Sensor and Simulation Notes

Note 345

AN EFFICIENT METHOD FOR THE PERFORMANCE ANALYSIS OF
BOUNDED-WAVE NUCLEAR EMP SIMULATORS'

August 1992

JJ.A. Klaasen
Electromagnetic Effects Group
Netherlands Organization for Applied Scientific Research
TNO Physics and Electronics Laboratory
P.O.Box 96864
2509 JG The Hague
The Netherlands

ABSTRACT

The electromagnetic-performance analysis of bounded-wave Nuclear EMP (NEMP) simulators
was carried out in the past by employing the (time-domain) Method of Moments (MoM) or conformal
mapping. With the former, transient results can be obtained within the simulator’s working volume.
With conformal mapping the results are limited: the simulator’s characteristic impedance and the static
field distribution can be computed.

A problem associated with the MoM is that it yields a huge impedance matrix which for real-
world simulators becomes prohibitively large. Either one can only employ the MoM for small
simulators, or the number of wires that constitute the transmission-line structure has to be limited to
an unrealistically low number.

In this paper, a new method will be enunciated that is extremely efficient, and enables one to
analyze even the largest simulators. The method uses a priori knowledge as much as possible. It
obtains the current in the wave-launcher’s wires from an equivalent current filament of a conical-plate
wave launcher that supports a TEM-mode. The transient electromagnetic fields within the simulator’s
working volume are then readily computed by using efficient and analytical time-domain expressions
for the fields generated by the wires.

Expressions for the early-time fields and the impedance of a conical wire-mesh wave launcher

are derived.

! This work was supported by the Royal Netherlands Navy, DMKM/PFS under contract
726.90.2006.
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1 INTRODUCTION

The method described in this paper has been developed for the electromagnetic-performance
analysis of a bounded-wave NEMP simulator for ships called EMPSIS (see Klaasen et al. [1]). The
EMPSIS simulator and its performance are not the main subjects of this paper, but are merely used
to illustrate the method outlined.

The electromagnetic-performance analysis of NEMP simulators was carried out in the past by
employing the (time-domain) Method of Moments (MoM) or conformal mapping. With the former,
transient results can be obtained within the simulator’s working volume. With conformal mapping the
results are limited: the simulator’s characteristic impedance and the static field distribution can be
computed (see Baum [2] and Giri et al. [3]).

Transient results can be obtained with the MoM (see Harrington [4], or Mittra et al. [5])
applied to thin wires in the time domain. Since the well-known NEC code (Burke and Poggio [6]) uses
the MoM in the frequency domain, it is not particularly suited for transient analysis. De Haan ef al.
[7] used the NEC code for the performance analysis of the Lukksund experiment, but with limited
results.

Bardet et al. [8] and Dafif et al. [9] applied the time-domain MoM to a Parallel-Plate
Simulator (PPS) with dimensions 96 x 20 x 12 m (1 x w x h). Because of the available computer
resources, they had to limit their analysis to a simulator consisting of 6 to 18 wires resulting in
roughly 1500 wire segments, each with a length of 0.6 m. As a result of the new NEMP waveform
definitions (see [10]) that took effect in November 1990, we now need a 0.3 m segment length, which
increases the memory requirements even further by a factor of four. Therefore, the analysis of Bardet’s
simulator has to be limited to an unrealistic number of wires for the new waveform specification.

To compute the transient electromagnetic fields within the working volume of a simulator such
as EMPSIS, with dimensions of 300 x 168 x 70 m (I x w x h), we need something in the order of
1000 wire segments per wire. Obviously, the storage requirements and the computational costs® for
such a large simulator become prohibitively large.

Therefore, from the above discussion we conclude that the MoM cannot be used for large real-
world simulators. Hence, we have to employ another method than the MoM for a useful and practical
performance analysis.

? To analyze a NEMP simulator made of four wires would take four hours CPU time on a

" CONVEX 230 mini super computer.



2 METHOD OF SOLUTION

The method of solution we have employed is based on the fact that if the transient current in
each wire of the simulator is known, the electromagnetic fields generated by the simulator are known.
This approach was also taken by King e al. [11] and [12], but for a rhombic wire simulator (a
simulator for research purposes with the plates replaced by only two outer wires).

Since it is too much work (in a computational sense) to actually compute the current in each
wire, we have taken a pragmatic approach that uses a priori knowledge as much as possible.

