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ANALYSIS OF BLOCKAGE EI’’FECTS ON

TZM-FED P.UW30LOIDAL REFLECTOR ANTENNAS

T’W fed ~araboloidal reflector antennas are being considered as a viable-.- .,

solution for genezacing wideband signals. An issue of design consideration is

co identify the” eff~c~s of the blockaqe on the performance of these type of

refleccor antennas. In this note, the blockage effects of the two-arm and faur-

arm TN-fed stmctures are investigated. Both gain ?erfonance degradation and

sidelobe degradac$an are studied. The scud:~ has been performed for range of

:reque~cies for which the antenna dtiensions are more than :hree wavelengths.

?urchermore, i: is assumed that the physical optics diffraction analysis with the

c=rre~c-s”nadowin~ approach ?rovides groper estimates for these type of evaluatio~

Initially, we have cmsidered 1 and 10 dB tapers in the illuminating field. Futi

reports will consider actual KY field illumination of the para”Doloidal reflzc:oz
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1. INTRODUCTION

Among different reflector antenna configurations that have been studied in the

past [1 to 8] , TEM-fed reflector antennas have received much attention recently

[9 to~3] for wideband applications. Figure 1.1 demonstrates possible design con-

figurations. It is observed that the plates allow for the generation of spherical

TEM waves which are then scattered from the paraboloidal reflector surface. In

this investigation, our attention is primarily focussed on the configuration ‘as

shown in figure 1.1. There are other options wchich could utilize edge-on guiding

structures for the spherical TEM waves. Such an option is not considered in the

present study.

From the design configuration of figure 1.1, it is clear that the scattered field

from the reflector is blocked by the wave-guiding structure. It is the purpose of

this note to analyze and evaluate the effects of these blockages on the overall

performance of the reflector. We limit our study to the frequency ranges for which

the physical optics modeling of the reflector is accurate. Tliis range will typically

allow one to consider reflectors with diameters no less than three wavelengths. Next,

it is assumed that the blockage effect can be interpreted ,as the geometrical shadowing

●
effects in terms of the equivalent aperture distribution. ‘Numerical results will be

presented for the boresight gain loss and sidelobe degradation for different parameters

of the guiding structure. The parameters for numerical purposes are: reflector diameter

D=5m, focal length f = 2Tn, (f/D) = 0.4, characteristic impedance of the TEM horn

is nominally 400 Ohms. The formulation is for a general N number of feed arms and

in the numerical study , we have considered 2 and 4 arms, at frequencies of 3GHz,

lGHz, 0.5GHz and 0.2GHz. The illuminating field is considered to have a tapered

distribution of 1 and 10 dB. These numbers are for numerical illustrative purposes.

only. An actual TEM “distribution can be used as the illuminating field if desired

in future studies.

A. Brief description of the Formulation

It is well known that the physical optics, diffraction analysis of reflector

antennas provide accurate results for antenna geometries that are larger than three

wavelengths. This is in particular true for performance ranges including several

first sidelobes. In order to construct the physical optics current on the curved

surface of the antenna, it is assumed that the incident field of the feed is known.

@

.,

Since the main interest of this work is to examine the effects of blockage due to

the feeding structure of the TEM-feed configuration , we model the illumination
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Figure 1.1 Antenna Configurations for two-arm and four-arm

TEM-fed reflectors

(e.g., D = 5m, f = 2m, 2a = 0.72m, 2b=D= 5m, 2b’ = O.lm)
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by cos**q type feed patterns with spherical wavefront centered at the location of

the feed. Different feed tapers are addressed to demonstrate the effects of illumi-

nation tapers on the reflector performance. If need be, actual spherical TEM field

illumination may also be used in future studied.

In this study, we have utilized the Physical Optics diffraction analysis of

the reflector antennas based on the application of the Jacobi-Bessel expansion

technique. The usefulness of this technique has been presented by this author in

previous publications. Additionally, the important steps of this technique are

documented in sections 2 and 3 of this note. The numerical analysis is capable of

including blockage effects as shown in figure ~2. As can be seen from this figure,

we can include ,Nnumber of feed arms in this study. For numerical purposes we have

considered N = O, 2 and 4. The process of implementation of this blockage is based

on the assumption that the exit wavefront from the parabolic surface is planar, and

therefore, the blockage primarily manifests itself as shadowing the exit wavefront.

This concept is implemented by essentially forcing the current to be zero in the

areas of the reflector for which the projection matches the projection of the

blocking structure in the exit aperture.

B. Representative Results

For the antenna configuration shown in figure 1.1, numerical analyses have

been performed at different frequencies and for two different illumination tapers.

