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Abstract

TzM-fed paraboloidal reflector antennas are being considered as a viable
solution for generating wideband signals. An issue of design consideration is
to idencify the effects of the blockage on the performance of these type of
reflector antennas. In this note, the blockage effects of the two-arm and four-
arm TEM-fed structures are investigated. Both gain performance degradation and
sidelobe degradacion are studied. The study has been performed for range of
Zrequencies for which the antenna dimensions are more than three wavelengths.
Furthermore, it is assumed that the physical optics diffraction analysis with the
current-shadowing approach provides proper estimates for these type of evaluatior
Initially, we have considered 1 and 10 dB tapers in the illuminating field. Futu

reports will consider actual TEM field illumination of the paraboloidal reflacto:
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1. INTRODUCTION

Among different reflector antenna configurations that have been studied in the
past [1 to 8] , TEM-fed reflector antennas have received much attention recently
[9 to13] for wideband applications. Figure 1.1 demonstrates possible design con-
figurations. It is observed that the plates allow for the generation of spherical
TEM waves which are then scattered from the paraboloidal reflector surface. In
this investigation, our attention is primarily focussed on the configuration as
shown in figure 1.1. There are other options wchich could utilize edge-on guiding
structures for the spherical TEM waves. Such an option is not considered in the

present study.

From the design configuration of figure 1.1, it is clear that the scattered field
from the reflector is blocked by the wave-guiding structure. It is the purpose of
this note to analyze and evaluate the effects of these blockages on the overall
performance of the reflector. We limit our study to the frequency ranges for which
the physical optics modeling of the reflector is accurate. This range will typically
allow one to consider reflectors with dizmeters no less than three wavelengths. Next,
it is assumed that the blockage effect can be interpreted as the géometrical shadowing
effects in terms of the equivalent aperture distribution. Numerical results will be
presented for the boresight gain loss and sidelobe degradation for different parameters
of the guiding structure. The parameters for numerical purposes are: reflector diameter
D = 5m , focal length £ = 2m, (£/D) = 0.4, characteristic impedance of the TEM horn
is nominally 400 Ohms. The formulation is for a general N number of feed arms and
in the numerical study, we have considered 2 and 4 arms, at frequencies of 3GHz,
1GHz, 0.5GHz and 0.2GHz. The illuminating field is considered to have a tapered
distribution of 1 and 10 dB. These numbers are for numerical illustrative purposes.
only. An actual TEM distribution can be used as the illuminating field if desired

in future studies.

A. Brief description of the Formulation

It is well known that the physical optics diffraction analysis of reflector
antennas provide accurate results for antenna geometries that are larger than three
wavelengths. This is in particular true for performance ranges including several
first sidelobes. In order to comstruct the physical optics current on the curved
surface of the antenna, it is assumed that the incident field of the feed is known.
Since the main interest of this work is to examine the effects of blockage due to

the feeding structure of the TEM-feed configuration, we model the illumination
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Figure 1.1 Antenna Configurations for two-arm and four-arm
TEM-fed reflectors
(e.g., D=5m, f=2m, 2a=0.72m, 2b=D-= 5m, 2b' = 0.1lm)
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by cos**q type feed patterns with spherical wavefront centered at the location of
the feed. Different feed tapers are addressed to demonstrate the effects of illumi-
nation tapers on the reflector performance. If need be, actual spherical TEM field

illumination may also be used in future studied.

In this study, we have utilized the Physical Optics diffraction analysis of
the reflector antennas based on the application of the Jacobi-Bessel expansion
technique. The usefulness of this technique has been presented by this author in
previous publications. Additionally, the important'steps of this technique are
documented in sections 2 and 3 of this note. The numerical analysis is capable of
including blockage effects as shown in figure 1.2. As can be seen from this figure,
we can include N number of feed arms in this QEE&y. For numerical purposes we have
considered N = 0, 2 and 4. The process of implementation of this blockage is based
on the assumption that the exit wavefront from the parabolic surface is planar, and
therefore, the blockage primarily manifests itself as shadowing the exit wavefront.
This concept is implemented by essentially forcing the currenﬁ‘tb be zero in the
areas of the reflector for which the projection matches the projection of the

blocking structure in the exit aperture.

