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ABSTRACT

The electromagnetic-performance analysis of bounded-wave Nuclear IMP (NEMP) simulators

was carried out in the past by employing the (timedomain) Method of Moments (MoM) or conformal

mapping. With the former, &ansient results can be obtained within the sirrnilator’s working volume.

With conformal mapping the results are limited: the simulator’s characteristic impedance and the static

field distribution can be computed,

A problem associated with the MoM is that it yields a huge irqxxiance matrix which for real-

world simulators becomes prohibitively large. Either one can only employ the MoM for small

simulators, or the number of wires that constitute the transmission-line structure has to be limited to

an unrealistically low number.

In this paper, a new method will be enunciated that is extiemely efficient, and enables one to

analyze even the largest simulators. The method uses a priori knowledge as much as possible. It

obtains the current in the wave-launcher’s wires from an equivalent current filament of a conical-plate

wave launcher that supports a TEM-mode. The transient electromagnetic fields within the simulator’s

working volume are then readily computed by using efficient and analytical timedomain expressions

for the fields generated by the wires.

Expressions for the early--e fields and the impedance of a conical wire-mesh wave launcher f=,... .,
are derived.

1 This work was supported
726.90.2006.
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1 INTRODUCTION
.

@

The method descriki in this pa~r has been developed for the electromagnetic-prformance

analysis of a bounded-wave NEMP simulator for ships called EMPSIS (see Klaasen et al. [1]). The

EMPSIS simulator and its performance are not the main subjects of this paper, but are merely used

to illustrate the method outlined.

The electromagnetic-performance analysis of NEMP simulators was carried out in the past by

employing the (timedomain) Method of Moments (MoM) or conformal mapping. With the former,

transient results can be obtained within the simulator’s working volume. With cmformal mapping the

results are limited: the simulator’s characteristic impedance and the static field distribution can be

computed (see Baum [2] and Giri et al. [3]).

Transienl results can be obtained with the MoM (see Barrington [4], or Mitlra et aL [5])

applied to thin wires in the time domain. Since the well-known NBC code (Burke and Poggio [6]) uses

the MoM in the frequency domain, it is not particularly suited for transient analysis. De Haan et al.

[7J used the NEC code for the performance analysis of the Lukksund experiment, but with limited

results.

Bardet et al, [8] and Dafif et al. [9] applied the tirnedomain MoM to a Parallel-Plate

Simulator (PPS) with dimensions 96 x 20 x 12 m (1 x w x h). Because of the available computer

resources, they had to limit their analysis to a simulator consisting of 6 to 18 wires resulting in

roughly 1500 wire segments, each with a length of 0.6 m. As a result of the new NEMP waveform

definitions (see [10]) that took effect in November 1990, we now need a 0.3 m segment length, which

increases the memory requirements even further by a factor of four. Therefore, the analysis of Bardet’s

simulator has to be limited to an unrealistic number of wires for the new waveform specification.

To compute the transient electromagnetic fields within the working volume of a simulator such

as EMPSIS, with dimensions of 300 x 168 x 70 m (1 x w x h), we need something in the order of

1000 wire segments per wire. Obviously, the storage requirements and the computational costs2 for

such a large simulator become prohibitively large.

Therefore, from the above discussion we conclude that the MoM cannot be used for large real-

world simulators. Hence, we have to employ another method than the MoM for a useful and practical

performance analysis.

2 To analyze a NEMP simulator made of four wires would take four hours CPU time on a
CONVEX 230 mini super computer.
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2 METHOD OF SOLUTION
T

The method of solution we have employed is based on the fact that if the transient current in
v

each wire of the simulator is known, the electromagnetic fields generated by the simulator are known.

This approach was also taken by King et al. [11] and [12], but for a rhombic wire simulator (a ●
simulator for research purposes with the plates replaced by only two outer wires).

Since it is too much work (in a computational sense) to actually compute the cument in each

wire, we have taken a pragmatic approach that uses a priori knowledge as much as possible.

2.1 Waveform of the Current in the Wires of the Simulator

From experience, we know that the current in each wire of the wave launcher has a waveform

similar to the current generated by the pulser (the AEP-4 edition 3 or edition 4 waveforms). Since the

wires are uncoated, the current propagates towards the terminator at the speed of light. Furthermore,

the cwent propagating along each wire does not change much in waveform and amplitude, so that

we can simply assume its waveform and amplitude constant as it propagates.

