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Abstract

This paper considers the calculation of t-hetime-domain fields that result from a tangential electric
field on a plane. For the case of this source field expressed as a time waveform times a spatial distribu-
tion, the fields can be conveniently expressed using retarded time. With a uniform field inside a circular
aperture the fields on the symmetry axis (z axis) are only transverse and both electz-icand magnetic fields
can be expressed in closed form. The result is extended to the aperture field on the arcular disk as any
non-singular plane-wave TEM electric field. These exact results are used to explore the approximate
impulse (in the far field) resulting from stepfunction aperture illumimtion and gain further insight into
how to interpret the far field in time domain.
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1. Introduction

A previous paper [21has considered the fields that result from an aperture antenna for which the
a

tangential electric field is specified on a plane. This is forrmdated in complex-frequency (Laplace-

transform) domain in terms of an integral over the tangential electric field with an appropriate Green’s

function. As a special case the aperture field is chosen in such a way that the signak from every point on

the aperture arrive with the same phase at some preselected point 7., giving a focused aperture antenna

(focused at 7 =70). In this case the integrals for the fields at FOsimplify considerably due to the common

delay which can be factored out of the integrals. The integrals can also be readily expressed in both

frequency and time with integration reduced to frequency/time-independent coefficients. For the case of

a circular aperture with uniform spatial illumination (tangential electric field) with focus on the z axis

(symmetry axis of the circular aperture) the integrals result in simple analytic expressions.

In this paper Iet us begin with the aperture antenna with coordinates in fig. 1.1. The aperture plane

is S given by z = O on which is specified the tangential electric field ~j(x’,y’; t). This maybe zero out of

some finite region of S (the aperture) which can be designated S~. Primed coordinates refer to the aper-

ture plane.

Noting that

[(x-x’)’+(Y-Y’)Z+Z’];
7 = general observation position (1.1)

1

[1
c+?%]-+, Z.= h 5

&~

the field components from [2 ((2.8) and (2.9))] can be summarized directly in time domain. The electric

field is

2ZJ,*[;:+’]’;(’’Y’’’-:)’S
EZ(r’, f)=~ (1.2)

The magnetic field is



S’is defined by

-F = (X’,y’,o)

Fig. 1.1. Electromagnetic Fields from a Source Plane
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zoI-f*(?,t)=-#’~ (x-x’)(Y- y’) R d

[
;%+3+~~4 ‘Hx’y’’’-:)s’

(1.3)

where an integral operator

Itf(t) = jt ~(f’)dt’
-

It has been introduced as

(1.4)

with zero initial conditions assumed. Note the use of the retarded time from points on S. This replaces o
the exponential delay factor used in complex-frequency domain.

For later use we have cylindrical coordinates (Y,@, z)

x= Ycos(@) , y = Ysin(@)

and spherical coordinates (r, 6,@)

r = zcos(~) = Y sin(e)

(1.5)

(1.6)

Using primes these coordinates also apply to the source plane.



II. Uniform Tangential Elec&ic Field on Circular Aperture

Now let us choose the special aperture field

{

Eof(my for OS Y’<cz
E;(x’, y’; f) = ~

for Y’> a

(2.1)

~(f) = waveform

This is a uniform field on a circular aperture of radius a. The waveform can be general (subject to zero

initial conditions), although later it will be made a step function,

Let the observer be located on the +Z axis for which

R= W2-!-Z2 . (not a function of ~’) (2.2)

Note that there are two symmetry planes, yz and xz, with fields respectively symmetric and antisym-

metric [1,6,7]. This implies that the only non-zero field components on the z axis are EYand HZ. Noting

that

dS’ = Y’dY’d(jS (2.3)

we have

(2.4)

Now change the retarded time inside the integral as
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f~ s f’ly,=o = f -:= retarded time from center of aperture

12[1-- ~+.2+fz = f’ly,=a = f ~ = retarded time from edge of aperture

Note further that for a given z,f then f’ is a function of Y’ and we can write

, -W2+Z2F~‘=c~f-”lf’=f–~=t

(f- f’)z=$=$p+zq

(f - t’)df’ =fdw

Y’dY’ = C2(t’– f)dt’ = -CRdt’

With these substitutions (2.4) becomes

which is in normalized form.

Considering first the electric field we have the integration-by-parts formula

i’

(2.5) o

(2.6)

(2.7)

(2.8)

Substituting in the electric-field integral we have
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-&y(zizJ)=)(h)- z , f(f2)

[1
z2+a27

=

fH--f@[z2’a20

(2.9)

This agrees with the results in [8,9,11,12]. Here the result has now been derived directly in time domain.

Considering second the magnetic field let us first group the terms according to the time derivative

(or integration) order of the waveform in the integrand as

o
‘e’J:[ii-s}f’f(f’)’f’

Taking the first integral we have first the integration-by-parts formula

(2.10)

(2.11)

tz2Z2
= <f(f2)- ~(h)- Cjtl ~f(w’2z +a

So we have
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Substituting (2.12) into (2.10) gives a simpler expression for the magnetic field as

1 2Z2 + U’2
–& Hx(ziz, f)=j(fl)-Z-~(f2)

o

+cJ:[+-:]f’~’t’

where the time derivative term has now been removed.