2.1 Waveform of the Current in the Wires of the Simulator

From experience, we know that the current in each wire of the wave launcher has a waveform
similar to the current generated by the pulser (the AEP-4 edition 3 or edition 4 waveforms). Since the
wires are uncoated, the current propagates towards the terminator at the speed of light. Furthermore,
the current propagating along each wire does not change much in waveform and amplitude, so that
we can simply assume its waveform and amplitude constant as it propagates.

These observations allow the use of efficient analytical time-domain expressions for the
emitted electromagnetic fields of a current-carrying wire, which greatly simplify the analysis ard
reduce the computational costs.

22 Amplitude of the Current in the Wires of the Simulator

Although the waveform of the current in each wire is now known, we still have to determine
its amplitude. We solve this by studying the TEM-mode current distribution of a conical-plate wave
launcher that is excited at its apex. The amplitude of the current in each wire of the wire-mesh wave
launcher is chosen in such a way that it closely corresponds with a current filament of the plate. In
this way, the mutual interaction between the wires is taken into account.

In the next section, we will derive a relation between the current in the wires of the wire-mesh
wave launcher and the current surface density of the conical-plate wave launcher.

2.2.1 Formulation of the Problem

First, each wire of the wire-mesh wave launcher runs parallel in the direction of propagation
of the dominant radially directed current on the conical-plate wave launcher. The plate is infinitely
thin, and is assumed to be excited at its apex in such a way, that the current surface density has a
radially directed component only. In practice, such an excitation cannot be accomplished. However,
this simplification is allowed as for the moment we are only interested in the surface current
distribution that is associated with the TEM-mode generated by the plate, i.e., the radially directed
component of the surface current.

The radially directed surface current has an azimuthal distribution, and its wavefront propa-
gates with speed c, (the speed of light) along the plate. At this point, the azimuthal current distribution
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is unknown, but will be discussed later.
‘ The conical-plate wave launcher makes

an elevation angle 6, with the x, y plane, and
“has an apex half-angle of ¢,. The normal unit
vector of the wave launcher pointing inwards the

simulator volume is therefore given by

n = sin@i - cosf,i, &y

where [, i, and i are the unit vectors in a
Figure 1 Conical-plate wave launcher. orthogonal right-handed Cartesian reference
frame. The apex of the wave launcher is located
at Sy

For the sake of convenience, the wave launcher is assumed to be of infinite extent in the radial
direction.

The vector potential due to an arbitrary current source that occupies the volume V is given

by
B,  J,t/ 2
Ay = = | =2 av(r), reR® )
4en 4n -I;' R © -
where J denotes the current volume density, and R = |[R| = |r-r'|. Furthermore, ¢’ denotes the

retarded time given by ¢/ = t~R/c,.
2.2.2 Solution of the Problem

The Vector Potential of a Conical-Plate Wave Launcher:
The current volume density reduces to a current surface density for the conical plate. Then the
vector potential of Eq.(2) yields for a perfectly conducting, and infinitely thin conical plate
aryi
L@t (3)

_ B
.00 =2 2 aag),  reRIS

where J denotes the current surface density, and S the plate’s surface. Using r' = 5, "'P; , the current
surface density is written as

It~
J @) = J,(;,t)gp = F(p, o, _St__:g_z? . reS 4

F(9,¢,) is a function that governs the azimuthal distribution of the current surface density, and
I(t -p/cy) accounts for the propagation in the radial direction. Furthermore, jp is the unit vector in the
radial direction (the propagation direction). The latter is given by



i = cospcos6yi + singi + cospsinByi . &)
The total current injected at the apex is given by

L@) = im ("ps@.n-i do = im [* Fg,0)I¢-L) a
(0 = m [Zpsni do b [3 Fomote-L) a0 o

- f: F@,9,) do 1().

We can associate I(f) with the total current injected at the apex when the following normalization is
used '

" F(9,9,) do = L. ™
®

Such a normalization can always be carried out. An approximation of the TEM current distribution
in a plate was presented by Giri [13]. For a conical plate, we deduce
1
F9,9) = ——cne- 8)

2

Py ~@*

Note that the current distribution has the proper square-root singularity near the plate’s edge, and
complies with the normalization condition of Eq.(7).
The vector potential of the plate is finally rewritten as

_ B (= (% L@ -p+R)/c) ©)
800 = g | [ 4 Fo0) = doap

Note that along the plate we have r/ = $,*PL, so that R = |5—(§0+ng)|.