These observations allow the use of efficient analytical

emitted electromagnetic fields of a current-carrying wire, which

reduce the computational costs.

2.2 Amplitude of the C!urrentin the Wires of the SimulatcI_

Although the waveform of the current in each wire is now

timedomain expressions for the

greatly simpl@ the analysis and

●
known, we still have to determine

its amplitude, We solve this by studying the TEN&node current distribution of a conical-plate wave

launcher that is excited at its apex. The amplitude of the current in each wire of the wire-mesh wave

launcher is chosen in such a way that it closely corresponds with a curnmt filament of the plate. In

this way, the mutual interaction between the wires is taken into account.

In the next section, we will derive a reIation between the cuxrent in the wires of the wire-mesh

wave launcher and the cument surface density of the conical-plate wave launcher.

2.2.1 Formulation of the Problem

First, each wire of the wire-mesh wave launcher runs parallel in the direction of propagation

of the dominant radially directed current on the conical-plate wave launcher. The plate is infinitdy

thin, and is assumed to be excited at its apex in such a way, that the cuxrent surface density has a

radially directed component only. In practice, such an excitation cannot be accomplished. However,

this simplitlcation is allowed as for the moment we are only interested in the surface current

distribution that is associated with the TEM-mode generated by the plate, i.e., the radially directed

component of the surface current.

The radially directed surface current has an azimuthal distribution, and its wavefront propa-
e

gates with speed CO(the speed of light) ~ong tie plate. At this point, the *uth~ ~nt ~~b~tion
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is unknown, but will be discussed later.

The conical-plate wave launcher makes

A
.,,,.,,, an elevation angle f10with the x, y plane, and,,::~::::::::::.,........ .:.:.:.:::.,.,,.,., .. , has an apex half-angle of qO. The normal unit.,.,:.,.,.,.,..,,,.