B. Representative Results

For the antenna configuration shown in figure 1.1, numerical analyses have
been performed at different frequencies and for two differemt illumination tapers.

The parameters are surmarized belos:

the refle?tor diameter D = Sm

focal length £ = 2m

focal length/dia. £/D = 0.4

TEM impedance Zc = 400 Ohms (nominal)
full plate width 2a = 0,72 m

full plate separation i = 5m

width /separation b/a = 6.99

As mentioned earlier, we have used cos**q feed model to define the illumination
from the feed. Both low and high tapers have been investigated. It is recognized

that these tapers are not necessarily the same as that of TEM mode. In particular,
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Figure 1.2 Geometry of the central blockage and feed arms

based on geometrical shadowing



the low taper cos**q model does result in an excessive spillover energy. Therefore,
the directivity may not be representative, but the gain loss will be. Table 1.1
summarizes the gain loss values at four different frequencies, two different illumi-
nation tapers and three different blockage arrangements. As expected the gain loss
values are predominantly controlled by the area of the shadowed regions. For all

of the above cases, the radiated far field patterms are shown in subsequent figures
1.3 to 1.6. These figures demonstrate how the blockage affects the sidelobe
formations. The blockage has a more distinct effect on the sidelobes rather than

on the main lobe. Based on these results, it is observed that the geometry of

figure 1.1 does not severely distort the radiated patterns at frequencies for

which the reflector diameter is at least 3 wavelengths long. For a'feflector dia.

of 5m, this frequency is roughly 200 MHz. TFor lower frequencies, where the reflector
diameter is less than 3 wavelengths long, additional studies based on the application
of the method of moments or physical optics hybrid method (POEM) will become

necessary.



TABLE 1.1 Gainloss versus Blockage
Freq (GHz) . Taper (dB) # struts Directivity Gainloss (dB)
(feed arms) (dB)

0 43.097 -

10 2 42.138 0.959

3 4 41.659 1.438
0 39.061 -

1 2 38.105 0.956

4 37.625 1.436
0 33.555 -

10 2 32.596 0.959

1 4 32.116 1.439
0 29.519 -

1 2 28.563 0.956

4 28.083 1.436
0 27.534 -

10 2 26.575 0.959

0.5 4 26.096 1.438
0 23.498 -

1 2 22.542 0.956

4 22.062 1.436
0 19.576 -

10 2 18.616 0.960

0.2 4 18.137 1.439
0 15.539 -

1 2 14.583 0.956

4 14.104 1.435
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2. JACOBI-BESSEL SERIES EXPANSION

In this section, we derive some basic identities for the Jacobi-Bessel
series expansion as these identities clearly establish our motivation for using
the series in the subsequent sections. The Fourier series or trigonometric basis

functions can be integrated against the Fourier transform kernel to résult in

2m cos n¢” cos n¢
‘/ﬂ i ol & cos(¢ = ¢) 46” = 21 §° ? %Jn(z) ’ (2.1)
5 sin n¢” sin n¢
where Jn is the nth order Bessel function. Next,we define the modified Jacobi
pclynomials as
F2(s) = V2 + 2m + 1 2 0P - 28h) &° (2.2)

where a is a real number and P is the Jacobi polynomial obtained from

m
'd—g (1 - AT+ x)
dx

(-1)% 7% 8 mt8) (2.3)

— L -x"%a+x"

o, 8 -
Pm (%)

which also satisfies the following recurrence relation

(«,0)

Y (x) = [(a +2m)(a +2m + 1)(a + 2m +2) x

2(m + (e +m + 1)(a + 2m) P
+ az(a + 2m + 1)] Pia,O)(X>
- 2m(a + m) (e + 2m + 2) P;fio)(x).

