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Abstract

In the design of B-dot and I-dot sensors with calculable sensitivities,
accurate realization of the desired calculable geometries is important. This
paper summariecs various useful accuracy bounds and estimates that one can use
to make the errors often quite small. These include the perturbations due to
non-zero thickness metal sheets and non-zero radius of signal-cable shields.
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I. Introduction

In designing electromagnetic-field sensors one is concerned with the
question of accuracy. How well does one know the relationship between the
electromagnetic field (or its time derivative) and some voltage or current
delivered to some terminal into some specified impedance? Here we are
considering passive geometric structures (antennas) which (among other things)
have accurately calculable quasi-static response parameters. Given the basic
parameters in the constitutive equations (p, by definition, ¢, from the speed
of light ¢ known to many significant figures), then with the Maxwell equations
one can design some such sensors that are *calibratable by a ruler" [16].

One can, of course, expose the sensor to some standard field, current,
etc., but this begs the question. What calibrates the calibrator? This is
some device which establishes an electromagnetic-field configuration when
driven (at one or more terminals) by electrical source(s). A fundamental
electromagnetic principle here is reciprocity which relates the response of
antennas in transmission and reception (providing non-reciprocal media are not
used, the typical case). The accuracy of the transmitting antenna (field
producer) and sensor (field receiver) are comparable geometric (ruler)
problems. If there is some disagreement between transmitter and receiver
which one is in error? Perhaps both are in error. In principle it is no more
difficult to make a standard sensor than a standard electromagnetic source. ‘
For both the use of special calculable geometries with error estimates for how
well one realizes these geometries is essential.

Some previous papers have addressed some problems concerning the accuracy
of electric or D-dot sensors, including the presence of dielectrics and non-
zero thickness of conducting plates (e.g. ground planes) used in the design
[4,5]. Similar calculations can be (and have been) used for the non-ideal
conductors (cable shields, non-zero thickness metal shields, nearby metal
scatterers) used in B-dot and I-dot sensors. This paper summarizes a number
of these.




II. Bounds on Loop Area

In calculating the equivalent area of a loop (magnetic-dipole) sensor one
considers the case that the load impedance (resistive) is large enough that
the magnetic flux is not excluded from the loop structure (open-circuit
conditions). Then imagine as in Fig. 2.1 that one is looking along a symmetry
axis of the loop (the z axis), this axis being parallel to the component of
the magnetic field one is measuring. By use of symmetry planes in the design
one can accurately assure that the equivalent area and open-circuit voltage
are described by [16]

- - - aé‘(inc) (2 . 1)
Aog = Aoglz 1+ Voo = Aeq"ﬁf

In the example in Fig. 2.1, the sensor conductors have four symmetry planes
(spaced at n/4 angles) containing the symmetry axis and one symmetry plane
perpendicular to the symmetry axis (parallel to the page). This is an example
of D, ; (dihedral) symmetry [12,13], as the intersection of the first four
symmetry planes with the fifth gives four 2-fold rotation axes. Note that
this symmetry applies to the exterior scattering, not the routing of the
signals which occurs on cables that are made part of (bonded into) the overall
structure. While this symmetry group is the basis for the usual MGL (multigap
loop) design, various other choices are also used for other loop designs.

Referring to Fig. 2.1 let us write

NA. s A, < NA, (2.2)
N = number of loop turns

where A,y is taken as positive in (2.2). Here N can be an integer or even a
fraction. The typical MGL full loop (not on a ground plane) has N = 1/2 due
to series/parallel connection of the signal from the four quadrants.

In establishing these bounds, note that (looking along the loop axis) the
structure is sparse so that the z component of the magnetic field is
negligibly perturbed. One can picture the magnetic field being locally
distorted to pass on both sides of the conductors so that some path lying in
the conductor represents an effective boundary for equivalent area purposes.
Then the outermost perimeter gives A, which is

A, = nr} (2.3)

for a circular cylinder (radius r;) tightly circumscribing the sensor. Note
that this can be reduced slightly as indicated in the gap regions if a wire
comes out of a coaxial cable there. The example of the loop-gap connections is
only illustrative as there are many other types [16]. Other formulas for A,
can be readily derived for non-circular-cylindrical loop designs.
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Fig. 2.1 Loop-Area Estimates



For a lower bound we have

A ~=~mnrf - N;r.d ‘ (2.4)
Ny = number of radial divider plates, cables, etc.
d = maximum thickness of dividers.

The example in Fig. 2.1 has Ny = 4. If a half-loop version is built on a
ground plane, then two of the dividers can be considered as part of the ground
plane. Depending on design specifics, how much needs to be included in (2.4)
depends on how much is raised above the surrounding ground plane, together
with the image to put the result on a full-loop basis. Note that external
dielectrics are not considered in this bounding, since they are readily
penetrated by the magnetic field.