‘ % ::::,:::::;:;:::;;:::::;:::,.,, ,,,,..,,..,.,,,:.:.,,.,,,,,,, .,;;::;.:.;.,.,.,.,,.,.... . . . .. veetor of the wave launcher pointing inwards the. . . . . . . . . . .., . . . . . ... .,.........,, . . . . . .,.,.,.,.,.. .......... ... ...,. ...,. simulator volume is therefore given by

~~~fi-~~{<>’.,,, z= ske,!x - COseoiz, m
0<= ‘A,_~~.---------

L-J’----;’;--””- where Q ~Y and ~z are the unit vectors in a

Figure 1 Conical-plate wave launcher. orthogonal -right-handed C2utesian reference

frame. The apex of the wave launcher is located

at~.

For the sake of convenience, the wave launcher is assumed to be of inhite extent in the radial

direction.

The vector potential due to an arbitrmy eutrent source that occupies the volume V is given

by

(2)

where ~ denotes the current volume density, and R = l&l = 1~-~ \. Furthermore, t‘ denotes the

retarded time given by t‘= t-R/cO,

2.2.2 Solution of the Problem

The Vector Potem”al of a Conical-Plate Wme Luuncher:

The current volume density reduces to a current surface density for the conical plate. Then the

vector potential of Eq.(2) yields for a perfectly conducting, and infinitely thin conical plate

(3)

where ~, denotes the cwent surface density, and S the plate’s surface. Using ~ = ~ +p~, the current

surface density is written as

(4)

F(Q, q~ is a function that governs the azimuthal distribution of the current surface density, and

l(t - p/c~ accounts for the propagation in the radial direction. Furthermore, i is the unitvector in the-P
radial direction (the propagation direction). The latter is given by

5



The total current injected at the apex is given by

I,(t) = :0 f: PJ=Q!J)$ @ = ~ j“%k%)l(f-k, d,p+ %

= J@’9J @ UO. ‘0

We can associate I(t) with the total current injected at the apex when the following nmdization is

used

J-&M@@=1.

Such a normalization can always be um-ied out. An approximation of

in a plate was presented by Giri [13]. For a conical plate, we deduce

F(Q!%) = .

+~ ~%

(7)

the TEM current distribution

(8)

Note that the cument distribution has the proper square-root singularity near the plate’s edge, and

complies with the normalization condition of Eq.(7),

The vector potential of the plate is finally rewritten as

(9)

Note that along the plate we have ~ = ~ +p~, so that R = ~-~+p;)t.

The Vector Potential of a Conical Wire-Mesh Wave Launcher:

For a straight wire, which for the sake of convenience is assumed to be of infinite length, that

runs from the wave-launcher’s apex with an azimuthal angle q)i, and an elevational angle e.; the

vector potential of Eq.(2) yields

- Iti,i(t -(s +Ri)/c$
~ir,t) = 5 i

41t -’i 1 l?,
ds, (10)

whine ~ i is the unit tangent along the wire (see Figure A. I), and lti,Jt) the current in the wire.

Further&ore, along the wire we have Ri = ~ - @+s~jl, Witi 0SsS-. The Unit tangent of the wire

is given by

i s ~S~icoSeO~x + Sinqigy + cosqis~eo!; (11)
_s,i

If the number of wires of the wire mesh to approximate the solid plate is denoted by N, then o
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%)
Aq=—

iv’

i=l,2,...,N

(12)

where we have assumed that the wires are equidistantly separated by Aq.

Finally, the total vector potential of a conical wire-mesh wave launcher is given by

(13)

Comparison Between a Conical-Plate and a Conical Wire-Mesh Wave Launcher:

If the solid plate is subdivided into N small and equidistant current filaments with their centers

at Vi, where N is sufficiently large, then the vector potential of one such a current filament is given

by

where ZOdenotes the total current injected at the plate’s apex. After taking all

(14)

tbe tams of the

integraud of Eq.( 14) except F(q, %) outside the integral with respct to q, we get

zO(t‘(p +Ri)/cO)
~h,,i~,t) w ;L,i ~- ~ - ~“+~” F(q,qJ dq @ + o(@2)t (15)

i
q -A@’

where ~ i is given by Eq.(11 ). The latter approximation is of second-order accuracy in Aq.

A direct comparison of Eq,(15) with Eq.(10) shows that the contribution of a current tiament

of the conical plate equals the contribution of a wire at the center of that filament to second-order

accuracy in A(p, if the following relation holds

(16)

In this section, it was shown that if a sufficient number of wires are Mng used, a conical-plate

wave launcher can be approximated by a wire mesh. In the context of this paper, an even more

important conclusion based on reciprocity is, that because the conical wire-mesh wave launcher has

(almost) the same electromagnetic properties as a conical-plate wave launcher, the current in each wire

can be found horn the conical-plate current distribution according to Eq.(16).

2.3 Effects not Taken into Account by Our Model

Now that the cument’s ampI.itude and waveform are Imown in the wires, the transient

electromagnetic fields are readily obtained with the expressions presented in Appendix A. These