(2.4)

The above recurrence relation can be used to generate Fi in (2.2). Furthermore,
one can establish the following orthogonality and integration properties for

Fo, [31-15],
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1 lm=m"
J/” F¥¢s) F*.(s) s ds = &__. ¥
m m

mm Omé#m”
0 (2.5)

and

1
1

~/f Fz(s) Ja(ss) sds =V2(a +2m+ 1) =J e .
Q

£ “a+2m+l (2.6)

Formulas (2.1), (2.5) and (2.6) ;re key expressions for the application of the
Jacobi-Bessel series to the radiation problems. Figures 2.1-4 are the plots of
F; for various combinations of o« and m. To geherate these plots, -a simple com-
puter program has been written based on formulas (2.2) and (2.4).

Having presented some basic identities, we now discuss the Jacobi-Bessel
expansion of the integral which appears repeatedly in solving radiation problems.

As shown in later sections, the following integral is the central focus of this

®

fp(8,¢> = f f 3p<as‘,¢‘) Jdkas' sind cos(9=0") iy gy | (2.7)
0 %

paper

where a is the radius of the circular regiom, ap is proportional to the field dis-
tribution for the aperture antennas and the induced surface current for the reflec-
tors, and (8, ¢) ;re the observation angles of the spherical coordinates. It is
clearly seen that the above integral represents the Fourier transform of the dis-
tribution 6. An efficient and accurate evaluation of (2.7) has been a great chal-
lenge to researchers dealing with radiation problems. First, note that for each
new set of (8,¢), integration (2.7) must be re-evaluated repeatedly, which is very

time-consuming when the data are needed for many observation peints. Second, for

large a or 6, the Fourier kernel in (2.7) can oscillate rapidly, again making

14
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Figure 2.1. Plots of FNM(S) for N = 0 and different values of M.
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the task of numerical evaluation of (2.7) very difficule.
To overcome the above difficulties, we first expand 6p(as’,¢') using a

Fourier series in ¢~ and modified Jacobi polynominals in s” to arrive at
-+ - - - = - = - n -
Qp(as ,07) = E E [anm cos né” + pDnm sin n¢~] Fm(s ), (2.8)

- -t .
where anm and pDnm are constant Cartesian vector coefficients constructed using

the orthogonality properties of the expansion functioms, i.e., (2.5). It can

readily be shown that these constants are obtainable from

¢

pom €y 2m 1* “{cos no” n

. = ?;/ f Qy(as”,97) F (s7) s7d¢7ds” , (2.9)
pDnm 0 0 sin n¢”

where e is the Neumann constant obtained in the Fourier series expansion and takes

the following values

2m 4 0 : (2.10)

. -
Substituting (2.8) into (2.7) and using (2.6), we can finally express Ip as

N> Mo

J (ka sins®)
_ n, = = , n+2m+l
Ip(6,¢) 27 E E 3 [anm cos né + pDnm sin n¢]v2(n + 2m + 1)

ka sint
n=0 m=0

(2.11)

Some important features of (2.11) may be summarized as follows: (i) once pEmn and

19



pﬁﬁn are determined, they can be used for all observation angles; (ii) the dominant ,
behavior in the vicinity of & = 0 is the well-known Airy disc function Jl(E)/E;
(1i1) the numerical evaluation of (2.9) is much simpler than that of (2.7) as its in-’
tegrand does not contain the highly oscillatory Fourier transform kermel of (2.7).

The numerical convergence characteristics of (2.11) are discussed in detail
in later sections where some practical problems are considered. For each combina-
tion of p, n and m, the integration (2.9) should be evaluated numerically. However,

—ho
it can be shown that, for many problems of practical interest, Qp has a quadratic

dependence on the variable s°, namely,
Qp(as »$7) = K(as”, ) (1 - s°7)° . (2.12)

The above special form permits the application of a very useful upward recursion

relationship among the higher-order terms. To this end, it can be shown that

B = /E_iLQEL;t_£ . a . B
p om n+2m=-1  “am (p-1)"n(m-1)
/m + 2m + 1 .
i (bnm - b p-anm VaFin+3  ‘mm (p-l)Bn(m+l) ’ (2.13)

- -
where B represents any Cartesian component of either the C or D coefficients,
and .

