target, and time-gate away the edges of the target. In the
fi-equency domain, it is possible to time-gate away the edge of a finite paraboloid, but this can be
done only with extensive signal processing, Thus, the new technique is less attractive in the fre-
quency domain.

A large part of this paper deals with the calculation of the scattered spherical wave from
the paraboloid. A very similar problem was solved in [3]. However, in that paper a spherical
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wave was incident from the concave side of a paraboloid, generating a plane wave scattered field,
To generate the proof in [3], a stereographic transformation was invoked, which was dubbed the
reflector transform. In this paper we use a similar approach

Finally, we note that problems very similar to the current one have been solved in [4,5].
In these works, the solution is confined to uniform plane-wave incidence. Although that is all that
is needed for a simple scattering range calibration, the solution we present here is general for ar-
bitrary (nonuniform) plane-wave incidence. This makes the calibration of certain other geome-
tries feasible. These new geometries include new methods of building anechoic chambers using
two-wire and four-wire transmission-line stmctures,
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Figure 1. Basic setup for transient scattering range calibration.



IL Scattering of a Uniform Plane Wave with Axial Incidence on a Convex Paraboloid

Let us consider a transient uniform plane wave axially incident upon a paraboloid of focal
length F, as shown in Figure 2, The paraboloid maybe expressed as

2F
‘P = 1+ Cos(ep)

(2. 1)

where the coordinate system is centered on the focus of the parabola, Note that the geometry is
rotationally symmetric about the z axis. The subscript p indicates a location on the paraboloid,
Alternatively, the paraboloid may be expressed as

~p2_

- F-—‘P-– 4F
(2.2)

where Y is the radial cylindrical coordinate. A third representation of the paraboloid is

YP = 2Ftan(QP /2) (2.3)

This expression is identical to the stereographic transform of [3, 6-9]. This fact allows the simple
form for the scattered field. We will use all three of these representations of the paraboloid in the
derivations to follow. Finally, we note a relationship that will come in handy later

rPi-zP = 2F (2.4)

This will allow us to simplifi the expression for the scattered field.
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Figure 2. The geometry to be analyzed.
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Let us now define the incident field as

j@@(Y, ~,z,~) = -vy,+v(Y,fJ)f(t+z/c) (2.5)

where the transverse gradient fimction in cylindrical coordinates is

(2.6)

This describes an arbitrary (not necessarily uniform) plane wave incident along the -z direction. In
the next section, we specialize the above expression to uniform plane wave incidence, which is the
primary case of interest for the scattering range. Combining the above two equations, we find the
incident field as

(2,7)

We hypothesize now the solution for the scattered field. This solution is an outgoing wave from

F = ~ which satisfies causality in the time domain, or the radiation condition in the frequency

domain. Thus,

where the transverse gradient on a unit sphere is

(2.8)

(2.9)

and we have made use of the relation rp&zp = 2F, Thus, a general expression for the scat-

tered field is

Jz(sc)(r,8,+,Z) =

(2.10)

We now need only demonstrate that the incident electric field tangent to the paraboloid is equal
and opposite to the scattered field tangent to the paraboloid. If this is true, then the above solu-

tion is the only correct solution, by the uniqueness theorem.



It is necessary to prove that the tangential fields are equal and opposite in two principal
orthogonal directions. It is simplest to choose the first of these as being in the @direction, since
both the cylindrical and spherical coordinate systems share this direction. Thus, we identi@ the
first principal tangent vector as

(2!11)

The second principal direction is perpendicular to this, and still tangent to the paraboloid. This
turns out to be tangent to a simple parabola in a plane #=constant. Thus, the second principal dL
rection is

~tz = iy COS(OP 12) - i. sin(Qp f 2.)

= T. sin(@P/2) + iecOs(ep /2)

where 6P is a 6 on the paraboloid.

(2.12)

Let us consider now matching the incident and scattered fields. Since the tangential com-
ponents of the fields must be equal and opposite on the paraboloid, we have

(2.13)

Carrying out the dot products for the first principal direction, we find

f (t -(rp -2F)I C) DV(2Ftan(@/ 2), @) = f(t+ZpJ‘)dv(Y,@)
rp sin($p ) 84

*@p,@=4p
!PP

8+ Y?=’+’p,++p

(2.14)

This is true since Yp =rpsin(8p) and 2F–rp = ZP. Matching fields along the second princi-

pal tangential vector, we find

~(t -(rp_-2F’)/c)cos(dp /2) 8V(2Ftan(0/ 2), @) =

‘P
de 6=dp, #=#p

(2,15)

In order to simpli@this, we note that

Y?p = 2Ftan(t9p / 2) (2.16)
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on the parabola, so

dYp F 2F—=
di3p

=r
COS2(Op /2) = l+cos(ep) p

Thus,

(2,17)

(2.18)

and equation (2. 15) is satisfied. Therefore, the scattered field we hypothesized in (2.8) is not only
the correct solution, but the unique solution.
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III.