The Vector Potential of a Conical Wire-Mesh Wave Launcher:

For a straight wire, which for the sake of convenience is assumed to be of infinite length, that
runs from the wave-launcher’s apex with an azimuthal angle @, and an elevational angle 6,; the
vector potential of Eq.(2) yields

R 4, (10

B . ‘L" L et
A rd) = — i . :
"'\Viu,i(- ) 4n -3,i

where 5’ _ is the unit tangent along the wire (see Figure A.1), and 1 (f) the current in the wire.
Furthermore, along the wire we have R, = |r - (S, *+si )l , With 0Ss<oc, The unit tangent of the wire
is given by

I, = cosq,cosByi + singi + cosgsini . a1

If the number of wires of the wire mesh to approximate the solid plate is denoted by N, then



9, = (i—;)Acp - @y i=1,2,...N
) (12)
P
Ap = 2,
5

where we have assumed that the wires are equidistantly separated by AQ.
Finally, the total vector potential of a conical wire-mesh wave launcher is given by

N
%A@ 2 L LRI
é-th’t) = gl: ivin,iQ’t) = }.4 -, _[; R (13

Comparison Between a Conical-Plate and a Conical Wire-Mesh Wave Launcher:

If the solid plate is subdivided into N small and equidistant current filaments with their centers
at @,, where N is sufficiently large, then the vector potential of one such a current filament is given
by

I(t-(p+R)/
A, @D = PoL fo, 2 p0,00 WE-(p+R)/cy) dodo, (14)

-Ag/2 P R

where I, denotes the total current injected at the plate’s apex. After taking all the terms of the
integrand of Eq.(14) except F(¢,9,) outside the integral with respect to @, we get

N w I(t-(p +R)/c,) (o012 5 15
s L, [ [ Fee) dy dp + 0e),  U9)

H

where 14 . is given by Eq.(11). The latter approximation is of second-order accuracy in AQ.

A direct comparison of Eq.(15) with Eq.(10) shows that the contribution of a current filament
of the conical plate equals the contribution of a wire at the center of that filament to second-order
accuracy in A@, if the following relation holds

L ® = [T .0 dp 1. 16)

In this section, it was shown that if a sufficient number of wires are being used, a conical-plate
wave launcher can be approximated by a wire mesh. In the context of this paper, an even more
important conclusion based on reciprocity is, that because the conical wire-mesh wave launcher has
(almost) the same electromagnetic properties as a conical-plate wave launcher, the current in each wire
can be found from the conical-plate current distribution according to Eq.(16).

2.3 Effects not Taken into Account by Our Model
Now that the current’s amplitude and waveform are known in the wires, the transient

electromagnetic fields are readily obtained with the expressions presented in Appendix A. These
expressions are efficient, analytical time-domain expressions for the electromagnetic fields emitted by



a single wire. The total field generated by the simulator is obtained by simply adding the individual
contributions of the wires that make up the simulator.

Usually with bounded-wave simulators, a ground plane is provided, which is simply taken into

account by using image theory. Le., with each wire we associate an image wire mirrored in the ground
plane. The image wire supports a current that has an opposite sign to the current of the original wire.

The outlined procedure reduces the complexity of the problem dramatically, but the majority

of the important mechanisms that contribute to the generated fields are incorporated in this model. The
following effects, however, are not taken into account:

1
2

A W b W

geometry of the wave-launcher/pulser interface,

additional currents induced in the wires of the upper-plate wire netting and/or the terminating
taper when the field generated by the wave launcher strikes these wires (in our model the
current in each wire is assumed to have the same waveform and amplitude from pulser to
terminator),

electrical loss in the wires,

mismatch between the characteristic impedance of the simulator and the terminator,
geometry of the terminator (the terminator has certain finite dimensions),

imperfections of the ground plane (in our model the ground plane is assumed to be perfectly
conductive and of infinite extent).

From these, the above effects 1 and 2 are the most important ones not incorporated in our

model. Note that the effects 2, 4, and 5 are noticeable in the late-time response only.



3 VALIDATION OF THE METHOD OF SOLUTION

Since we have made some assumptions about the current distribution in the wires of the wave
launcher (see Section 2.2 for details), it is of paramount importance to check the validity of these

assumptions.

Bardet et al. [8] computed the current distribution of the wires in the wave launcher of a PPS
with the time-domain MoM. This enables us to compare the simple approximation of the TEM-mode
current distribution of a conical plate that is presented in Section 2.2 (Eq.(8)).

Figure 2 shows the normalized peak current in the wires of a wave launcher made up of 6,
12 and 18 wires. The even numbered lines are the results of Bardet, while the odd numbered lines
show the current in the wires according to our method (Eq.(16)).

