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This paper describes a special hyperboloidal scatterer which can be used as a canonical

scatterer in a transient scattering range. It has the property of transforming one spherical TEM

wave (from a conical wave launcher) into a second spherical TEM wave with no change in

temporal waveform. The amplitude and polarization of the second wave are known analytically in

terms of the first. This new solution to Maxwell’s equation is useful in the calibration of transient

scattering ranges.
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1. Introduction

In [2] it was shown that an inhomogeneous TEM plane wave, axially incident on a perfectly

conducting paraboloid (of revolution) scatters as an outgoing spherical TEM wave centered on the

paraboloidal focus. In this case the paraboloid is curved away from the incident wave, [t is to be

noted that the solution of the Maxwell equations and boundary conditions is -exact, not just an

approximation (e.g. for high frequency). This solution applies directly in time domain up to some

“clear time” when the waves encounter some scatterer (e.g. truncation of the paraboloid, or the

spherical TEM wave encountering the guiding conductors of the plane TEM wave) and reach the

observer at a time subject to the speed-of-light limitation (causality). Reversing the propagation

(time-reversal symmetry if you like) of course makes this solution apply for an incoming

inhomogeneous TEM wave scattering into a plane wave propagating away from the paraboloid.

This solution is closely related to the case in [1] where an outgoing spherical TEfvl wave (from

a paraboloidal focus) scatters from the paraboloidal reflector (concave to the source), giving a

plane TEM wave (inhomogeneous). This is also an exact solution of the Maxwell equations,

applying up to times when other scattering enters into the fields at positions of interest. This case

applies to part of the design of the reflector type of IRA (impulse radiating antenna),

This paper extends the exact scattering results to the case when both incident and scattered

fields are inhomogeneous spherical TEM waves. An outgoing spherical wave scattering into an

outgoing spherical wave (or incoming to incoming by reciprocity) gives the case of one sheet of a

hyperboloid of revolution as the scatterer, Both spherical waves are centered on the axis of

revolution.

Although this new solution to Maxwell’s equations is interesting in its own right, it is of

particular interest to the problem of scattering range calibration. In [2] it was shown that a

paraboloid made an excellent scatterer for calibration purposes, however, it was necessary to

have a transmitter a long distance away in order for the phase front to be planar at the scatterer.

With this new solution, we can now identify a hyperboloid as the correct canonical scatterer which

does take into account the spherical shape of the incident phase front. Furthermore, one how has

the capability to calibrate accurately a geometry where the transmitter must be close to the

scatterer.
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Il. Double Stereographic Transformation

As is well known [4] there exist solutions of the Maxwell equations in the form of spherical

TEM waves. Referring to fig. 1 we have such a wave (wave 1) propagating away from

(x,Y,z)=(O,UZIO). Insphericalcoordinates(rl,~, @l)centered on this point (with ~ = O

pointing along the negative z axis) we have the electric field in the form

( -)-lv@l,@lvl(el,@l)f t-El=—
rl

where zero time has been set by first wave arrival at the reflector (on the z axis). Here the

transverse gradient is on the unit sphere as

(2.1)

(2.2)

Such a wave is launched by a small source (at the origin of the 71coordinates) connected to two

or more (perfectly) conducting cones (of arbitrary cross section) described in terms of 01,@l

coordinates. In practice such cones have finite length but it takes some time after wave arrival at

a r)articular ~osition for the truncation to be noticed.

o The potential satisfies the Lap[ace equation on the unit sphere

(2.3)

with constant potentials on each of the conducting cones. Using cylindrical coordinates (Y,@, z)

with

X= Ycos(@) , y= Ysin(f$) (2,4)

the stereographic transformation takes the form

()01
Yo=21~tan ~

(2.5)

@o=-@l

where YO and @Oare now polar coordinates on a plane perpendicular to the z axis at -L. Points

on sphere 1 of radius .tl are mapped by projection from a point on the z axis at Zln + -tl onto this

stereographic projection plane (which is also tangent to the sphere). Near the z axis the
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Fig. 1. Reflector with Two Outward-Propagating Spherical TEM Waves
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coordinates on the projection plane closely match those on the sphere, but this is distorted as .91

0
increases from zero, In terms of these new equivalent cylindrical coordinates the potential also

satisfies the Laplace equation (on the projection plane) as

(2.6)

Mapping the conical boundaries onto the projection plane (via their intersection with sphere 1)

gives an equivalent two-dimensional problem which can be solved by various techniques,

including conformal transformation. As many such geometries have known solutions, the

stereographic transformation allows one to apply these to systems of conical conductors related

by (2.5). The solution here then applies to any spherical TEM wave with an analytic

representation, potentially a large list. “

Consider now a second spherical TEM wave (outgoing) centered on (x, y,z) = (0,0, z20) as

o )(~_r2–.t2‘1 V92,42V2(612742flz2, =—
rz c )

(2.6)

which has the same waveform f, and same arrival time (zero) at the reflector on the z axis. Both

waves are considered to the right of the reflector for present purposes. However, there is a

similar solution for both waves to the left.