dence,

where

Uniform Plane Wave Incidence

We consider now the practical application of the above theory to uniform plane wave inci-
If a uniform plane wave is incident from 0=0, we may express this as

V(x,y) = –JqJY

or equivalently

J7(Y,9 = -EO Ysin(@)

Next, we substitute Y = 2 F tan( 0/ 2), as required by (2.7) to find

V(O, $) = -EO 2F’tan(O/2) sin(#)

(3.1)

(3,2)

(3.3)

(3.4)

Finally, we substitute the above into (2.8), taking the transverse gradient to find

E(Sc)(r, O,#,t) = ~V~ ~ [-EO tan(O/2) sin(#) ]~(t-(r-2F) /c)
r’

E.=
‘T ~+~~(q [i@sin(@) + ‘#cos(#)]f(~-(r -2F)/c) ‘3”’)

The above is an expression of the scattered field. It is simple, analytic, and exact. The scattered

field is proportional to 2F / (r(l + COS(9)).

The calibration approach is now clear. One sends a-uniform plane wave incident upon the
axis of a paraboloid, and then makes a measurement at some angle $ to the direction of incidence.
What one measures is given in (3.5). Since F, ~, and 6 can be measured with a meter stick, EO
can be found simply, from say the peak magnitude of the measured response. Only two caveats
need to be satisfied. First, the paraboloid must be large enough to allow the receiving antenna to
see some prominent characteristic of the waveform before effects due to the truncation of the pa-
raboloid become visible. Second, the transmitter should be far enough away from the scatterer
that a good approximation of a plane wave is incident upon the paraboloid.



Iv. Extension to Nonuniform Plane Waves

There is one additional special case worth considering. This case involves a guided wave
such as the two-wire or four-wire waveguide used either by itself [10], or in one of the newer
models of anechoic chamber[ 11-13]. A diagram of the four-wire confQuration is shown in
Figure 3,

Source

Waveguide Wires

Test Volume ‘ Absorber and Terminations

Figure 3. Four-wire anechoic chamber.

In order to calibrate the above range, we note that the phase front in the test volume is
approximately planar, assuming a very long feed. Thus, to a good approximation, the incident
field in the test volume is the field in a four-wire transmission line, as analyzed in [14] and as
shown in Figure 4. The incident plane wave is not quite uniform in the test volume, although it is

approximately so. Note that there is a special dimension ratio, W, which provides maximum
field uniformity [14]. Alternatively, these chambers are sometimes designed so that the dimension
ratio is unity, in order to switch easily between horizontal and vertical polarizations.

o 0

0 0

Figure 4. Four wire transmission line.

If one wanted to calibrate the above configuration, the technique developed here would be
appropriate, One would only need to express the static potential of the transmission line as a
flmction of position, This finction has already been derived in [14], so the process is straightfor-
ward. Note that one would normally expect the field in the test volume to be approximately uni-
form anyway, since that is usually one of the design criteria of a chamber. This suggests that
using the exact four wire potential function should introduce only a minor correction into the
calibration procedure. A second source of error, which is not dealt with here, is that the incident
wave is slightly spherical, rather than planar. We hope to address this issue in a fiture paper.
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v. Truncations Effects

Although the above theory is developed for an infinite paraboloid, in practice a truncated
paraboloid will be used. Itisworthwhile toidentifi theclear times involved, inorder to specify
rigorously how late in time the solution is valid.

Consider the rays shown in Figure 3. If the incident field has a time history of the form

j(t), and j(t) = O fort c O, then the solution is valid out to a time

t = t~+td–(tl+iz) (4.1)
It is straightforward to calculate e~% of the times using the definitions of the paraboloid given in
equations (2. 1)-(2.3).
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Figure 3. Geometry for calculating clear times.

The conclusion we draw from this is as follows. Some identifiable feature of the radiated
waveform (such as the peak) must occur before a time tma has passed since the beginning of the

waveform, in order for the calibration technique to work.
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VI. Conclusions and Recommendations

A simple method has been described for calibrating a transient scattering range. The
method uses a parabola of revolution, or paraboloid, because the scattered field can be expressed
in a simple, analytic, exact form.

The new technique provides three advantages over the more traditional method of calibra-
tion with a sphere. First, it has the potential for higher accuracy, since the entire calibration proc-
ess takes place in the time domain. Second, it is simpler to implement, since the scattered field is
trivial to calculate. Finally, the technique can handle nonuniform plane waves, such as those oc-
curring in two-wire and four-wire anechoic chambers.

One possible area of fhture work might involve refining the shape of the paraboloid. The
method we have described here is exact and rigorous for plane-wave incidence. In practice, the
source is a spherical wave with a large radius of curvature. This is not a very severe restriction,
since if one uses a sphere, the same restriction would apply. Nevertheless, it may be possible to
refine slightly the shape of the paraboloid to account for this effect, in order to make the calibra-
tion technique even more accurate.
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