expressions are effkient, analytical time-domain expressions for the electromagnetic fields emitted by

7
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a single wire. The total field generated by the simulator is obtained by simply adding the individual

contributions of the wires that make up the simulator. 3

Usually with bounded-wave sirdators, a ground plane is provided, which is simply taken into

accoumtby using image theory. Le., with each wire we associate an image wire mirrored in the ground ●
plane. The image wire supports a current that has an opposite sign to the cument of the originaI wire.

The outlined procedure reduces the complexity of the problem dramatically, but the majority

of the impmtant mechanisms that contribute to the generated fields are incorporated in this model. The

following effects, however, are not taken into accounfi

1

2

3

4

5

6

model

geometry of the wave-launcheripdser interface,

additional currents induced in the wires of the upper-plate wire netting and.t%rthe temhting

taper when the field genaated by the wave launcher strikes these wires (in our model the

current in each wire is assumed to have the same waveform snd amplitude from pulser to

terminator),

electrical loss in the wires,

mismatch between the characteristic impedance of the shmdator and the terminator,

geometry of the terminator (the terminator has certain finite dimensions),

imperfections of the ground plane (in our model the ground plane is assumed to be perfectly

conductive and of infinite extent).

From these, the above effects 1 and 2 are the most important ones not incaporated in our

Note that the effects 2,4, and 5 are noticeable in the late-time response only.
9
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3 VALIDATION OF THE METHOD OF SOLUTION

.
Since we have made some assumptions about the current distribution in the wires of the wave

@

launcher (see Section 2.2 for details), it is of paramount importance to check the validity of these

assumptions.

Bardet et al. [8] computed the cment distribution of the wires in the wave launcher of a PPS

with the timedomain MoM. This enables us to compare the simple approximation of the T’EM-mode

current distribution of a conical plate that is presented in Section 2.2 (Eq.(8)).

Figure 2 shows the nommlized peak current in the wires of a wave launcher made up of 6,

12 and 18 wires. The even numbered lines are the results of Bardet, while the odd numbered lines

show the current in the wires according to our method (Eq.(16)).

1

2

3

5
4

6

\

1 , -—-— T

1: 6 Wires
2: 6 Wires,Bad%
3: 12 R&es
4: 12 Wmzs,Bar&t

“

-20 -lo 0 10 m

Angle[&g]

Figure 2 Comparison of the normalized peak currents in the wires of a wave launcher obtained
with the MoM solution (Bardet), and horn the TEM-mode current distribution of a
conical-plate wave launcher (15.9° apex half-angle).

For the six-wire simulator, the simple approximation of Eq.(8) overestimates the current in the

outer wires, while it underestimates the current in the wires at the center of the wave launcher. But

the more wires one chooses, the better the results one attains. Hence, the currents in a conical wire-

mesh wave launcher resemble the current distribution of the TEA&mode supported by a conical-plate

wave launcher, as long as enough wires are being used.

Therefore, for a sufficiently large number of wires, the amplitude of the current in each wire

can be set equal to the total current in an equivalent TEM-mode current 151arnentof a conical-plate

wave launcher. This property has been derived mathematically in Section 2.2.



4 THE EARLY-TIME ELECTRIC FIELD EMITTED BY THE WAVE LAUNCHER
.

The wave launcher of a NEhlP simulator plays a vital role in the generation of the fields
d

within the working volume (King [12]). It is entirely responsible for the early-time field within the

working volume as long as the point of observation is not too close to the upper wire netting. In fact, e
only a small part of the wave launcher contributes to the &t few nanoseconds of the direct wave for

points of observations close to the ground plane. This property can be proven from Eq.(A.17) in

Appendix A. The contributions of the parallel-plate section and the tem&@ing taper always amive

latex than the direct wave fkom the wave launcher.

The eady-tirne fields emitted by the wave launcher can be obtained from the field expressions

of an individual wire, which are presented in Appendix A. In Eq,(A,25), the terms involving RL vanish

for the early time. As each wire of the wave launcher has an image wire with an oppositely directed

current, it follows that the term involving q(t -RJcJ is cancelled by the image-wire contribution. Thus

the terms involving the current waveform in the wire are the single remining contributions, i.e.,