0"3 ] I 1 ! 11 I T
1 1: 6 Wires
i 2: 6 Wires, Bardet -
= 3: 12 Wires
® 2 4: 12 Wires, Bardet
g 02 5: 18 Wires -
g 3 6: 18 Wires, Bardet
O 4
E’ 01 ¢ —
!
b -
0.0 . 1 . ! 1
-20 -10 0 10 20
Angle [deg]
Figure 2 Comparison of the normalized peak currents in the wires of a wave launcher obtained

with the MoM solution (Bardet), and from the TEM-mode current distribution of a
conical-plate wave launcher (15.9° apex half-angle).

For the six-wire simulator, the simple approximation of Eq.(8) overestimates the current in the
outer wires, while it underestimates the current in the wires at the center of the wave launcher. But
the more wires one chooses, the better the results one attains. Hence, the currents in a conical wire-
mesh wave launcher resemble the current distribution of the TEM-mode supported by a conical-plate
wave launcher, as long as enough wires are being used.

Therefore, for a sufficiently large number of wires, the amplitude of the current in each wire
can be set equal to the total current in an equivalent TEM-mode current filament of a conical-plate
wave launcher. This property has been derived mathematically in Section 2.2.
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4 THE EARLY-TIME ELECTRIC FIELD EMITTED BY THE WAVE LAUNCHER

The wave launcher of a NEMP simulator plays a vital role in the generation of the fields
within the working volume (King [12]). It is entirely responsible for the early-time field within the
working volume as long as the point of observation is not too close to the upper wire netting. In fact,
only a small part of the wave launcher contributes to the first few nanoseconds of the direct wave for
points of observations close to the ground plane. This property can be proven from Eq.(A.17) in
Appendix A. The contributions of the parallel-plate section and the terminating taper always arrive
later than the direct wave from the wave launcher.

The early-time fields emitted by the wave launcher can be obtained from the field expressions
of an individual wire, which are presented in Appendix A. In Eq.(A.25), the terms involving R, vanish
for the early time. As each wire of the wave launcher has an image wire with an oppositely directed
current, it follows that the term involving g(f -R/c,) is cancelled by the image-wire contribution. Thus
the terms involving the current waveform in the wire are the single remaining contributions, i.e.,

i - R°( ‘R i* - RO(i* ‘R° _
E(r = _{lﬂ',:' —o(-,,.' —o) Y —0(—3.:‘ —o)] ZOIM.M,-(I’ ROICO)’ t<L+RL an
- 1-i R 1-i & 4K, z

=i —C =5,i =0

where for the wave launcher i , is given by Eq.(11), and the quantities that are reflected at thex, y
plane are denoted by the superscript asterisk. Thus (cf. Eq.(11)),

I, = cos,cos6yi + sing;i - cosg,sind,i . (18)

Since the current’s argument does not have any @ dependency, the total early-time electric field of
the conical wire-mesh wave launcher is given by

ZJI(t-Rfcy & 1.~ R(i R)
E,t_:_OO ()] -5, -0 “=y,i =0
Er, n TR g{l-i,:g';
R (19)

i:.:_ -R-g(i:;gg) ] 8 +492

1 -7 'Ro ,~492

=i =0

N
F(9,—0,) do,
@5 9 40

where we have used Eq.(16), and where I, denotes the current delivered by the pulser. Observe that@,

denotes the apex half-angle of the conical wire-mesh wave launcher, and is given by ¢, = N&I Q-
Therefore, in terms of @,
¢, = (-1Ao - o, i=1,2,.,N
(20)
29
Ap = 2,
° N-1

Eq.(19) shows that the waveform of the early-time field exactly equals the current waveform delivered
by the pulser.
If the point of observation is located on the ground plane and along the center line of the
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simulator (y = 0, z = 0), Eq.(19) further reduces to

ZI(t —Ro/co)i E cos,sinf, o, +A02
27R =244 1 - cos,cos, Vo -sen

0

N
= - F(Q,——0,) do. @
E(r, 1) (@ 5= @) 4@

Note that the term in the summation is independent of the point of observation, so that in this case the
field emitted by the wave launcher exhibits the expected 1/R, dependence.
The early-time electric field of Eq.(19) enables us to derive an analytical expression for the
wave-launcher’s (early-time) characteristic impedance, which can be found from
’ )
im -| E'dl lim -|"i-ER,d®
] 1 ’

0 0

where the path of integration C is chosen as an arc in the x, z-plane from the ground plane to the
upper plate. Therefore along C, 1_?8 and ie are given by
R® = cosBi + sin@i,
-0 X -z (23)
I, = -sinbi + cosbi.