The parameters are summariiedbelar:

the reflector diameter D =5m

focal length f = 2m

focal length/dia. f/D = 0.4

TEM impedance Zc = 400 Ohms (nominal)

full plate width 2a = 0.72 m

full plate separation Zb = 5m

width /separation bla = 6.99

As mentioned earlier, we have used cos**q feed model to define the illumination

from

that

the feed. Both low and high tapers have been investigated. It is recognized

these tapers are not necessarily the same as that of TEM mode. In particular,
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Figure 1.2 Geometry of the central blockage and feed arms

based on geometrical shadowing
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9 the low taper cos**q model does result in an excessive spillover energy. Therefore,

the directivity m“y not be representative, but the gain loss will be. Table 1.1

summarizes the gain loss values at four different frequencies, two different illumi-

nation tapers and three different blockage arrangements. As expected the gain loss

values are predominantly controlled by the area of the shadowed regions. For all

of the above cases, the radiated far field patterns are shown in subsequent figures

1.3 to 1.6. These figures demonstrate how the blockage affects the sidelobe

formations. The blockage has a more distinct effect on the sidelobes rather than

on the main lobe. Based on these results, it is observed that the geometry of

figure 1.1 does not severely distort the radiated patterns at frequencies for

which the reflector diameter is at least 3 wavelengths long. For a-reflector dia..,.

of 5m, this frequency is roughly 200 MHz. For lower frequencies, where the reflector,.

diameter is less than 3wavelengths long, additional studies. based on the application

of the method of moments or physical optics hybr~d method (POHM) will become

necessary.



TABLE 1.1 GainlessversusBlockage

Freq(GHz) Taper(dB) # struts Directivity Gainless(dB)
(feed arms)— P —.

o 43.097
10 2 42.138 0.959 J

3 4 41.659 1.438 A
o 39.061

1 2 38.105 0.956
4 37.625 1.436

0 33.555
10 2 32.596 0.959

1 4 32.116 1.439
0 29.519 <

1 2 28.563 0.956
4 28.083

0 27.534
10 2 26.575 0.959

0.5 4 26.096 1.438
0 23.498

1 2 22.542 0.956
4 22.062 ! 1.436

0 19.576
10 2 18.616 0.960

( 4 18.137 1.439
0 15.539

1 2 14.583 0.956

0.2
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2. JACOBI-BESSEL SERIES EXPANSION
n

e

In this section, we derive some basic identities for the Jacobi-Bessel

series expansion as these identities clearly establish our motivation for using

the series in the subsequent sections. The Fourier series or trigonometric basis

functions can be integrated against the Fourier transform kernel to r&sult in

(2.1)

where J isthenth order Bessel function.
n

polynomials as

Next,we define the modified Jacobi

F:(s) = ~ 2(a + 2m+ 1) Pm (a’o)(l - 2s2) Sa (2.2)

where a is a real number and P is the Jacobi polynomial obtained from

a,B
Pm ~x)= (-l)m 2-m (l -’x)-a (1 +x)-@- dxn [(l - X)*(1 + x)m+Q]

(2.3)

a

m!.

which also satisfies the following recurrence relation

(a, o) (x) =2(m+l)(a +m+l)(a+2m) Ptil [(a +2m)(a+ 2m+l)(a+2m +2) x

The

one

Fa,
m

+a2(a+2m+l)]P (a,O)(x)
m

.

(U>o)(x),- 2m(a + m)(a i-2m + 2) Pm-l

(2.4)

above recurrence relation can be used to generate Fam in (2.2). Furthermore,

can establish the following orthogonality and integration properties for

[3]-[5],
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rlm=m”

J F:(s) F;.(s) S ds = ~m. =
1oIrI+nl-

0

and

Formulas (2.1), (2.5) and (2.6) are key expressions for the application of the

Jacobi-Bessel series to the radiation problems. Figures 2.1-4 are the plots of

F: for various combinations of a and m. To ge&rste these plots, a simple corn- .

puter program has been written based on formulas (2.2) and (2.4).

Having presented some basic identities, we now discuss the Jacobi-Bessel

expansion of the integral which appears repeatedly

AS shown in later sections, the following integral

paper

in solving radiation problems.

is the central focus of this

where a is the radius of the circular region, 3 is proportional to the field dis-
P

tribution for the aperture antennas and the induced surface current for the reflec-
.

tors, and (e,+) are the observation angles of the spherical coordfiates. It is

clearly seen that the above integral represents the Fourier transform of the dis-

tribution ~. An efficient and accurate evaluation of (2.7) has been a great chal-

lenge to researchers dealing with radiation

new set of (e,o), integration (2.7) must be

time-consuming when the data are needed for

problems. First, note that for each

re-evaluated repeatedly, which is very

many observation points. Second, for

large a or e, the Fourier kernel in (2.7) can oscillate rapidly, again making

14
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the task of numerical evaluation of (2.7) very difficult.