where for the wave launcher ~ j is given by Eq.(1 1), and the quantities that are reflected at thex, y

plane are denoted by the super&ipt asterisk. Thus (cf. Eq.(1 1)),

.s
1 = cos(picoseo~=+ Sinqiy - Cowpisineo~z. (18)
-s,i

Since the current’s argument does not have any (p dependency, the total early-time electric field of 9
the conical wire-mesh wave launcher is given by

where we have used Eq.(16), and where 10denotes the current delivered by the pulser. Observe that q.

denotes the apex half-angle of the conical wire-mesh wave launcher, and is given by q. = ~vo”
Therefore, in terms of q.

qi = (i-l)Aq - q., i=l,2,...,N

2P=
Ap=—

N-1 ‘

(20)

Eq.(19) shows that the waveform of the early-time field exactly equals the current waveform delivered

by the pulser.

H the point of observation is located on the ground plane and along the center line of the e

10
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simulator (’y = O, z = O), Eq.(19) further reduces to

.

4P
ZJOO -Ro/co). Ng~, t) = -

cO~~isineo

4~- 1““w F(9 >*9=) @. (21)
2nlto 1 - Cos(picoseo (-w

Note that the term in the summation is independent of the point of observation, so that in this case the

field emitted by tie wave launcher exhibits the expected 1/RO dependence.

The early-time electric field of Eq,(19) enables us to derive an analytical expression for the

wave-launcher’s (early-time) characteristic impedance, which can be found flom

(22)

where the path of integration C

upper plate. Therefore along C,

% 10

is chosen as an arc in the x, z-plane from the gxound plane to the

~ and ~ are given by

(23)

Note that ~ and $ are perpendicular along C. After some simple algebraic manipulation, the

impedance of a conical wire-mesh wave launcher given by Eq.(22) is then readily obtained as

(24)

Observe that this expression has a singularity at pi = O. This singularity is due to the assumption that

the wires are infinitely thin, Without loss of generality, this singularity can be circumvented by

allowing even values for N only.

Without proof we give the impedance of the conical-plate wave launcher, which can be derived

in a similar manner,

1 - ~s~c0s2eo
z=5Jytl F(q,%) dqx

1 - Cos$l
(25)

This expression has singularities at the integration-interval end points, which are integrable. A plot of

the characteristic impedance of the conical-plate wave launcher as a function of the apex half-angle %

is depicted in Figure 3. Similar plots can readily & obtained for the conical wire-mesh wave launcher

from Eq.(24).

An important property can be obtained from Eq.(24) and (25): the characteristic impedance

of the conical wire-mesh wave launcher with apex half-angle q. can approximately be obtained from

the characteristic impedance of a conical-plate wave launcher with apex half-angle _ N
N-1 ‘“”

11



Figure 3

160

120

80

r

10°

40

10 20 30 40 50 60

Apexha&angle [&g]

Characteristic impedance of a conical-plate wave launcher aa a function of the apex-
half-ande O. with the elevation amzle % as mrarneter.. ,“ “..
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5 COMPARISON OF SOME RESULTS WITH MEASUREMENTS

The method developed was implemented in a computer program called WS. We have used the

@

WS code to predict the fields of some full-scale experimental simulators that were built by TNO (Pent

[14]) for research purposes. Unfortunately, these temporary exxental simulators were not

terminated properly, which resulted in a mismatch between the characteristic impedance of the

transmission lines and the terminator. For more details the reader is referred to [14].

We have matched the pulser wavefcmn with a double-exponential waveform as close as

possible, and have used this for the current waveform in the wires. Figure 4 shows the field in a PPS

(cf. Figure 15a of [14]), and Figure 5 in a Triangular-Plate Simulator (TPS) (cf. Figure 16a of [14])3.

The signals are scaled in amplitude in such away that the first peaks of the signals have equal

amplitude. Both measurements show repeated reflections, which are probably due to the mismatch

between the characteristic irrqxxiance of the transmission lines and the terminator. Especially the results

of the TPS match very well.

Figure 4

.“4

1“’’’’” ‘ I

.02

.01

1

, . . . . . ... ..

H -i

o. la). 200. 3fx). 4W. 5ci).

t[KS]

Comparison of measured and computed horizontal component of the magnetic field
in a PPS.

he measurements presented in this report were compensated for sensor droop, whereas the
measurements presented in Pent [141 were not.
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component of the magnetic field

Pe~ormance of the WS code

On a PC with a 33 MHz 80486 CPU, for one obse~wationpoint the outlined method takes about 83 w

for one wire per time step. For a 75-wire TPS and say 200 time steps, the time required is about 5

seconds.

.