So one view of the sensor accuracy is to bring the upper and lower bounds
in (2.2) close together and use as our estimate

-NA++A_ (2.5)

Agg )

This minimizes the error as

(2.6) Aa - NfL;—A-

AA- A+_A-
A, A TA

eq

Choosing some desirable value of A, (e.g. 1.00 x 1072 m?) then one can equally
space A, and A_ above and below A,;. The remaining error as in (2.6) can be
made quite small, at least for large loops, say a percent or so. If the
divider plates can be neglected we have
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So as one would expect the relative error is proportional to the ratio of the
conductor thicknesses to the loop dimension.

So far the discussion has concerned the loop conductors as perfectly
conducting and thereby excluding magnetic flux. In the low-frequency limit
magnetic fields penetrate real conductors, giving another way to view the
equivalent area. In this case the wires (center conductors) inside the cables
define (at least in part) the perimeter for the equivalent area. Ideally one
would like this estimate of the equivalent area to agree closely with the
previous estimate in (2.5). With such wires enclosed in cables (or as strip
lines) included in the regions of A, but not A., in Fig. 2.1, this agreement
is assured at least in the bounding sense of (2.2). However, by judicious
positioning of these signal wires within the ambiguity area one can try to
make the low-frequency estimate correspond closely to that in (2.5), or to
more accurate estimates discussed later in this paper.



II1I. Bounds on Mutual Inductance

The same concepts can be adapted for I-dot sensors. As in Fig. 3.1
consider the sensor as a collection (distribution) of loops in planes of
constant ¢ which respond to B, averaged over 0 < ¢ < 2n. There are various
forms of winding such loop ensembles, including parallel forms for good high
frequency performance [3]. Assuming an axially symmetric current distribution
in the z direction, such as a wire with current I on the z axis, we have the
quasi-static magnetic field

BT (3.1)
By = Bofly - 21:‘1’

(P,¢,2) = cylindrical coordinates

Note that the permeability of free space p, is used since the sensor is
assumed to have an air core. A magnetic core is more appropriate for short-
circuit conditions (due to large inductance).

The open circuit voltage is

or
Vo.c. = M_a"t'
M = mutual inductance
- w0 (i)
27 I,
N = number of loop turns

(3.2)

Here r;, r,, and w are effective dimensions with upper (+) and lower (-)
bounds as indicated in Fig. 3.1. For the rectangular cross section (plane of
constant ¢) we have the bounds

HDW_ r2+ LV l"’ow+ r2+ (33)
27 ln(rh)s NS 27 Qn(rl,)

As in the previous section, these bounding dimensions include all the cabling
and conductors. The bounds define a toroid-like object (except for typically
rectangular cross section), i.e. a bounding body of revolution with respect to
the z axis. The bounds can be slightly tightened by accounting for the loop-
gap region where one has an annular slot (constant ¥,z) with signal wires
crossing the slot. In principle, one can also have divider plates as bodies
of revolution (e.g. parallel to a plane of constant-z). These would be
included by appropriate reduction of the lower bound (analogous to the
previous section).
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So one can use as the estimate of M

in 1- ) 1+
- vbe o (_f_)
2% r,
AL A (3.4)
v 2

This minimizes the error as

in 1- ) 1+
L - Xz
ol 4T [w. - w] tn (rl) (3.5)

Choosing some desirable value for M (e.g. 2.00 nH), then one can choose the
sensor dimensions with the bounds spaced equally above and below. The
remaining error can be made quite small, at least for large sensors.

The foregoing discussion has been applied in the design of the CPM
(cylindrical parallel mutual-inductance) type of sensor. However, if the
frequency is high enough that skin depths can be neglected, and if the space
between inner and outer dimensions is "completely" filled with metal (except
in the gap region) with signal cables contained int he metal, then the formula



in (3.1) applies within the internal dimensions which can now be used to give

M=y e wm (iz_) (3.6)
27 Tie

with a correction depending on the exact position the signal conductors emerge
from coaxial cables to cross the gap. This is the appropriate approximation
for use with the IMM, OMM, and FMM sensors [16].

Another source of error concerns the lack of rotation symmetry in the
magnetic field as in (3.1) such as by a current not centered on the z axis.
One can make a fourier expansion of By with cos(n¢) and sin(n¢) terms. The
previous discussion applies to the n = 0 term. For higher order terms one can
cancel out the first several of these by sampling the field at Ny positions
spaced in 2x/N, increments of the angle ¢ around the sensor. The first
contributing term (to the error) comes from n = Ny. By moving the wire off
the z axis (but still parallel to the z axis) one can determine for a
particular sensor how close one can approach the sensor structure for a given
allowed change (error) in the sensor output.