Note that 1_?3 and i are perpendicular along C. After some simple algebraic manipulation, the
impedance of a conical wire-mesh wave launcher given by Eq.(22) is then readily obtained as

A 1 - cosg.cos26 ol N
Z="22% In : ¢ Fo,-2_0) do. (24)
4n ; 1 - coso, L‘-Am (@ N-1 %0 49

Observe that this expression has a singularity at @, = 0. This singularity is due to the assumption that
the wires are infinitely thin. Without loss of generality, this singularity can be circumvented by
allowing even values for N only.

Without proof we give the impedance of the conical-plate wave launcher, which can be derived
in a similar manner,

4 1 - cosgcos26
Z=_2 ("1 ° F(0,0,) do. (25)
2n B 1 - coso ©.90) 49

This expression has singularities at the integration-interval end points, which are integrable. A plot of
the characteristic impedance of the conical-plate wave launcher as a function of the apex half-angle @,
is depicted in Figure 3. Similar plots can readily be obtained for the conical wire-mesh wave launcher
from Eq.(24).

An important property can be obtained from Eq.(24) and (25): the characteristic impedance
of the conical wire-mesh wave launcher with apex half-angle @, can approximately be obtained from
the characteristic impedance of a conical-plate wave launcher with apex half-angle N Q,-

11



Figure 3

Characteristic Impedance [1]

200 :

160

120

80

10 20 30 40 50 60
Apex half-angle [deg]

Characteristic impedance of a conical-plate wave launcher as a function of the apex-
half-angle @, with the elevation angle 6, as parameter.
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5 COMPARISON OF SOME RESULTS WITH MEASUREMENTS

The method developed was implemented in a computer program called WS. We have used the
WS code to predict the fields of some full-scale experimental simulators that were built by TNO (Pont
[14]) for research purposes. Unfortunately, these temporary experimental simulators were not
terminated properly, which resulted in a mismatch between the characteristic impedance of the
transmission lines and the terminator. For more details the reader is referred to [14].

We have matched the pulser waveform with a double-exponential waveform as close as
possible, and have used this for the current waveform in the wires. Figure 4 shows the field in a PPS
(cf. Figure 15a of [14]), and Figure 5 in a Triangular-Plate Simulator (TPS) (cf. Figure 16a of [14])°.

The signals are scaled in amplitude in such away that the first peaks of the signals have equal
amplitude. Both measurements show repeated reflections, which are probably due to the mismatch
between the characteristic impedance of the transmission lines and the terminator. Especially the results
of the TPS match very well.

03 —— e ———
~—
S
3
&
g
&
=
.® 1 | 1 l 1 l 1 l 1
0. 100. 200. 300. 400, 500.
t [ns]
Figure 4 Comparison of measured and computed horizontal component of the magnetic field
in a PPS.

*The measurements presented in this report were compensated for sensor droop, ﬁvhereas the
measurements presented in Pont [14] were not.
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Figure 5 Comparison of measured and computed horizontal component of the magnetic field
in a TPS.

Performance of the WS code
On a PC with a 33 MHz 80486 CPU, for one observation point the outlined method takes about 83 ns
for one wire per time step. For a 75-wire TPS and say 200 time steps, the time required is about 5

seconds.
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6 A CASE STUDY: EMPSIS

As mentioned in the introduction, the WS program has been developed and used for the
electromagnetic-performance analysis of the reference design of EMPSIS (Klaasen et al. [1D. EMPSIS
is the result of a feasibility study into a simulator that can accommodate large naval vessels. It is a
draw-board TPS suspended over sea water. The outline of EMPSIS is depicted in Figure 6. Some
results obtained for EMPSIS will be presented here to illustrate our method.

Figure 6 Outline of EMPSIS. Wave-launcher elevation angle 6, = 23.6°, apex half-angle
9, = 25.7°. :

The working volume starts at 125 m from the wave-launcher’s apex, and the working-volume’s center
is located at r = (142.5, 0, 0)*.

6.1 Calculation of the Characteristic Impedance of EMPSIS

The (early-time) characteristic impedance can be computed by the WS code by determining
the total peak current injected in the wave-launcher’s apex that is required to generate the threat-level
field within the working volume, but it is easier to use the analytical expression of Eq.(24) of
Chapter 4.

