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Abstract

In this note, some of the key equations required to apply the construction of GTD technique
to su1p type structures are presented. The motivation has been to collect these equations for their
possible application to TEM-fed paraboloidal reflector antennas. In particular, to provide design
consideragons on the effects ot the sinp-tvpe blockage on the performance of TEM-fed reflector
antennas. Itis worth mendoning that care must be excreised in applying GTD to narrow structures
and for non-ray tield incidence. It should also be noticed that GTD application would be more

applicable for wide angle patern determination than the boresight and main beam performance
characterizagon.
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1. Introduction

TEM-fed reflector antennas have received much attention [1-4] as viable radiators for ul-
trawideband applications. Figure 1 demonstrates potential design configurations. The triangular
feed plates allow for the generation of the spherical TEM waves which are then scattered from the
paraboloidal reflector surface. In this note, our objective is to summarize some of the key equations
required to apply GTD construction for the determination of the effects of the TEM launchers (strips)
on the antenna performance. An example is provided to guide the reader about how the GTD
construction may be used in computing the diffracted field from strip-type structures.

1.1 Summary of key GTD Equations

Figure 2 provides an insight into the basic philosophy of applying GTD. The most important
aspects are the notions of " Localization ", " Ray ficld ", " Canonical Problems ", " Reflection
and Diffraction Points ", " Reflection and Diffraction Coefficients " etc. The key equations
necessary to apply the GTD construction to perfectly conducting edge-type structures are presented
in Tables 1 to 4. Additional details of relating to these equations may be found in [5].

Typically, after the incident ray ficld is identified, one determines the reflection and
diffraction points based on the laws of reflection and diffraction and then construct the geometrical
optics and diffracted fields. For the TEM-fed reflector antennas, one may make the assumption that
the field exiting the reflector has plane wave characteristics which can readily be cast into the form
of aray field. The problem is then to investigate the diffraction characteristics of the illunminating
ray field off the strip launchers. Obviously, attention must be given to the polarization characteristics
of the illuminating ray field. This procedure is useful under the assumption that the widths of the
strips are several wavelengths long. Additionally, if one wants to obtain more accurate results, itmay
become necessary to consider multiple diffractions across the width of the strip.

Furthermore, it is anticipated that the GTD construction should provide good accuracy for
estimating wide angle performance by essentially combining the diffracted fields with those of the
directradiation from the reflector. However, near the main beamregion, extra care must be exercised
if caustics are formed.

In the next section, we provide arepresentative example in constructing the GTD solution for
the diffracted field from a rectangular plate. The example should assist the reader in applying the
GTD formulation and appreciate the underlying aspects of its implementation.
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from  Maxwell's Equations to GTD Solutions

Philosophy Localization and Ray Picture
v

Maxwell's Equations
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Figure 2. A block diagram highlighting the main features of implementing GTD construction
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Summary of Keller's Diffraction
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2. A Representative Example “

2.1 Geometrical Optics

The geometry of the problem of interest is shown in Figure3.A source is placed on the z
axis at a height h above the center of perfectly conducting rectangular plate of dimensions
2a by 2b. It is assumed that the plate is large enough that the GO/GTD construction may
be used to determine the far-field radiation pattern for this configuration.
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Figure3: Geometry for the dipole over the perfectly conducting plate.
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With e~*! time variation assumed and suppressed, an infinitesimal dipole located at
z = h and oriented along the z axis radiates a ray field expressed as

Ef = E, sin §——8 (1)
Td

where r;y and 6, are shown in Figure 3. To determine the GO field for this source, we express
the dipole field in Eq. (1) in terms of r and ¢ as defined in Figure3 and construct its image
as if the ground plane were infinite in extent. Since we are observing in the far-field, we use
the well known far-field approximation for amplitude and phase variations with distance.
In this case, the dipole radiation pattern is given by

.. eik(r—hcose) R
E¥? = E,sing————F6 (2)
T _.

while the image source has a radiation pattern

. etk(r+heosf)
EUHQ = EO Sin 9———8. (3)
r
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Figure 4: Incident and reflected shadow boundaries for GO fields.

Consistent with the asymptotic approximation, we construct the GO field by superim-
posing the fields from the dipole and its image, making the appropriate provisions for the
incident and reflected shadow boundaries. Figure 4 shows the geometry of these shadow

boundaries for the principal planes. In this figure and for the rest of this report, the dis-
tances a and b will be represented by

_faife=0
"‘"{b if ¢ = 7/2

Using the expressions in Egs. (2) and (3) we obtain

tkr

B%° = E,sin0=— [ (6, — 9) + 74U (6: - 6)] § 4)
where 6, = arctan (k/h) and 6; = m — §,. In this representation, I (z) denotes the unit

step function. Eq. (4) represents the total GO field for any observation angle 8 in the two
principal planes.