At high frequencies there is a certain ambiguity concerning how to think
about the sensor response. The form in (3.1) is a simplification of

#_ = 8D = 0 _ =
VXH-J+—a—E-J+so—é-E-Jt
[& a7, -as (3.7
¢ s

2%

2%
£B¢dd>-uo£H¢d¢-—p§,3£ F.-1,ds

where the contour C is along a circle of constant (¥, z) bounding the circular
disk on constant z with unit normal 1,. So the sensor, by integrating the
magnetic field around a closed contour, measures the enclosed total current
(including displacement). This is then a matter of definition. If one wishes
the current on a small wire (compared to r;.), there are potential high-
frequency errors (depending on details of the incident fields). On the other
hand, one may design a measurement around the total current density, as in the
case of the FMM [16], in which the view in (3.7) is more appropriate for
defining the sensor response.
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IV. Approximation of Thick Conducting Sheet by Ellipsoid

In passing around divider plates as in Fig. 2.1, the magnetic field is
changed in value near the plates. This enhancement of the magnetic field can
be estimated via the canonical problem in Fig. 4.1. Here an ellipsoid with d
<< a,b is used to approximate such a plate of thickness about 2d. This also
applies to the case of a ground plane of thickness d mounted on a large
(perfectly) conducting plate on the z = 0 plane. Here we are concerned with
the magnetic field at

(XIYIZ) - (0,0,d) (4.1)
The incident magnetic field of strength B, is taken in the x direction with
symmetry making the total field just outside the ellipsoid at the point in
(4.1) parallel to the incident field.

This enhancement factor has been derived in [9] as

2 els - (2f) - 5o - (2)]

fora> b
e g i (B ) kg
for b> a

k13
1+
4

v a,

(a = b, flat oblate spheroid)

where the argument of the complete elliptic integrals is the parameter m as in
[14]. For comparison, the enhancement factor for an electric field in the =z
direction is 1 + nd/(2a) (for small d/a) for an oblate spheroid (a = b) [5,9].
So the fractional increase of the magnetic field is only half that of the
electric field in this case,

Additional limiting cases are

£, = 1 for % + » (independent of d/b) (4.3)
(elliptic cylinder along x axis)

Fyp=1+ g for § + o (elliptic cylinder along y axis)

11
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Fig. 4.1 Ellipsoidal Model of Divider Plates
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In the first of these there is no enhancement (field parallel to the elliptic
cylinder), while in the second case there is still an enhancement.

These enhancement factors can be used to obtain more accurate estimates
of equivalent area in section II. For d, b << a the enhancement can be quite
small. This is a guideline then for sensor ground planes (which in turn are
mounted on large conducting surfaces). Make the plate thin, but long in the
magnetic-field direction.

When used as a divider plate as in Fig. 2.1, the enhancement is again
small provided d << a. Even with this enhancement one can estimate the
equivalent area more accurately by taking A_and increasing it by the
enhancement factor. Note that there may be more than one such divider plate,
as well as curved cylindrical plates (axis parallel to magnetic field), as
part of the loop structure. However, this view of magnetic field enhancement
only applies for skin depths << d.

13



Approximation of Finite-Length Conducting Circular Cylinder by Prolate

V.
Magnetic Field Parallel to Major Axis

Spheroid:

Another application of the ellipsoidal scattering model concerns a
circular cylindrical scatterer which would be on the loop axis (as in Fig.
2.1). This finite-length conducting tube may be part of the mechanical
structure of the loop (anchoring the divider plates), as well as serving as a
conduit for signal cables leaving along the loop axis to recording instruments
or data telemetry units. In this case let us set d = b in Fig. 4.1 and '
consider again the magnetic field enhancement as in (4.1).

From [9] one uses for the prolate spheroid

He o _Na | b\ [on [22) _
e e [ F) -

(5.1

as 2 -9 .9
a a

So the increase in the magnetic field is quite small, not quite quadratic in
b/a.

There is also the case that one has what can be approximated as a semi
This corresponds to the sensor near the end of a boom

infinite cylinder.
This is treated for a particular shape near

which contains the signal cables.
the cylinder end in [6,11].
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VI. Change of Magnetic Flux by Conducting Circular Cylinder: Field
Perpendicular to Axis

Consider now cables with axis transverse to the incident magnetic field
as in Fig. 6.1. These may appear in various places in the overall geometry of
Figs. 2.1 and 3.1. Here we take

Be) w BT - B, [sin($) Iy + cos($) 1, - v {ind) 6.1)

$ln = By =B, ¥ sin(d)

for the incident magnetic field. The total field is
B?’_ B!'(inc) + B“(sc)
(6.2)
q)m - $line) 4 s

The scattered field is found in the usual way from the solution for the
Laplace equation (for ¥ > ¥,) as

¥

- 20 A 7, 1
B9 o Y@ (59) = -Bo( To) sin(¢)ly + Bo( TO) cos () 1¢

2
Psa) = BOTZO p-1 sin(cb) - Bo (L) y
(6.3)

which gives the boundary condition of zero normal magnetic field at the
surface of the perfectly conducting cylinder of radius ¥,.