Table I lists the characteristic impedance for different numbers of wires. In the second column
the values are obtained from Eq.(24). The values in the third column are obtained from the conical-

¢ See Figure 6 for a definition of the coordinate system used. The origin of the coordinate
system coincides with the pulser’s location.
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N

plate wave-launcher impedance given by Eq.(25) with ¢, = ___T(pa.

Table I Characteristic impedance of EMPSIS as a function of the number of wires.
.

Number of Wires N | Characteristic Impedance Approximutad
Q] Characteristic Impedance
£ |

18 73.5 76.4
30 77.1 TL7
76 78.7 78.8

1t clearly shows that, although the characteristic impedance of the simulator depends on the number
of wires, the differences are small.

>

6.2 The Electromagnetic-Performance Analysis of EMPSIS

The field within the working volume is not homogeneous, especially close to the upper wire

netting and its edges. Therefore, we analyze the field distribution within the working volume in this

section with the method described in Chapter 2.

So far, we have seen that the number of wires does not have a significant infiluence on the
characteristic impedance of the simulator, but one expects some pronounced field enhancements within
the upper part of the working volume.

We consider the peak field distribution at the working-volume center (x = 1425 m) as a
function of the height to study the field enhancements in the proximity of the wire netting. The Figures
7 - 8 show the results at the working-volume center in the transverse direction, Because the differences
are small, we only show the cases for 18 and 75 wires. The peak electric field has been normalized
with the peak electric field at ground level in the working-volume center, ie., at r = (142.5, 0, 0).

Both figures show that the peak field strength at ground level underneath the outer edge of
the wire netting (y = 75 m) reduces to 75% of the peak field strength at the working-volume center.
At the far end of the working volume (y = 100 m), the peak field strength reduces to 60% of the peak
field strength at the working-volume center.

16



Normalized peak electric field strength []

‘0. 30. 60. 90. 120. 150.

Figure 7 The normalized peak electric field strength at the working-volume center
(x = 142.5 m) in the transverse direction, 18 wires.

Normalized peak electric field strength []

y [m]

Figure 8 The normalized peak electric field strength at the working-volume center
(x = 142.5 m) in the transverse direction, 75 wires.

All the previous results in this chapter were obtained from the early-time peak field strength
of the direct wave when no spurious reflections yet occur. But as soon as the currents in the wave-

17



launcher wires flow into the terminating-taper wires, reflections can be observed in the generated
fields. This is illustrated in Figures 9 - 11, where the simulator is made up of 18, 31 and 75 wires, )
respectively. As current waveform we have used the following double-exponential waveform

IG) = I (e - e, (26) .

= 6 ol
o = 3.705x10° [s '], @7

with

B = 3.908x10° [s 1].

I, bas been chosen so that the peak field strength at r = (142.5, 0, 0) equals 50 kV/m.

The first reflection occurs at different points in time (the so-called clear time) depending on
the height of the observation point. This is due to the terminating-taper wire nearest to the point of
observation. The clear time for EMPSIS is always larger than 142 ns within the working volume®,
Subsequent reflections can be identified which are due to the outer terminating-taper wires.

A comparison of Figures 9 - 11 shows that the number of wires does not effect the (early
time) direct wave (much) within the working volume. In the late time, the individual (discrete)
contribution of each wire in Figures 9 and 10 is noticeable. As has been pointed out in Chapter 4, the
early-time field exactly equals the current waveform.

*  The minimum clear time in the working volume occurs at the point r = (150, 0, 47).
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Finally, we have computed the electric field strength within the simulator and its vicinity at
ground level. The results are depicted in Figure 12, and were obtained with the same method as
described in Chapter 2, but were calculated with the Mathematica program [15], which does the
contour plotting. The simulator was modelled with only 15 wires, otherwise the Mathematica program
takes too long to compute the results. Againg, the peak field strength at the simulator’s center has been
set to 50 kV/im.

200t

100 ¢+

yimi
o

=100 p

-200 ¢

) 360 200 300
x [m]

Figure 12 Peak electric field strength at ground level within and in the vicinity of the simulator
(wave launcher only). The contours range from 10 kV/m to 100 kV/m with 10 kV/m
increments (inner contours correspond with higher levels).

Furthermore, we did ot take into account the contribution of the terminating taper. The actual
expression which was used is Eq.(18). Near the wave launcher, the contribution of the terminating
taper can be neglected since it occurs in the late time and thus does not affect the peak field strength.

Since the terminating taper has almost the same dimensions as the wave launcher, it exhibits
the same behavior as the wave launcher, i.e., Figure 12 can also be used for the electric fields within
and in the vicinity of the terminating taper.