- - m(n + m)
nm (n + 2m)(d + 2m + 1)

- (m +n)2 " (m + 1)2
nm (a +2m)(n + 2m + 1) (n+2m+ 2)(n + 2m + 1)

(2.14)

- - (m+)(n +m+ 1)
om (n+2m+1)(+2m+2) °

0
'l

20



Note that the higher-order p terms are obtained from the lower-order p-l terms.

We should also note that B = 0 when m is negative. Therefore, once .C and
' . p nm 0 am

Oﬁgm are constructed, all higher-order p terms can be determined by using a simple
algebraic recursion. It is worthwhile to mention that, based on the functiocnal
characteristics of the integrand in (2.9), different numerical integration
algorithms may be used to evaluate (2.9) and, furthermore, the double summation

in (2.11) may be added up for different combinations of N and M terms to assure

convergence.
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3. REFLECTOR ANTENNA ANALYSIS

In this section, the Physical Optics (PO) vector radiation integral is firsc.
conscfucted for an offset shaped reflector illuminated by an arbitrarily located

and oriented source. A novel procedure ié then discussed for expressing the radi-
ation integral in terms of a summation (series) of Fourier transforms of an "ef-
fective" aperture distribution which includes the effect of the curvature of the
surface. It is shown that this series has a biconvergent nature and can be re-

lated to the asymptotic evaluation of the integral. Finally, the Fourier trans-

form integrals are expressed in terms of the Jacobi-Bessel series expansion.
Numerical results are presented for different reflector configurations and source

locations and comparisons are made with other available data. - -

3.1 Basic Formulations

Reflector surface I is constructed by intersecting a circular cylinder with
a doubly curved surface. As depicted in Figure 3.1, the cylinder axis lies along
the z-axis and the.x—y plane is taken as a plane perpendicular to this axis. We ‘
refer to the (x,y,z) system as the reflector unprimed coordinate system and define
(x“,y%,2”) as its primed counterpart. The latter is used for defining the inte-
gration variables. Construction of the physical opties radiation integral requires
knowledge of the incident magnetic f£ield on the reflector surface. For most of
the examples considered in this paper, it is assumed that the reflector is in the
far-field zone of the source with the phase center of the source located at S with
coordinates s = (51,52,53). Typically, the far field of the source is given in its
most convenient coordinate system. We define this system with its Cartesian
(xs,ys,zs) coordinates as shown in Figure 3 1. The magnetic far field of the

source can be expressed as

22



SOURCE

Figure 3.1. Offset reflector antenna illuminated by an arbitrary located
source. (x, y, z) and (xs s ys s zs) are the reflector and

source (feed) coordinates, respectively.
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=] krs K

where U and V are the E-pattern functions and n = Yu/e . The incident field (3.1)

- - _ i - -~ e
Hs(rs) = n[-V(es,qas) es + U(es,¢s) ¢s] —Z??;— (3.1)

can be expressed in the reflector coordinate system (x”",y”,2”) using the coordinate

transformations based on the Eulerian angles [6] as discussed in Appendix A.

In systems (x°,y”,z”) and (p~,¢",2°), the surface I is described as
- -
z” = £(x7,y") = £(p”",9") p’eco (3.2)
and its unit normal A4 is given by
an = N/N (3.3)

where

§=[-a—f:§c-a—f:§+£}
3x ay (3.4

The induced physical optics current on I due to the source field is

J = 2n x ﬁsG') (3.5)

where ﬁ; can be constructed from (3.1). Introducing the usual far-field approxi-

mation, one can readily arrive at the following far-field expression, viz.,

- e—jkr . . -2
E = ~jkn e ('ree + T¢¢) + 0{r O (3.6)

where

(3.7

24



Integration (3.7) is performed on the reflector surface L. This integration
can be transformed into an integration over the projected circular region (dotted
circle in Figure 3.1) with the help of the surface Jacobian transformation. By

using (3.2), the Jacobian can be expressed as

3, = \/1 + (—aa—f-,-)z + (py~2 (-a‘“"pi,)z (3.8)

which allows one to express the radiation integral (3.7) as

a 27

T(8,4) = ./P J/‘ 3(9"¢»)[ejkr’ cosé” cos8,
0 0
{oJkP 7 sind cos(s7-¢), 0 dp dd- (3.9)

where

(3.10)

