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In this note, some of the key equ:\lions required to ;lpply the construction of GTD technique

[o strip type structures are presented. The nlotivatio[l Ilas been to collect these equations for their

possible application [o JWvl-fcd p:lr:limlt)id;ll rcrlcc:or :In[cnnM. In particular, to provide design
considerations on the effects ot’ [hc s:np-t}pc block:~yc on the performance of TEM-fed reflector

m[ennas. It is worth mentioning dlJt cm must be e.~crcised in :lpplying GTD to narrow structures

md for non-ray field incidence. It shou Id Jlso be not iced that GTD :lpplication would be more

~pplicable for wide angle pattern dc[crmin:l[ion [h;tn dw boresight md main beam performance
characterization.
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1. Introduction

TEM-fed reflector antennas have received much attention [1-4] as viable radiators for ul-

trawideband applications. Figure 1 demonstrates potential design configurations. The triangukw
feed plates allow for the generation, of the spherical TEM waves which are then scattered from the
paraboloidal reflector surface. In this note, our objective is to summarize some of the key equations
required to apply GTD construction for the determination of the effects of the TEM launchers (stips)
on the antenna performance. An example is provided to guide the reader about how the GTD

construction may be used in computing the diffracted field from strip-type structures.

1.1 Summary of key GTD Equations

Figure 2 provides an insight into the basic philosoph y of applying GTD. The most important

aspects are the notions of” Localization “, “ Ray field “, “ Canonical Problems “, “ Reflection
and Diffraction Points “, “ Reflection find Diffraction Coefficients “ etc. The key equations

necessary to apply the GTD construction to perfectly conducting edge-type structures are presented
in Tables 1 to 4. Additional details of relati ng to these equations may be found in [5].

Typically, after the incident ray field is i~icntifiecl, one determines the reflection and
diffraction points based on the laws of reflection ml f!iffraction and then construct the geometrical
optics and diffracted fields. For the TEM-fed reflector antennas, one may make the assumption that
the field exiting the reflector has plane wave characteristics which can readily be cast into the form
of a ray field. The problem is then to invest ignte the diffraction characteristics of the illuminating
ray field off the Srnp launchers. Obviously, attention must he given to the polarization characteristics
of the illuminating ray field. This procedure is usef~}l under the assumption that the widths of the
strips are several wavelengths long. Addition:llly, if onc wants to obtain more accurate results, it may
become necessary to consider multiple diffractions ~i~~oss the width of the strip.

Furthermore, it is anticipated that the CiTD construction should provide good accuracy for
estimating wide angle performance by esscn[ i:llly conlhi n;ng the diffracted fields with those of the
direct radiation from the reflector. However, near the mai Hbeam region, extra care must be exercised
if caustics are formed.

In the next section, we provide a representative example in constructing the GTD solution for
the diffracted field flom a rectangular plate. The example should assist the reader in applying the

GTD formulation and appreciate the uncier$lying aspects of i ts implementation.
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j%onz Maxwell’s Equations to GTD Solutions
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Figure 2. A block dia~am highlighting the main features of implementing GTD construction
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Summary of Keller’s Diffraction

TABJ~ la Total Field

geornetricnl optics diffracted

;t (?) = @(si) %i(r) + @(sr) %r(r) +%d(r)

&

ad(r)
~-(m) exp (ikSd (r)

z
(- ik) ‘m %: (:) , k+b

m.o

Keller’s Theory gives for the dominant term (m=())

cd= path leng~h:tl~~n: tlle~li!’t”r:lcted ray frornth ediffractionpoint

IAELU c~rvafure of Diffracted Wavefront

R;=O

where

1 COS2(Q=) sin2(f11)
= +,

Ri(Qi)
‘; ‘;

. .
R; ,

‘;
= principal radii of incident wavefront passing through

diffraction point O
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.
f? = angle measured (toward S; ) from &~to the projection

of 2 on :i ~i pi:l[le
12

x= curvature of edge rat point O (non-negative)

ei= angle measured from

n = unit normal at ed:el’at O

f?i Ad
a ,0 = direction of inciclell t (diffrilcted) rays

~ Divergence Factor

positive real value or negative

imaginary value

XABL&L Keller’s Diffraction Coefficient for an ed~e (sDherica] coo rdinat~

where

i,r
x = (-1) Ei’r

\ “1

c~c Cld+cll

T

\

.

= (-1) ei’r angle between
Csc Sd and S1’r in (tl, t2) plane 1

1
2
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2. A Representative Example

2.1 Geometrical Optics

The geometry of the problem of interest is shown, in Figure3.A source is placed on the z
axis at a height h above the center of perfectly conducting rectmgular plate of dimensions

2rz by 2b. It is assumed that the plate is large enough that the GO/GTD construction may
be used to determine the far-field radiation pattern for this configuration.

/’”-b—

Figure3: Geometry for the dipole over the perfectly conducting plate.

With e–iu~ time variation resumed and suppressed, an infinitesimal dipole located at
z = h and oriented along the z axis radiates a ray field expressed as

eikr.d -

Ei = E. Sin 8d—6d
Td

(1)

where ~d and ed are shown in Figure 3. To determine the GO field for this source, we express

the dipole field in Eq. (1) in terms of r and O as defined in Figure3 and construct its image
as if the ground plane were infinite in extent. Since we are observing in the far-field, we use

the well known far-field approximation for amplitude and phase variations with distance.