The magnetic field at the cylinder surface at ¢ = 0,7 is twice the
incident field. However, this value is not appropriate for correcting the
equivalent area (via A ) or mutual inductance. In going out from the cylinder
to a position on the x axis comsider Al .(x) as the magnetic flux intercepted
per unit of incident field and per unit of cable length (z direction) as

X
/ 1 - -
Aog(%) = 5= Yf 1, B, dx
X 2
RGIE
X/
271X
_[x/_ ‘P/o} (6.4)
X T,

(%)
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Fig. 6.1 Distortion of Magnetic Field Transverse
to Axis of Perfectly Conducting Cylinder
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Comparing this to the result for a very thin cable we have

2 .
A, (%) . _(To) (6.5)
A (x) | ¥, -0 X

So the error is -(¥,/x)? which can be quite small if x is say ten times the
cable radius. So as long as the other conductors are sufficiently far from
the cable (which might also include a conducting sheet on the x = 0 plane
(except inside the cable)), the error (or correction) in equivalent area can

be made acceptably small.
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VII. Equivalent Spacing of Two Parallel Conducting Circular Cylinders

The proximity of a second cable to the first (as in section VI) can be
considered via two parallel perfectly conducting cylinders as in Fig. 7.1.
Here, two cylinders of radius ¥, are spaced a distance h between centers. The
incident magnetic field is the same as in section VI, and the question
concerns how much magnetic flux passes between the two cylinders. This is
given by the equivalent area per unit length, or equivalent height, as

Bog = A& e-}-f

o™ G 1, B | dx (7.1)

Noting reciprocity between transmission and reception, this has the well-
known solution [1]

as Xo . g (7.2)

Comparing this to (6.4) note the similar form with the correction proportional
to (¥,/h)2. However, (7.2) takes account of the mutual interaction of the two
cylinders, thereby being more accurate for such a case.

Note that x = 0 is a symmetry plane on which one can place a perfectly
conducting sheet. So the results here also apply to the case of a single
cylinder centered a distance of h/2 from a conducting plate.

18
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VIII. Effect of Nearby Scatterers

Associated with the sensor are often nearby scatterers such as cable
connectors, baluns, data telemetry devices, etc.  These may appear at the end
of some cable and possibly be mounted on some ground plane or sheet of metal
on a symmetry plane associated with the sensor.

A simple way to think of the errors introduced by such scatterers is in
terms of the quasi-static magnetic field, which for distance r large compared
to some dimension r, of the scatterer can be treated in terms of a magnetic
polarizability tensor M [7,15] where

- [31,1,-1] A (8.1)

The polarizability is of the order of the volume of the scatterer (i.e. r.®),
so the scattered field goes like (r,/r)3. Note that this is a quasistatic
approximation, and that as frequency is increased so that the radian
wavelength X becomes of the order of r or less there are other terms (r’? and
r’!) that come into play.

A simple shape for approximating such a scatterer is a sphere of radius
r, for which we have [9]

M - —% Volume = -2%r2
(8.2)

3
— I - - - -~
H9 ——gn (—-") [31,1, - 1] - Y=

with the coefficient in this last formula giving the relative error introduced
in the field. This can be refined by using ellipsoidal or other shapes with
known magnetic polarizability.

Note that dielectric scatterers are not significant perturbers of quasi-
static magnetic fields. They do, however, perturb quasi-static electric
fields and so are significant in the case of electric sensors via their
electric polarizability [4]. For magnetic sensors it is the magnetic
polarizability of highly conducting or permeable scatterers that is
significant.
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IX. Concluding Remarks

Besides these simple formulas that can be used to estimate or bound
equivalent areas and mutual inductance, there are other considerations in the

design of accurate magnetic-based sensors [16]. For example, in multiturn
loops one can alternate the crossovers (in an over/under sense) of the
conductors (sometimes coaxial or even triaxial cables) [2,8]. The incident

magnetic field may not be uniform if one is making measurements near
conductors. In such a case one can use special geometries to minimize the
error [2,10].

, Note that here we have been considering the open-circuit parameters A,
and M which are related to interception of magnetic flux. Short-circuit
parameters bring in the self inductance of the sensor, a parameter which is
usually more difficult to accurately calculate.
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