To overcome the above difficulties, we first expand ~p(as-,$-) using a

Fourier series @ $“ and modified Jacobi polynomials in s- to arrive at

where E and 5
p nm

are constant Cartesian vector coefficients constructed using
p nm ,

the orthogonality properties of the expansion functions, i.e., (2.5). It can

readily be shown that these constants are obtainable from

II
E
p nm 2T 1

E

11
II

cos no”

‘2 dp(as-,$”) F;(s-) s“d$”ds” ,
3

p nm 00
sin n$”

(2.9)

where en iS the Neumann constant obtained in the Fourier series expansion and takes

the following values

/

ln=O
E =
n .

2n+0
(2.10)

Substituting (2.8) into (2.7) and using (2.6), we can finally express ; as
P

N+n M+n

‘p(’}+)=“~ Zjn[~nmCos ‘o + }nm‘h ‘+JJ2(n+ 2m+ 1, e
n=O m=O

(2.11)

Some important features of (2.11) may be summarized as follows: (i) once E and
p mn

19



5 are determined,
p mn

they can be used for all observation angles; (ii) the dominant J

behavior in the vicinity of 6 = O is the well-known Airy disc function Jl(~)/C;

e(iii) the numerical evaluation of (2.9) is much simpler than that of (2.7) as its in-

tegrand does not contain the highly oscillatory Fourier transform kernel of (2.7).

‘llnenumerical convergence characteristics of (2.11) are discussed in detail

in later sections where same practical problems are considered. For each combina-

tion of p, n andm, the integration (2.9) should be evaluated numerically. However,

it can be shown that, for many problems of practical interest, 3P has a quadratic

dependence on the variable s“, namely,

6P(=’,$”) = t(as”,f$”)(l - s“z)p . (2.12)

The above special form permits the application of a very useful upward recursion

relationship among the higher-order terms. To this end, it can be shown that

Jn +2m + 1 . a .
pBnm = n + 2m- 1 nm (p-l)Bn(m-l)

+ (bnm - 1) s
p-1’nm ‘= “ Cnrn - (p-1)’n(m+l) > ‘2-13)

+
where B represents any Cartesian component of either the C or ~ coefficients,
and

[

a=-
m(n + m)

nm (n +2m)(ri+2m+l)

bm =
(m + n)2 (m + 1)2

(n-t-2m)(n+2m+l) + (n.+2m+2)(n+2m+l)

(.c (m+l)(n+m+l)=-
nm (n+2m+l)(n+2m+2) “

(2.14)

20



Note that the higher-order p terms are obtained from the lower-order p-1 terms.

We should also note that B = O when m is negative. z
p nm

Therefore, once ~ nm and

3
0 nm

are constructed, all higher-order p terms can be determined by using a simple

algebraic recursion. It is worthwhile CO mention that, based on the functional

characteristics of the integrand in (2.9), different numerical incegrnion

algorithms may be used to evaluate (2.9) and, furthermore, the double summation

in (2.11) may be added up for different combinations of N and M terms to assure

convergence.
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3. REFLECTOR ANTENNA ANALYSIS
:

In this sect ion, the Physical OPtics (PO) vector radiation integral is first

constructed for an offset shaped reflector illuminated by an arbitrarily located o

and oriented source. A novel procedure is then discussed for expressing the radi-

atiOn integral h terms of a summation (series) of Fourier transforms of an ‘eff-

ective” aperture distribution which includes the effect of the curvature of the

surface. It is shown that this series has a biconvergent nature and can be re-

lated to the asymptotic evaluation of the integral. Finally, the Fourier trans-

form integrals are expressed in terms of the Jacobi-Bessel series expansion.

Numerical

locations

results are presented for different reflector configurations and source

and comparisons are made with other available data.

3.1 Basic Formulations

Reflector surface Z is constructed by intersecting a circular cylinder with

a doubly curved surface. As depicted in Figure 3.1, the cylinder axis lies along

the z-axis and the x-y plane is taken as a plane perpendicular to this axis. We
a

refer to the (x,y,z) system as the reflector Unprimed coordinate system and define

(x”,y”,z”) as its primed counterpart. The latter is used for defining the inte-

gration variab~es. Construction of the physical optics radiation integral requires

knowledge of the incident magnetic field on the reflector surface. For most of

the examples considered in this paper, it is assumed that the reflector is in the

far-field zone of the source with the phase center of the source located at S with

coordinates ~ = (s s s ).
1’ 2’ 3

Typically, the far field of the source is given in its

mast convenient coordinate system. We define this system with its Cartesian

(XS,Y$,ZS) coord=ates as shown in Figure 3 1. The magnetic far field of the

source can be expressed as

22
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x(x’)

!