For completeness, Figure 13 shows an electric field mapping on a larger scale.
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Figure 13 Peak electric field strength at ground level outside the simulator (wave launcher only).
The contours range from 1 kV/m to 10 kV/m with 1 kV/m increments (inner contours
correspond with higher levels).
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7 CONCLUSIONS

The method developed has proven to be useful, and has increased the understanding and
interpreting of the fields generated by a NEMP simulator. In particular, we have derived expressions
for the important early-time fields generated by the simulator, from which the characteristic impedance
of a conical-plate wave launcher and the conical wire-mesh wave launcher have been derived. It was
found that if a sufficient number of wires are being used, the working-volume fields emitted by a
conical wire-mesh wave launcher behave like those of a conical-plate wave launcher. The resemblance
breaks down for points of observation close to the wire-netting. The early-time fields emitted by the
conical wire-mesh wave launcher have the same waveform as the current delivered by the source (the

pulser).
The method can be extended and improved in the following manners:

1 use a more accurate representation of the current distribution of the TEM-mode in a conical-
plate wave launcher (more research needed),

2 include the additional currents induced in the wires of the upper-plate wire netting and/or the

terminating taper when the field generated by the wave launcher strikes these wires (at the
expense of an increase of the computational time, but still far less than the time-domain
MoM),

3 take into account the electrical loss in the wires (may explain the height-dependent rise time
observed in experiments [17], p.19), 7

4 model the mismatch between the characteristic impedance of the simulator and the terminator.

In addition, if the method developed is extended so that ground reflections are taken into
account, it can also be used to assess the radiated fields far away from ground-based simulators.

The program developed (WS code) is very efficient, and very valuable from an engineering
point of view: changes in the design of a NEMP simulator can rapidly be evaluated.
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A THE TRANSIENT ELECTROMAGNETIC FIELDS EMITTED BY A CURRENT-
CARRYING STRAIGHT WIRE

Al Formulation of the Problem

This appendix concerns the transient electromagnetic fields emitted by a current-carrying
straight wire. The derivation is based on the Liénard-Wiechert potentials for a wire (Jones [16}), and
on Rothwell’s work [17]. The wire is uncoated, and made of perfectly conducting material. The current
in the wire is assumed to be known, and propagates with speed ¢, (the speed of light) along the wire.
Exact, analytical expressions are derived, which give a dramatic reduction of the computational time
compared with the method described by King {11].

The position vector in a orthogonal right-handed Cartesian reference frame is given by

r= x-i.x + yiy + z_i_z, (Al)

with unit vectors  , gy and | . The vector potential in this reference frame due to an arbitrary current

source is given by

_ B  Je-Ric,r) A2
Ay = 2 [ T2 av), (A2)

where J denotes the current volume density, and R = |R] = |[r-r|.
The electric field is readily obtained from

Er,D = -Vor,5) - 0,40, (A3)

where ¢ denotes the scalar potential given by

Y
g 0 = - VAgn. G4
s’ﬂ
- In Eq.(A4), A is the time-integrated vector
. potential.
Figure A1 Current-carrying wire. The magnetic field is simply found from
the vector potential in the following way
H.n = 1’ VAE@D. (A-5)

For a straight wire the vector potential of Eq.(A.2) is rewritten as

Agn = 2oy (2 HTERIW 4 (A6)
- 47 = R

where i is the unit tangent along the wire (see Figure A.1), L denotes the length of the wire, andl(t)
“the current in the wire. Furthermore, along the wire we have r/ = s, *+si , with 0Ss<L, and wheres

denotes the start of the wire.
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A2 Solution of the Problem

The Vector-Potential Impulse Response
The line integral occurring in Eq.(A.6) of the vector potential can be solved by determining

the vector-potential impulse response, i.e., by setting /() = &(f). This yields

aen =2y [f m A7)

where the subscript / indicates the impulse response.
After making the change of variable u=G(s)=r-(s+R)/c,, the vector-potential impulse
response is calculated as

i [o® &u)
Ay = — du, A8
&0 47t % Jeo {'R-R “ A8

where we have used that (note that R depends on 5 as well)

i ‘R
du _ 466 _ 1 %= g (A9)
ds ds c R
The vector potential is rewritten as
Ay =2 i we-EPy Cye-Foy ! (A.10)
rd) = i - —.._. _— .
= ar = Co c, u—)O £S.£_R

where R, = [R | = [r-s |,and R, = IR, = |r-(s,+Li)]| = [R,-Li _|. In Eq.(A.10), U(t) denotes
the Heaviside unit-step function. Note that

lim 1 _lim 1 _ 1 A11)
u=0 T R)-RG) ¥0 7 RG@)-RG W) I, RGY-RGY ‘

where G "(u) follows from the definition of G, and s, = G *(0). Since ¢-(s,+R(s,)/c,=0, we find
that R(s,) =c,t -s,. Hence,

i R(s)-R(sp) = i R 5,0 )-(cyt-5) = i ‘R -c,t. (A12)