2.2 Geometrical Theory of Diffraction

The field expression of Eq. (4) is a first order asymptotic approximation to the total field
for large plate dimensions. The presence of the unit step functions implies discontinuous
behavior at the shadow boundaries which is physically impossible for this geometry. An
improvement to this result is obtained by adding the next dominant term in the asymp-
totic expansion of the fields. The use of the GTD construction provides a method for
accomplishing this. _

To determine the field diffracted by the plate edges, it is necessary to locate the diffrac-
tion points that will contribute to the far-field in the x-z and y-z planes. The dominant
contribution to this field results from diffraction at the points (£a,0,0) in the x-z plane
and (0,%b,0) in the y-z plane. The Keller's cone at these points becomes a plane coincident
with the observation plane. It should be noted that diffraction from the edges at y = £b
will produce some field in the x-z plane. However, if the height h is small compared with the
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Figure &: Incident and reflected shadow boundaries for GO fields.

plate dimensions, this contribution is negligible when compared to the dominant diffraction
mechanism discussed above.

Following the GTD construction, the diffracted field contribution to the far-field in the
principal observation planes can be determined. Since the incident wavefront is assumed to
be spherical, the principal radii of curvature of the front at the diffraction point are given

by

R = Ry = VKk*+R%. (5)
Using this result with the fact that the curvature of the plate edges is zero allows us to
write the principal radii of curvature of the diffracted wavefront as

R{ = VK2+h? (6)

R = 0. ' (7)
The divergence factor of the diffracted wavefront can now be determined from
1 1

DF =

- 8
V147a/RE 141/ VTR ®

where r, is defined in Figure 6. Since we are observing in the far-field region with r > «,
we will let g = 7.

The diffraction coefficients must next be determined. Using the geometry of Figure &,
we may write

xi = —sec (a—ai) (9)
2

Xr = - sec-(—?-;—ai) (10)

a; = arctanh/k. (11)

Since the polarization of the incident field is orthogonal to the tangent along the plate edge
at the diffraction point, the diffraction coefficient for the wavefront is merely the sum of x;

and x- given above. This is known as the coeflicient for the hard polarization and may be
expressed as

Dh(a)zx;+>(,=—sec(—cr—_(;ii)—sec(i_;—m. (12)
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The relations in Eqs. (8) and (12) allow us to construct the diffracted field for a given
incident field.
Making use of Eq. (1) with the appropriate modification for r and # and from the

geometry of Figure 6, we can express the strength of the incident field at the diffraction
point as

i sinfy o /RTTRE K ik/RIFR?
E -Eo——————me _E",{?.*.h'ze . (13)

Now, making use of the rotation operator to determine the polarization of the diffracted
components in the far-field and adding the contribution from both edges of the plate, we
obtain the general expression of the field for the observation planes ¢ = 0 and ¢ = /2

keim/4pik(r+R)

.
*oR2/T+ r/ RV 2rkr

[Dh (9+ﬂ_/2)e—€jmsin9 — Dh (¢) ei}msino] 9‘ (14)

where

o = [T/2-0 Ho<e<w/
=\ s5m/2-6 ifn/2<6<w

R = V&K?2+hZ

In Eq. (14), the first diffraction coeficient is for diffraction from the point at z or y = +x and
the second is for diffraction from the point at z or y = —k. Also, the far-field approximation
has been used for magnitude and phase variations with r.

Making use of the previous GO result of Eq. (4), the total field radiated by the dipole-
plate geometry is then constructed as the sum of the GO and GTD contributions of the
field as :

Et = B9 + E°. (15)

Since the pattern in Eq. (14) is symmetric about the z axis, Eq. (15) gives the expression
for the total field anywhere in the principal planes.

2.3 Uniform Theory of Diffraction

When the observation angle 6 is near the value of the shadow boundary angles §; and
6., the GTD diffraction coefficients become singular. In order to compute the fields in
these transition regions, the Uniform Theory of Diffraction (UTD) is used. In this
methodology, the singularity in the diffracted field is remedied by altering the diffraction
coefficients. This procedure requires that near the incident shadow boundary the coeflicient
X: be replaced by _
oo Lo —ai) F(I€])
2 F(lED

Xi(a) = —s (16)

where

£ = VEERcos 02
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F(z) = - . et di
. ei(x2+7"/4)
Fe) = =7

and R is defined below Eq. (14). Similarly near the reflected shadow boundary, the coeffi-
cient ., is replaced by

Lot a) )
2 F(¢D

Xr (@) = —se

(17)
where

& = mcos-——(a;a").
Note that F and F are the Fresnel integral and its first asymptotic term, respectively.
Placement of these diffraction coefficients in the expression of Eq. (14) for observation points

near the incident and reflected shadow boundaries removes the singularity and provides a
smooth field variation in the transition regions.
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