SOURCE

Figure 3.1. Offset reflector antenna illuminated
source. (x, Y, z) and (xs , y~ , zs)
..

by an arbitrary located
are the reflector and

source (feed) coordinates, respectively.
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-jkr~

x&~) = +
[ 1
-v(e#Q fj + u(e#Q $~ *

s

.>

(3.1)

9
where U and V are the E-pattern functions and n = m. The incident field (3.1)

can be expressed in the reflector coordinate system (x”,y”,z”) using the coordinate

transformationsbased on the Eulerian angles [6] as discussed in Appendix A.

In systems (X-,y”,Z-) and (P”,$”,Z-), the surface x is described as

z’ = f(x-,y”) = ;(P”,+”) ;“EC (3.2)

and its unit nornd A is given by
.

A

n= it/N

where

[
i= +.&i

1
-+j+’: .ay

The induced physical optics current on z due to the source field is

?= ‘2; x ;s(;”)

(3.3)

(3.4)

●

(3.5)

where ~s can be constructed from (3.1). Introducing the usual far-field approxi-

mation, one can readily arrive at the following far-field expression, viz. ,

where

(3.6)

(3.7)

e

24



Integration (3.7) is performed on the reflector surface 1. This integration
\

can be transformed into an integration over the projected circular region

●
(dotted

circle in Figure 3.1) with the help of the surface Jacobian transformation. By

using (3.2), the Jacobian can be expressed as

which allows one to express the radiation integral. (3.7) as

where

(3.3)

(3.9)

(3.10)

It is readily observed that ~ depends only on the primed coordinates, whereas the

remainder of the integrand depends on both the primed and unprimed coordinates.

The factor {exp[jkp” sine COS(O”-0)]} is the polar form of the Fourier transform

kernel. The remaining factor {exp[jkr” cose” cose}} = {exp[jkz” cose]} must’re-

main

to a

ated

~.

under the integral

constant or I.in”ear

in a direct manner

as long as the reflector has curvature, i.e., z“ ‘not equal

term. Radia:ion integral (3.9) can be numerically evalu-

for every observation point. Unfortunately, this scheme

is very time-consuming even on modern computers for large reflectors and many ob-

servation points. Our task in the following sections is to recast (3.9) in a form

suitable for an efficient and accurate numerical evaluation.
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3.2 Rearranging the Radiation Integral J

We now proceed to rearrange the integrand of (3.9) in a manner which will

allow us to integrate on the curved reflector
surface with only slightly more efe

fort than would be necessary for integration on a flat surface. The procedure

follows similar steps as in [1], [2]. AS thestarttig point, weassu: that the

scattered field has its pencil beam directed toward (eB,@B) and try to rearrange

To this end,
the Fourier kernel {“} such that its center is in this direction.

we write (3.9) as

where

and

~ -jkp-(Cu COS$” + Cv si.n~”)

K(p”,$”) = 3(9”,$”) e

Cu ?z -she
B

COS+B

< Cv = -sineB sin$B

B =~(stie sti$ +CV)2 + (sine COS$ +CU)2

(3.11)

(3.13a)

(3.13b)

(3.14a)

(3.14b)

It is crucial to note that, when 6 = 6B and $ = $B, we find B = O.

26
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We now focus our attention on the [-]

observation and the source coordinates. We

notation:

term, which is a function of both the

define the following functional

.
L = L(p”,$”;e) = r- COSe” COSe = Z“ COSe = f(P-,@-) COSf3 (3.15)

with the help of (3.2). ,Similarly, we introduce more functional obtained from

(3.15), namely, ,,

LO = L(p”,@”;Q = ~(P-,~’) cOseO = Z“ cOseO

L = L(p;,+;;e) = i(P~,~:) cose = Z; COSe :...w

‘Wo= L(p;,+;;e) = ;(p~,+~) cOseO ==Z; cOseO

(3.16a)

(3.16b)

(3.16c)

e where z: and e are fixed values of z; and e
o-

0 (to be chosen later). In (3.16), 30

is a fixed angle typically taken along the beam maximum and usually see to be eO =

% (eB &s defined in the previous section). (P~,$~) are the coord~ates of a

specular point on the reflector which provides the dominant contributions to a

given wide angle observation point. Typically, this point is located on the rim

where p; = a (for angles far from the beam maximum [typically > 3 sidelobes], the

specular points are on.the rim). Employing (3.15) and (3.16), we define A as

follows

A = L- Lo - Lw+L~ = [~(P”,@”) - ~(p~,$~)](cose - coseo)

which has the following property

A + O as e + e. and/or as (p”,+”) + (p~,+~) .