It is readily observed that } depends only on the primed coordinates, whereas the
remainder of the integrand depends on both the primed and unprimed coordinates.
The factor {exp{jkp” sin6 cos(¢°-¢)]} is the polar form of the Fourier transform
kernel. The remaining factor {exp[jkr” cos8” cos8]} = {exp[ikz~ cosel}rmust're-
main under the in;egral as long as the reflector has curvature, i.e., z~ not equal
to a constant or liﬁéar.term. Radiation integral (3.9) can be numerically evalu-
ated in a direct manner for every observation point. Unfortunately, this scheme
is very time-~consuming even on modern computers for large reflectors and many ob-

servation points. Our task in the following sections is to recast (3.9) in a form

suitable for an efficient and accurate numerical evaluation.
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3.2 Rearranging the Radiation Integral

We now proceed to rearrange the integrand of (3.9) in a manner which will
allow us to intégrate on the curved reflector surface with only slightly more ef.
fort than would be necessary for integration on a flat surface. The procedure
follows similar steps as in [1], (2]. As the starting point, we assume that the
scattered field has its pencil beam directed toward (eB,¢B) and try é; rearrange

the Fourier kermel {*} such that its center is in this direction. To this end,

we write (3.9) as

a 27
Tf(e,(b) = / / i(p‘,c{)‘) [ejkr Cose cose]

0 0

ik’ B cos(¢’-9) 0°dp do”

(3.11)
where
- -+ -jkp”(C cosé” + bv siné”)
R(p~,0") = J(p”,¢") e (3.
and
Cu = -sineB cosch (3.13a)
Cv = --sine:B sinch (3.13b)
B = /(sind sing + C)° + (sind cosé + cu)2 (3.14a)
_ sin® sin¢ + CV
¢ = tan S1n0 coso Cu . (3.14b)

I}: is crucial to note that, when 8 = eB and ¢ = q;B, we find B = 0.
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We now focus our attention on the [-] term, which is a function of both the
observation and the source coordinates. We define the following functicnal

notation:
L=1L(p",$";8) = r”° cos6” cos6 = z“ cos6 = E(p‘,¢‘) cos® (3.15)

with the help of (3.2). Similarly, we introduce more functionals obtained from

(3.15), namely,

L0 = L(p‘,¢‘;eo) = E(p‘,¢’) coseo = 37 coseo (3.16a)
Lw = L(p;,¢;;6) = f(p;,¢;) cosf = z; cos? > (3.16b)
LwO = L(pw,¢w;6) = f(pw,¢w) coseo = z; coseo (3.16c)

where z; and 90 are_fixed values of z; and eo (to be chos;n later). 1In (3.16), 3,
is a fixed angle typically taken along the beam maximum and usually set to be eo =
o5 (eB was defined in the previous sectiom). (pé,&é) are the coordinates of a
specular point on the reflector which provides the dominant contributions to a
given wide angle observation point. Typically, this point is located on the rim
where pé = a (for angles far from the beam maximum [typically > 3 sidelobes], the
specular points are on the rim). Employing (3.15) and (3.16), we define A as
follows

A=L-1Lly-1, +Lg= [£(p",4") - £(02,87) 1(cos8 - costy) (3.17)

which has the following property

84 -0as 6 ~g, and/or as (p~,¢”") - (p;,¢;) . (3.18)
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Introducing A into (3.7) and using the Taylor series expansion .