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6 A CASE STUDY: EMPSIS

As mentioned in the introduction, the WS program has been developed and used for the

electromagnetic-performance analysis of the reference design of EMPSIS (K1.aasenet aL [1]). EMPSIS

is the result of a feasibility study into a simulator that can accommodate large naval vessels. It is a

draw-board TPS suspended over sea water. The outline of EMPSIS is depicted in Figure 6. Some

results obtained for EMPSIS will be presented here to illustrate our method.

Figure 6 Outline of EMPSIS. Wave-launcher elevation angle 80 = 23.6°, apex half-angle
q, = 25.7°.

The working volume starts at 125 m horn the wave-launcher’s apex, and the working-volume’s center

is located at ~ = (142.5, O, 0)4.

6.1 Calculation of the Characteristic Impedance of EMPSIS

The (early-time) characteristic impedance can be computed by the WS code by determining

the total peak current injected in the wave-launcher’s apex that is requid to generate the threat-level

field within the working volume, but it is easier to use the analytical expression of Eq.(24) of

Chapter 4.

Table I lists the characteristic impedance for different numbers of wires. In the second column

the va.@esare ob@ned from Eq.(24). The values in the third column are obtained from the conical-

4 See Figure 6 for a definition of the coordinate system used. The origin of the coordinate
system coincides with the pulser’s location.

15



plate wave-launcher impedance given by Eq.(25) with qIO= ~qa.

.
Table I Chamcteristic impedance of EMPSIS as a function of the number of wires.

,! 9
Number of Wires N

\
/’

cilariim.risuc @X&uXe Approxinxuod
[Q] Characteristic Impedance

.i

[n]
‘~

, I
\—
I

10 Ii ‘72.2 I
y~,g

t
I

1
18 75.5 76.4

:I
/ M 77.1

I
77.7 1

1’
1

~
76 I 78.7 7gmg

:

,,

It clearly shows that, although the characteristic impedance of the simulator depends on the number

of wires, the differences are small.
.

6.2 The Electromagnetic-Performance Analysis of EMPSIS

The field within the working volume is not homogeneous, especially close to the upper wire

netting and its edges. Therefore, we analyze the field distribution within the working volume h-this

section with the method described in Chapter 2.

So far, we have seen that the number of wires does not have a signifkant influence on the

characteristic impedance of the simulator, but one expects some pronounced field enhancements within

the upper part of the working volume.

We consider the peak field distribution at the working-volume center (x = 142.5 m) as a

function of the height to study the field enhancements in the proximity of the wire netting. The Figures

7-8 show the results at the working-volume center in the transverse dire&on. Because the differences

are small, we only show the cases for 18 and 75 wires. The peak electric field has been normabd

with the peak electric fieId at ground level in the working-volume center, i.e., at ~ = (142.5, 0, O).

Both figures show that the peak fieId strength at ground level underneath the outer edge of

the wire netting (y = 75 m) reduces to 75% of the peak field strength at the working-vohune center.

At the far end of the working volume (y = 100 m), the peak field strength reduces to 60% of the peak

field strength at the working-vohunecenter. ●

16
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Figure 7

Figure 8

4. B I , I I , 1 z

3.

1

l:60m
2:50 m
3:40m
4:30 m
5:20 m
6:10 m
7: Om

o. 30. 60. 900 120. 150.
y [m]

The normalized peak electric field strength at the working-volume center
(,x= 142.5 m) in the transverse direction, 18 wires.

4’ ~~

l:60m
2:50 m
3:40 m
4:30 m
5:20 m
6:10 m
7: Om

t
edge

I

/!

o.I , I , I * I I

o. 30. 60. 90. 12Q. 150.
y [mJ

The norm alized peak electric field s&ength at the working-volume center
(x= 142.5 m) in the transverse direction, 75 wires.

o All the previous results in this chapter were obtained from the early-time peak field strength

of the direct wave when no spurious reflections yet occur. But as soon as the currents in the wtwe-

17



launcher wires flow into tie terminating-taper wires, reflections can be observed in the generated

fields. This is illustrated in Figures 9-11, where the simulator is made up of 18, 31 and 75 wires, .
respectively. As current waveform we have used the following double-exponential waveform

I(f) = Io(e ‘f - e “), (26)
o

with

a = 3.705X106 [s -1],
(27)

~ = 3.908xHY [s “).

10 has been chosen so that the peak field smngth at ~ = (142.5, O, O) equals 50 kV/m.

The frost reflection occurs at different points in time (the so-called clear time) depending on

the height of the observation point. This is due to the terminathg-taper wire nearest to the point of

observation. The clear time for EMPSIS is always larger than 142 m within the working volumes.