In terms of the second spherical coordinate system (r2 ,62, @2) all the previous results can

be applied to this wave as well. Now the stereographic transformation reads

()62
Yo=212 tan ~

(2.7)

@o= 42

where now sphere 2 of radius /2 is used for the projection from a point on the z axis at Z20–/..

Note that both spheres are tangent to the same projection plane at z = –L.

As Interpreted geometrically in fig. 1, both spherical waves are mapped onto the same plane,

This allows one to map from one set of spherical coordinates to the second via
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()82 ()!91
2@a11.7- =Yo=2@an~

(2.8)

which one can call a double stereographic transformation. Potentials VI appropriate to spherical

TEM wave 1 satisfy the Laplace equation (transverse) in 71coordinates. Via (2.8) such potentials

satisfy the Laplace equation on the projection plane, and then on a sphere (transverse) in the 72

system. So for any acceptable VI there is an acceptable V2as a constant times VI. In

particular let us choose

Together with (2.8) this can be referred to as a hyperboloidal reflector transform as we shall Iafer

see,
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Ill, Hyperboloid from Matching Time on Surface

● In fig. 1 consider a ray corresponding initially to wave 1 with angle 01. Due to the rotational

symmetry this can be taken for illustration with 01= O, but the results apply for all @l. This ray

passes through sphere 1 (at a point which is stereographically projected to the z= -L plane) and

continues on until it meets the reflector where it meets (and is reflected into) a ray corresponding

to wave 2 at angle t92. There are various things to be considered to show how the boundaw

condition (zero tangential electric field) is satisfied on the scatterer. In this section let us first

establish the reflector shape as (one of MO sheets of) a hyperboloid of revolution.

Matching the time portion of the two waves on the surface we set

‘(r-’*h:’1)=f(’-r2h:e2)
(3.1)

from (2.1) and (2.6). Here a subscript “h” is used to denote coordinates on the scattering surface.

For arbitra~ waveforms we then have

rlh– 11= r’2h– t’ (3.2)

o with the relations

ll+z’2, =2i?o , 11–12=2L (3.3)

we have

~lh –r2h = 2L (3.4)

which is one way to describe the hyperboloid, the points H?. on the z axis being the two foci.

Points on this hyperboloid have a constant difference (2L) in the distance from the two foci.

Now derive an equation in cylindrical coordinates ( # independent) appropriate to this body of

revolution. From (3.4) we have

[yt+(go-zh)2~=[y; +(po+z’)2~+2L
which when squared and terms canceled gives

(3.5)

(3.6)
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which can be squared again and terms canceled to give

Normalizing the coordinates gives the canonical form

(3.7)

(3.8)

As indicated in fig. 1 there is a cone of half-angle Whwhich is asymptotic to the hyperboloid as

(3.9)

Here we take the solution for negative z since we have assumed L negative. If L is positive the

solution for positive z is appropriate.

At this point one can note that the equal-time constraint automatically makes the ray scatter

from the surface (in a high-frequency sense) with

Yr = Vi

w = incidence angle

vr = reflection angle
(3.10)

●

These angles are taken with respect to the local surface normal in fig. 1.
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IV. Equivalence of Double Transform and Angle Matching on Hyperboloid

● The transform (double stereographic) in (2.8) relates ~ and e2, Fig. 1 shows the usual

geometric interpretation of the two stereographic transforms on the z= –L plane. However, one

would like to relate this to the idea of the rays at angles ~ and 62 meeting on the hyperboloid.

So let us consider this geometric problem.