(3.17)

(3.18)
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.IntroducingA into (3.7) and using the Taylor series expansion

we finally arrive at [2]

p+.=

p=o -

where

jk(Lw-Ld) (COS9

~, (jk)p e?P(e, o) =~ cOseo)p
.

27r a

f I

* jkLO -
● Ke [f(P”,$-) ; E(P;>QIP

00

J

@

(3.19)

(3.20)

jkp- B COS($’-$) ~.dp.d@.
“e . (3.21)

In its present fo~, expansion (3.20) is rapidly convergent at observation angles

near 00 and those n-r the observation points with their specular poin~s located

at (@@. Thus, this expansion is convergent near two different observation

values and is thus termed “biconvergent.” Clearly,it will be very useful to be

able to extend the rapid convergence domain of (3.20). Notice that,at wide obser-

vation angles the dominant contribution to integration (3.21) LS from the point

“) where the integrand is negligible as p increases. In later dis-near (p~,qw

cussions, we demonstrate how the rapid convergence domain of (3.20) can be

expanded.
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e having obtained (3.21), our task is now to evaluate the integration appear-

ing in it. For simplicity of notation, we use (3.21) to define I
P

(3.22)

where

jkLo -

~p(as”,$”) = i(as-,+”) e [f(o”,’$*) - F(PJQIP ●
(3.23)

It is readily apparent that (3.22) has a form identical to (2.7), which,therefore,

allows one to expand it in terms of the

ting all the intermediate steps, we can

[2]

Jacobi-Bessel series as in (2.11). Onit-

finally construct the”following expression
.’

p-
jk(Lw-L@)

T(O,$) = 2ra2 e ,,
z

~ (jk)p (cose- cosOO)p. !,
p=o

N- M+=

.
xx

jn[ Z cos n@ + 5
p nm

sin n4]
p nm

n=O m=O

--
n+2mSl(kB)

J
. ~> kaB “

Z%e above result can be used

pattern.

For offset reflectors,

which, in turn, makes (3.16)

in (3.6) for the determination of the far-field

(3.24)

expression (3.2) is, in general, a function of $“

the edge spectral point for wide angle radiation,

dependent on ~“. In contrast to the symmetric case where the domain of (3.18) is

extended to all points on the rim by simply setting p: = a, this domain cannot be

extended so simply for the offset reflectors. It is, in addition, worthwhile to

e
emphasize that, as far as the numerical evaluation of (3.24) is concerned, it is
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Figure 3.2. Geometry of an offset’parabolic reflector.



v

e still desirable to obtain a biconvergent series for as many wide angles of obser-

vation points as possible. To achieve this goal, we consider what occurs for

offset parabolic reflectors. As shown in [2],

bi,convergentp series for all $“.
w

The offset parabolic

z“ =

surface description

[1
.2 ~

F-l+L
4F2

+~P”

ic is still possible to obtain a

for Figure 3.2 can be written as

h2
Cos$” +% (3.25)

where F and h designate the focal length and offset height, respectively. A unique

feature of (3.25) is the appearance of the linear term in P“ and COS+”. since this

is the only term dependent on .$O,it is desirable to transplant it into the Fourier

kernel. To do this, we combine this term wich the Fourier kernel term of (3.11)

and express (3.13) and (3.14) by

Cu =
h

-sine
B

Cos$
B ‘~ coseB

Cv = -sineB sin$B
i

and -.

\

B= &tie sin$+Cv)2+ (sine cOsq+

( -L sine sin$ + Cv
# = tan

sine Cos+ + Cu + (h/2F) Cose

~ cOse)
2

CU + 2F

.

Furthermore, we redefine a new functional L from (3.15) as

[1
.2

L= F -1 +% Cose
4F

(3.26)

(3.27)

(3.28)

●
which finally results in
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f

‘(P-2 - a2) (cose- cosOO)‘=4F

which has a form similar to (3.17). Following the same steps as in (3.19)-(3.24),

we can finally construct ~ and y(6,$). Because of the special p2 de~endence in
P

(3.29), one can employ a recursion relation to derive the higher-order terms of

the p series from its p = O term. The details of this procedure have already been

given in Section 2 in accordance with (2.12)-(2.14). The fact that the recursion

relation can be used in this case is a very unique characteristic of the symmetric

and offset parabolic reflectors.

.,... .

..

<
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