Subsequent reflections can be identified which are due to the outer terminating-taper wires.

A comparison of Figures 9-11 shows that the number of wires does not effect the (early

time) direct wave (much) within the working volume. In the late time, the individual (discrete)

contribution of each wire in Figures 9 and 10 is noticeable. As has been pointed out in Chapter 4, the

early-time field exactly equals the current waveform.

s The minimum clear time in the working volume occurs at the point ~ = (150, O, 47).
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.

ground

Finally, we have computed the electric field strength within the simulator and its vicini~ at

level. The results are depicted in Figure 12, and were obtained with the same method as

described in Chapter 2, but were calculated with the Mathematical program [15], which does the
*

contour plotting. The simulator was modelled with only 15 wires, otherwise the Afarhematiea program

takes too long to compute the results, Againg, the peak field strength at the simulator’s center has been e
set to 50 kV/rn.

200

100

-1oo

-200

I
o 100 200 300

x [m]

Figure 12 Peak electric field strength at ground level within and in the vicinity of the simulator
(wave launcher only). l%e co~ours range fi-om 10 kV/rn to 100 kV/rn with 10 kV/m
increments (inner contours correspond with higher levels).

Furthermore, we did EC,;take into account the contribution of the terminating taper. The actual

expression which was used is Eq.(1 8). Near the wave launcher, the contribution of the termbdng

taper can be neglected since it occurs in the late time and thus does not affect the peak field skength.

Since the terminating taper has almost the same dimensions as the wave launcher, it exhibits

the same behavior as the wave launcher, i.e., Figure 12 can also be used for the electric fields within

aud in the vicinity of the terminating taper.

For completeness, Figure 13 shows an electric field mapping on a huger scale.
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Peak electric field strength at ground level outside the simulator (wave launcher only).
The contours range from 1 kV/m to 10 kV/m with 1 kV/m increments (inner mntours
correspond with higher levels).
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7 CONCLUSIONS

The method developed has proven to be useful, and has increased the understanding and
v

interpreting of the fields generated by a NEMP simulator. In particular, we have derived expressions

for the important early-time fields generated by the simulator, from which the characteristic impedance e
of a conical-plate wave launcher and the conical wire-mesh wave launcher have been derived. It was

found that if a sufficient number of ties are being used, the working-volume iields emitted by a

conical wire-mesh wave launcher behave like those of a conical-plate wave launcher. The resemblance

breaks down for points of observation close to the wire-netting. The early-time fields imitted by the

conical wire-mesh wave launcher have the same waveform as the current delivered by the source (the

pldser).

The method can be extended and improved in the following manners:

1 use a more accumte representation of the current distribution of the TEM-mode in a conical-

plate wave launcher (more research needed),

2 include the additional currents induced in the wires of the upper-plate wire netting and/or the

terminating taper when the field generated by the wave launcher strikes these wires (at the

expense of an increase of the computational time, but still fsx less than the timedomain

MoM),

3 take into account the electrical loss in the wires (may explain the height-depen&nt rise time

observed in experiments [17], p.19),

4 model the mismatch between the characteristic impedance of the simulator and the terminator.

In addition, if the method developed is extended so that ground reflections are taken into
e

account, it can also be used to assess the radiated fields far away from ground-based shmlators.

The program developed (TVScode) is very efilcient, and very valuable from an engineering

point of view: changes in the design of a NEMP simulator can rapidly be evaluated.
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A THE TRANSIENT ELECTROMAGNETIC FIELDS EMITTED BY A CURRENT-
.

CARRYING STRAIGHT WIRE
w

A.1 Fommlation of the Problem

This appendix concerns the transient electromagnetic fields emitted by a current-camying

straight wire. The derivation is based on the Li6nard-Wiechert potentials for a wire (Jones [16]), and

on Rothwell’s work [17]. The wire is uncoated, and made of perfectly conducting mataial. The current

in the wire is assumed to b known, and propagates with speed co (the speed of light) along the wire.

Exact, analytical expressions are derived, which give a dramatic reduction of tie computational time