P-~o :
eI 4 =Z;1!- GrAP (3.19)
p=0
we finally arrive at [2]
P-*a . -
7o, 4) =Z T (8,4)
P (3.20)
p=0

where

jk(@ ~L )
?p(e,¢) = ﬁ% (jk)p e w w0 (cosg - coseo)p

27 a

» kL, _ f 2
. f f Ee ClEGe,07 - f(p;,%)]p
o o o

ko B cos(e7=0) .y agq- | (3.21)
In its present form, expansion (3.20) is r#pidly convergent at observation angles
near 8, and thosé near the observation points with their specular poinfs located
at (p;,¢é). Thus, this expansion is convergent near two different observation
values and is thus termed “biconvergent,f Clearly, it will be very useful to be
able to extend the rapid convergence domain of (3.20). Notice that,at wide obser~
vation angles the dominant contribution to integration (3.21) is from the point
near (p‘;,¢‘;) where the integrand is negligible as p increases. 1In later dis-

cussions, we demonstrate how the rapid convergence domain of (3.20) can be

expanded.
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Having obtained (3.21), our task is now to evaluate the integration appear-

ing in it. For simplicity of notation, we use (3.21) to define Ip

27 1
-Ibp<e’¢) = / / 6p(as"¢4) ejkas‘ B COS(¢‘-¢) S'ds‘d¢' (3.22)
0 0
where

N kL
3p(as‘,¢‘> = K(as”,¢") e

O - - rd = - -

[£o",87) - E(p7,00 17 . (3.23)
It is readily apparent that (3.22) has a form identical to (2.7), which, therefore,
allows one to expand it in terms of the Jacobi-Bessel series as in (2.11). Omit-

ting all the intermediate steps, we can finally construct the following expression

(2]

P .
Jk(L -L D
?(e,¢) = Zvaz e w .wo E if (jk)p (cosH - coseo)p
Nomo Mereo
.0 - -
. j°[ C__ cos nd + _D__ sin n¢]
z :ZE: p nm p nm
n=0 m=0
Jn+2m+l(kaB)

" V2@ +2m+ 1) kaB . (3.24)

The above result can EE used in (3.6) for the determination of the far-field
pattern.

For offset reflectors, expression (3.2) is, in general, a function of ¢~
which, in turn, makes (3.16) the edge spectral point for wide angle radiation,
dependent on ¢°. In contrast to the symmetric case where the domain of (3.18) is
extended to all points on the rim by simply setting p; = a, this domain cannot be
extended so simply for the offset reflectors. It is, in additiom, worthwhile to

emphasize that, as far as the numerical evaluation of (3.24) is concerned, it is
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Figure 3.2.

Geometry of an offset parabolic reflector.
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still desirable to obtain a biconvergent series for as many wide angles of obser-
‘ vation'points as'possible. To achieve this goal, we consider what occurs for
offset parabolic reflectors. As shown in [2], it is still possible to obtain a
" biconvergent p series for all 42

The offset parabolic surface description for Figure 3.2 can be written as

0’2 h hz
z =F—l+_——2 +-2-§p cose +-4—F- (3.25)
4F

where F and h designate the focal length and offset height, respectively. A unique
feature of (3.25) is the appearance of the linear term in p” and cos¢”. Since this
is the only term dependent on ¢°, it is desirable to transplaﬁﬁ it into the Fourier
kernel. To do this, we combine this term with the Fourier kernel term of (3.11)
and express (3.13) and (3.14) by

. _—
= - - b 8
Cu siné cosqu cos

B 2F B

Cv = -s:i.neB singg (3.26)

and

B = \/(sine sing + C )2 + (sin6 cos¢ + C -!-l c.:ose)2
_ v u 2F
1 sinf sin¢g + C
¢ = tan = — A .
siné cos¢ + Cu + (h/2F) cos8 (3.27)

Furthermore, we redefine a new functional L from (3.15) as

.2
L= F[—l + LE] cosb (3.28)
4%

‘ which finally results in
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A== (p‘2 - az) (cos® = coseo) (3.29!

which has a form similar to (3.17). Following the same steps as in (3.19)-(3.24),
we can f£inally coustruct f? and f(e,¢). Because of the special p‘2 de;endence in
(3.29), one can employ a recursion relation to derive the higher-order terms of
the p series from its p =‘0 term. The details of this procedure have already been
given in Section 2 in accordance with (2.12)-(2.14). The fact that the recursiom
relation can be used in this case is a very unique charactaristic of the symmetric

and offset parabolic reflectors.
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