In this case, the dipole radiation pattern is given by

eik(r -hcosf7)
~dip = E. sin b’ i (2)

T

while the image source has a radiation

!.

pattern

EOsin O
~ik(r+hcos6) -

6,
T

(3) e
8



t

z

Figure 4: Incident and reflected shadow boundaries for GO fields.

Consistent with the asymptotic approximation, we construct the GO field by superim-

posing the fields from the dipole and its image, making the appropriate provisions for the

incident and reflected shadow boundaries. Figure 4 shows the geometry of these shadow
boundaries for the principal planes. In this figure and for the rest of this report, the dis-

tances a and b will be represented by

{

a ifq5=0
K =

b if~=ir/2 “

@ Using the expressions in Eqs. (2) and (3) we obtain

ikr

[
~g” = E. Sin 6L eikhcose~ (%, – e) + e-ikhc=e~(ei - 0)] i

T
(4)

where 8, = arctan (~/h) and Oi = T – $.. In this representation, U (z) denotes the unit

step function. Eq. (4) represents the total GO field for any observation angle 6 in the two

principal planes.

2.2 Geometrical Theory of Diffraction

The field expression of Eq. (4) is a first order asymptotic approximation to the total field

for large plate dimensions. The presence of the unit step functions implies discontinuous

behavior at the shadow boundaries which is physically impossible for this geometry. An

improvement to this result is obtained by adding the next dominant term in the asymp-
totic expansion of the fields. The use of the GTD construction provides a method for

accomplishing this.

To determine the field diffracted by the plate edges, it is necessary to locate the diffrac-
tion points that will contribute to the far-field in the x-z and y-z planes. The dominant

contribution to this field results from diffraction at the points (+a, O, O) in the x-z plane

and (O, kb, O) in the y-z plane. The Keller’s cone at these points becomes a plane coincident

with “the observation plane. It should be noted that diffraction

m will produce some field in the x-z plane. However, if the height h

from the edges at y = +b
is small com])ared with the
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Figure 6: Incident and reflected shadow boundaries for GO fields.

plate dimensions, this contribution is negligible when compared to the dominant diffraction

mechanism discussed above.

Following the GTD construction, the diffracted field contribution to the far-field in the

principal ob~ervation planes can be determined. Since the incident wavefront is asumed to
be spherical, the principal radii of curvature of the front at the diffraction point are given
by

R;= R;=dm.’ (5)

Using this result with the fact that the curvature of the plate edges is zero allows us to
write the principal radii of curvature of the diffracted wavefront as

The divergence factor of the diffracted wavefront can now be determined from

where r= is defined
we will let r~ = r.

‘F=&=J=%=

(6)

(7) a

(8)

in Figure 6. Since we are observing in the far-field region with r > K,

The diffraction coefficients must next be determined. Using the geometry of Figure 6,
we may write

(a - Cq)
xi = – sec

2

(CY+ Cl’i)
Xr = –See ~

(9)

(10)

Cli = arctan h/K. (11)

Since the polarization of the incident field is orthogonal to the tangent along the plate edge
at the diffraction point, the diffraction coefficient for the wavefront is merely the sum of xi

and x. given above. This is known as the coefficient for the hard polarization and may be

expressed as
_~ec[a-Qi) _sec(Q+ ai)

2 2<
Dh(Q)=xi+Xr=
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The relations in Eqs. (8) and (12) allow us to construct the diffracted field for a given

incident field.
Making use of Eq. (1) with the appropriate modification for r and 8 and from the

geometry of Figure 6, we can express the strength of the incident field at the diffraction

Doint as

(13)

Now, making use of the rotation operator to determine the polarization of the diffracted
components in the far-field and adding the contribution from both edges of the plate, we

obtain the general expression of the field for the observation planes ~ = O and 4 = 7r/2

where

4“
{

T[2 – e if0<O<7r/2
57r/2-e ifir/2<O<7r

In Eq. (14), the first diffraction coefficient is for diffraction from the point at z or y = +x and

the second is for diffraction from the point at z or y = —K. Also, the far-field approximation

●
has been used for magnitude and phase variations with r.

Making use of the previous GO result of Eq. (4), the total field radiated by the dipole-
plate geometry is

field as

then constructed as the sum of the GO and GTD contributions of the

F = m“ + Z?. (15)

Since the pattern
for the total field

in Eq. (14) is symmetric about the z axis, Eq. (15) gives the expression
anywhere in the principal planes.

2.3 Uniform Theory of Diffraction

When the observation angle 0 is near the value of the shadow boundary angles e; and

er, the GTD diffraction coefficients become singular. In order to compute the fields in
these transition regions, the Uniform Theory of Diffraction (UTD) is used, In this
methodology, the singularity in the diffracted field is remedied by altering the diffraction

coefficients. This procedure requires that near the incident shadow boundary the coefficient

Xi be replaced by
(~ - ~;) F’(]~’])

ii (Q’) = –see
2 F(/fi[)

(16)

where

(Q-Q;)
(1 = Vcmcos z
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and R is defined below

cient X, is replaced by

where

~—i7r/4 CC)

F(x) = — Jfi. eif’dt

l’(z) =
~i(x2+7r/4)

2x&

13q. ( 14). Simiiarly near the reflected

~, (cr) = – sec
(LY+CYi)F(lC$’])

2 ~(lcrl)

.

shadow boundary, the coeffi-

(17)

Note that F and ~ are the Fresnel integral and its first asymptotic term, respectively.
Placement of these diffraction coefficients in the expression of Eq. (14) for observation points

near the incident and reflected shadow boundaries removes the singularity and provides a
smooth field variation in the transition regions.
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