compared with the method described by King [11].

The position vector in a orthogonal right-htmded Cartesian reference fkame is given by

r=x;x+yi +zi,
-Y -2

(Al)

with unitvectors i i and ~,. The vector potenthd in this reference frame due to an arbitrary cument
-x’ -y

source isgiven by

&, r) = E I J(t -Rko,f)
4~ v

W(#),
R

where ~ denotes the current volume density, and R = IZ?I= Ir -f 1..-
The electic field is

(A,2)

readily obtained from

/ denotes the scalar potential given by

$(r,t) = -c: v “fit, t), (A.4}
—-

0

Figure A. 1 Current-carrying wire.

In Eq.(A.4), ~ is the time-integrated vector

potential.

The magnetic field is simply found horn

the vector potential in the following way

For a straight wire the vector potential of Eq.(A.2) is retitten as

ly,t) = k i I
L Z(t-(s +R)/cJ

4?c -’ R
&,

(AS)

(A.t5)

where ~~is the unit tangent along the wire (see Figure A. I), L denotes the length of the wire, andZ(t)

the current in the wire. Furthermore, along the wire we have ~ . ~ +si=, wi~ ()<~<L, ~d whem~
*

denotes the start of the wire.

26



.
A.2 Solution of the Problem

The Vector-Potential Impulse Response

The line inteql occurring in E.q.(A.6) of the vector potential can be solved by demrmining

the vector-potential impulse response, i.e., by setting l(t) = ~(t).This yields

A&, t) = .5 i
i

~ tit -(s +R)/cJ ~s

47C“ R’
(A.7)

where the subscript i indicates the impulse response.

After making the change of variable u =G@)=t -(s +R)/cO, the vector-potential impulse

response is calculated as

where we have used that (note that R depends on s as well)

– = 9 = L (E-1).du
dS ds Co R

(A.8)

(A.9)

The vector potential is rewritten as

flirjt)= 5. i
4X ‘s

L +RL
{U(t- $)1 us ~’—) - U(t- “ (A.1O)

co -s -

, In E.q.(A.10), U(t) denoteswhere RO = 1~1 = 1~-&l,andR~ = lZ?~\ = 1~-<~ +L~J)\ = l% -L~$

the Heaviside unit-step function. Note that

lim 1 lim 1 1
U+O j= “i?(s)-R(s) ‘u~ ~, 4?(G ‘l(U)) -R(G ‘l(U))

(All)
= ~$“Z?(SJ-R(SJ ‘

where G ‘1(u) follows from the definition of G, and SO= G ‘1(0). Since t -(sO+R(s~)/co =0, we find

that R(sJ =cOt-sO. Hence,

is “l?(s$ -R(sO) = ~~“Q -SO~$)- (cOr-Q = ~~“g -CO?. (A.12)

After substituting Eq.(A.12) into Eq.(A.10), we get

L +~L
f4i@t) = : ; {U(t-$) - U(t-—)),

co

(A.13)

o with
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(A.14)

For completeness, G ‘1(u) is given by

and therefore

-&* = , %+2-N
so = G ‘*(0) = :- .—.

2 cot-j~“q 2 D

.

m

(A.15) o

(A.16)

Note that the physical interpretation of SOis the segment length that contributes to the field at the

point of observation ~ and the point in time t (t > Ro/c~. The segment length that contributes to the

field at z within a time window tWafter the wavefront has arrived, is given by

= : Coq.(cotw+2q
so * (A.17)

cOtW+DO “

The Sca/ar-Potential Impulse Response

The scalar potential $ is given by $ = -c; V”~, so that the time-integrated vector potential-.
isrequired. The time-inte@ated vector potential is given by

●
llj~, t) = : {(lnD-lnDo)u(t-2- W-~DL)u(+bi$, (A.18)

with

DO

DL

The divergence of the tirne-intefpated vector

=Ro - i “R-s +’

=R#S=R
‘L “

potential is given by

1 -i “P
-(*- ;)u(f -2$’)},

L

(A.19)

(A.20)

with ~~ = I?~jR~ and ~ = l$JRO. In Eq.(A.20), we have used ID = -~~, and ~Di = ~ -~t (i

takes the values O and L). After substitutingthe expressionsfor DL and Do given by Eq.(A.19) into

Eq.(A.20), we finally find for the scab-potential impuke response

28



.

L +RL
oit,o = --J--{(+;)u(t+) - (+-;) u(t+},

4% ~ L

(A.21)

Eq.(A.13) and (A.21) are the Li6nard-Wiechert potentials for a wire.

The Electiic Field

Before the electric field can be determined, ~$i and a,~. have to be derived fist from

Eq.(A.21) and Eq.(A.13), re~ctively. Therefore,

where we have used ~Ri = ~.

The time derivative of the vector potential follows from Eq.(A.13),

co

It is given by

a,~i~,t) s -: { _a[u(t-
L+RL

$- U(t-—)]
co

- ;6(r -
L +RL

~+ ;a(t - —)) ~$,
o L co

so that the electric-field impulse response is given by

(A.22)

(A.23)

(A.24)
1? L +RL i -~~ (!$ “~L)

- 2u(P- —) - CO-l(-’ D )at-+}.
R; co L

The eleclric field is obtained from the electric-field impulse response by appljing the convolution

theorem. This finally yields for the electric field

~ P L +RL
gr, t) = J- {—4(+) -

4nz30 R;
=q(t-—)]
RL2 co

Z i - ~(i.~~) ~=- &L(~~“EL) L +R~
0{-’ ~- Z(t-$- D Z(r-_)}.

-G o L co

(A.25)

In Eq.(A.25), q(t) denotes the charge, i.e.,
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q(f) = f(r) =
1

‘ I(T) d~.

.

(A.26)

\

The Magnetic Field
o

The magnetic-field impulse response is readily obtained born Eq.(A,5). Using the vector

identity VXA = -~,x~Ai, we write— —.8

17i@t) =
L ;R~

&j=x {R#i(t - ~ - ~Lqr-_)). (A.27)
co

Agaiu using the convolution theorem the magnetic field is finally given by

(A.28)
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