Assuming the two rays meet on the hyperboloid we have

‘Ih ‘o’(elh)+’zco’(ezh)=z’~
‘h(elh)‘in(62h)‘h(elh‘e2h)(Iawofsines)

= =

‘Zh ‘lh 2fo

rlh –rzh = 2L

Substituting from the second of these into the third gives

[1

–1
sin(61h)

rlh =2L l–

()sin Ozh

[1

()
–1

sin 92h
rzh = –2L l–

()sin ~h

(4.1)

(4.2)

with the two radii now expressed in terms of the two angles. Substituting these results into the

first of (4.1) gives

2L ‘in(62h)c0s(e1h)_2L c0s(e2h)s’+%) =2/

“’’(%)-’’+%) “+%)-’’+%) 0

which can be manipulated into the form

l- ficos(tllh) l+~cos(ezh)

()

=
sin I%h

()sin Ozh

This is a relation between tllh and E12hcoordinates only.

(4.3)

(4.4)

To compare (4.4) with the double stereographic transform first use [3]
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2tan(:)
sin~t3)=

()l+tar? +

1- td(g)
Cos(e)=

l+tar12 $()

Substituting for both 81h and 62h in (4.4) we find

Now the double stereographic transform from (2.8) is

This is equivalent to

and to

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

Adding (4.8) and (4.9) and identifying

q.qh , f?z= 62h (4.10)

gives (4.6). Therefore the double stereographic transform (4.7) implies that ~ and 02 match on

the hyperboloidal boundary,
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V. Matching Potentials and Fields on Hyperboloid

Now that the waveforms match on the hyperboloid in (3.1), and the double stereographic

transform has ~ and 02 (and 41=- @2)matching on the boundary, look at (2.9) where the

potentials are chosen to match as

(5.1)

Viewed another way the potentials sum to zero at each point on the boundary. However, these

are potentials corresponding to the transverse fields in two different spherical coordinate systems.

Consider the resulting tangential electric field on the boundary as specified from the sum of

(2.1) and (2.6), There are two tangential components to be considered as in [2]. Here we have

for the @component (or the Ihl direction)

From (3.1) and (5,1) we directly have

El@h +E2 =0
‘?’

(5.2)

(5.3)

The second tangential component is taken in the l~z direction. This is normal to lhl =1$ and

is in the X,Zplane for the case of @= O illustrated in fig.1. For wave 1 there is no component in

the rl direction and similarly for wave 2. Projecting the 01 and 02 components gives

(5.4)

Now along the hyperboloid in the ih2direction we have a differential length

-11-



(5.5)~l~m~ =
dk =

‘2h d$q

COS( vi ) Cos( I/rr )

Together with (3.1) and (5.1) this gives

1ih2. [Elh+E2h =o (5.6)

The net-zero tangential electric field on the hyperhloid can be simply viewed from another

perspective. Since (5.1) shows that the sum of the two transverse potentials is zero everywhere

on the surface, and since the tangential electric field is given by the derivatives of these potentials

along the surface, then the net tangential electric field is direotly zero. Since the waves satisfy not

only the Maxwell equations but also the boundary conditions, we have found the unique solution.

In calculating the waves, the second can be readily related to the first through the values on

the hyperboloid, The first wave being given as in (2.1), this takes the given incident field which

we write as

The second wave has the general form in the second spherical coordinate system

= E2g2h ‘e2h + ‘2+2h $2hi

Matching the tangential fields of the boundary gives

(5.7)

(5.8)

●

%zh = –E1@lh

‘2#2h=‘2!hh
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noting the opposite senses of @land @2. Thus the second wave has field component which are

extrapolated by r2h / r2 (as one moves away from the hyperboloid) in terms of the field

components of the first wave at the hyperboloid.

-13-



f

V1. Concluding Remarks

The solution here is quite general. There are many forms the first spherical TEM wave can

take, depending on the conical antenna used to launch it. For all such waves the second

spherical TEM wave can be directly constructed via the double stereographic transform. Since

the requisite shape of the scatterer is one sheet of a hyperboloid of revolution, one can think of

this transform as the hyperboloidal transform.

The sohtion, while exact, only applies for limited time. A practical scatterer is truncated, the

truncation serving as a scatterer which sends fields to an observer, cutting off the time for which

the solution can be used. (See fig. 3 of [2] for this geometry in the similar case of a paraboloid.)

As in fig. 1 the presence of the conical antenna also serves as a scatterer of wave 2, sending a

signal which is eventually received by the observer. Furthermore the finite length of the conical

antenna means that wave 1 scatters from the truncation of the cones, also propagating to the

observer. All of these additional scattered waves need to be considered when computing the time

window of solution applicability. Turning this around one can design the conical antenna and

hyperboloid to give a desired time window.
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