After substituting Eq.(A.12) into Eq.(A.10), we get

(A.13)

0 —: L +RL
A = {U(t- ) - UG-
with
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D=ct-iR. (A.14)

For completeness, G (u) is given by
2 _\2 2
s =G = L0 R (A.15)
2e(t-w-i 'R
and therefore

2,2_p2 2 2_R2
5o = GO = L2 R 1ot (A.16)
cf =i ‘R D

Note that the physical interpretation of s, is the segment length that contributes to the field at the
point of observation r and the point in time ¢ (¢ > R,/c,). The segment length that contributes to the
field at r within a time window ¢ after the wavefront has arrived, is given by

1 Cot(Cot, *2Ry) _ (A.17)

SO = 3
Cﬂtw +D0

The Scalar-Potential Impulse Response
The scalar potential ¢ is given by ¢ = ¢’ ZA;' , so that the time-integrated vector potential
is required. The time-integrated vector potential is given by

- R L+R
Arn = 2 (@D-mD)U(-20) - D -WmD)UG-——L))i,  (Al8)
' 4an ¢, &
with
D, =R ~i R,
Pt R (A.19)
D =R, -i R
The divergence of the time-integrated vector potential is given by
) ) 1-i ‘R° R
VA =i VA =2 (=2 - LHe-2o
- == 4r D, D C
‘ (A20)
1-i ‘R L+R
10K 1
- (— - UE-—2D)},
D, D ,

with R? =R /R, and R} = R /R,. In Eq.(A.20), we have used VD = i , and VD, = R)-i (i
takes the values O and L). After substituting the expressions for D, and D, given by Eq.(A.19) into
Eq.(A.20), we finally find for the scalar-potential impulse response '
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1 11 R, 1 1 L+R,
, - - A DUe-2oy - (- DHyue- ) (A21)
6., p {Ro D)U(t CO) (RL D) (@ Co )}

Eq.(A.13) and (A.21) are the Liénard-Wiechert potentials for a wire.

The Electric Field
Before the electric field can be determined, V¢, and 8‘1_4_‘. have to be derived first from

Eq.(A.21) and Eq.(A.13), respectively. Therefore,

i R i R L+R
Y0, = g (g * 2PV = (G + V-
0 ° L ° (A22)
i ‘R° R i R L+R
- e 2R -2) + 6 R} 8- —)),
o % D, o
where we have used VR, = R’.
The time derivative of the vector potential follows from Eq.(A.13). It is given by
Z, ¢ R L+R
QA (t) = ——~ {L[U¢--2) - Ug-—L
A T {DZ[ ( Co) ( : )]
(A23)
R L+R
- Lae-Toy o Lge-2eyyy,
0 CO DL CO :
so that the electric-field impulse response is given by
R° R i -R°(i ‘R R
E() = - { 2 UG-20) + ¢t (02 0y -20)
! 4ne, R, (o D, [
: (A.24)
R L+R 4 i -R (i R)) L+R
- SUE-—L) - o (2T -— D)
2 c D, C,

L 0

The electric field is obtained from the electric-field impulse response by applying the convolution
theorem. This finally yields for the electric field

R R, K L+R
@) = o (=3 4q0-2) - =L ga-—1)
° e ° L ° (A.25)
- i{ is- E'g(isl'}gg) I(t_fg) - i:_ 'ISOL(L.:."R;(;.) I(I-L+RL)}.
4r D, Co D, Co

In Eq.(A.25), ¢(¢) denotes the charge, ie.,
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@ = I = [" 1 an. (A26)

The Magnetic Field
The magnetic-field impulse response is readily obtained from Eq.(A.5). Using the vector
identity VXA = -i XVA,, we write
1

.1 Ry s LR (A27
_Ii‘.(fs t) = m_‘_:x { &?8([ -E:) E;‘a(t Co )} . )

Again using the convolution theorem, the magnetic field is finally given by

i XR° R i XR° L+R .
HE) = (20020 - 2 Thpe-2 "0y (A.28)
4T DO Co DL c0
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