Considering the remaining integrals we have the integration-by-parts formula

cJ‘2&t’= -JfzUwt* $ f’–t

(2.12)

(2.13)

(2.14)

and a second formula
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2
=

z2:a2 F
22J’’#tff(Odf’3 hJ(’2)- ;Jlf(’l)-sc z

[1

Substituting these in (2.13) gives

lC
+7 z

[1
z ~a2#t2

.

f( )‘11 222+ a2
2 #+a2 fk)+;[ 2ca22#t2f(f2)

= f–: + ––
c

z +a
1 [1t’2=t–: Z2+U

~+

(2,15)

(2.16)

Having now the exact solution for the magnetic field as well as the electric field on the z axis they

can be compared. Note that both normalized solutions have a leading term f(tl) which gives the earIy -

retarded-time solution. As discussed in [3] this is just the solution for a uniform field on an infinite aper-

ture, i.e., for a + ~ in (2.1). This solution applies for times before the aperture radius can be noticed at

the observer. This time difference is reflected in t2 - fl which becomes arbitrarily small as z + ~. The f2

terms for the electric and magnetic fields are somewhat different, the magnetic field having an extia near-

field (Z-3) term proportional to the time integral of the excitation waveform on the aperture.
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III. Step-Function Aperh.weField

Now take the limiting case of a stepfunction aperture waveform as

f(f) = u(f) (3.1)

noting that this is a mathematical idealization since any realistic waveform will have a non-zero (but

perhaps small) rise time. Then our solutions for the fields on the +Z axis become

+Ey(ziz,f)=u(fl)- z ~ U(fz)
o [1Z2+.22

#–~ Hx(ziz, f) = t4(fl ) - ~ ~22++aj2 U(fz ) + ; ~ Cfzu(fz)
o [1z2+a27

(3.2)

fl=f–: , f2=f-:[z2+aq+

As discussed in [3,4] the early-time portion of this waveform can be thought of as an approximate

impulse which can be written as

L‘3.=1

As z + C=the pulse amplitude is proportional to z and the width is proportional to Z-*, thereby

approaching a delta function in the limit. In terms of this (3.2) can be written (for early time) as

1
@(ziz,f)

()
=&6a f-~

c

z
()

~2
-JHX Ziz, t

E. ()
-—aa t-:
- 2CZ c

(3.3)

(3.4)

This takes the form of a far field with the z-~ dependence when we consider 6= as a delta function.

ActualIy this app~ies in a more strict sense if one convolutes this with a puIse with fast changes (e.g., rise)

over times slow compared to a2/(2cz). A true delta function is not square integrable (has infinite energy).

The form in (3.4) has energy flux density (J/vz2) which falIs off as z-l, part of a larger class of

mathematical functions which have energy flux density falling off slower than Z-Tas z + ~ [10].

However, this is basically a question of the proper definition of the far fie~d, A real pulse with a finite
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maximum rate of rise does not have this behavior. Eventually, after some finite z, the radiated pulse

amplitude decreases proportional to Z-*. However, these formulas do give a useful mathematical

idealization.

With the exact solution (3.2) one can now see how well (3.4) approximates this. Note that

=t-;[l++(:y-:(:y+o(z~)]
~2 ~4

=t–~-—
()

—+02–5
C 2CZ + 8cz3

~2 ~4

tl-f2=—– —
()

+0 z-5
2CZ @

asz~m

(3.5)

the first term of which has been used as an approximation to the width of the initial narrow puke. This

approximation is not exact but has a relative error

~2
fl–f2 ~=——
(a2) 422 asz+m (3.6)
l— I

()2CZ

which is negligible for z>> a. Since (3.4) gives the exact amplitude of unity, then (3.6) gives the error in

the time integral (area) of the initial pulse. Then (3.6) gives an estimate of how far away one should be for

(3.4) to apply (in sense as above and in [31).

After fz = Oanother term enters the electric field in (3.2). The resulting amplitude is

Z4(fl)– z ~U(fz)=l– z
[1.2+a27 [1Z2+G2+

[()]
~2-+

=1- 1+ -
z

(3.7)

In an amplitude sense this is a relative error, also negligible for z >> a. In an area (time-integral) sense,

however, the “error” is more significant. Integrating from t2 = Oto some other later time we have
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+(:~+o(z+q
relative” error” =

[1

(J
%

=:++O(Z-2)]

=:[f-+[.z+.zp~+o(z-z)] -

=[f++o(z-’)] asz+~

(3.8)

So for this to be small we need

O< f–:<<: (3.9)
cc

As one goes to larger and larger z the retarded time is allowed to also get larger with (3.4) still approxi-

mating the electric-field pulse in a time-integral sense. This is analogous to the usual far-field criterion for

electrically small antennas (i.e., w > c/r), So this is a late-time or low-frequency limitation.

Similarly after fz = Oanother term enters the magnetic field in (3.2). This has two parts, one a

constant and the second a ramp function of time. The constant part is

1 2z2 + a2 1 2Z2 + a2
u(fl)-~ ZZ+az ~(f2)=~-~ ZZ+az

(3.10)

This is the same asymptotic result as in (3.7) and produces the same kind of “errors”. In an amplitude

sense this (3.10) is the relative error and in a time integral sense (3.8) and (3.9) directly appIy.

The ramp-function term in the magnetic field has an amplitude (after fz = O)

1 a2

[()]

a2cf2 ~+ a
z –+

52
~ cf’2=—

[1, +a2T 2Z3 T

[()]_a2ct2 * + a 2
asz+w

2Z3 ~

(3.11)
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Comparing this to the initial unit amplitude gives the requirement

● o.t-z.<~
c

which for z > a is somewhat less stringent than (3.9). In an area (time-integral) sense we have

.

a’+-’)]relative” error’:=

[)

~’

G

‘i(%~+o(’-’)]

‘~[~-11’[l+O(z-2)] asz+m

For this to be small we need

(3.12)

(3.13)

(3.14)

o which is similar to (3.9). So these additional terms for the magnetic field are near-field effects,
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IV. TEM Plane Wave on Circular Aperture

The solution obtained thus far has been for the case of a uniform tangential electric field on a circu-

Iar aperture as in (2.1). A more general type of aperture distribution is given by [41

E#, y’; f) =
{

EOj(x’, y’)j(f) for O s Y’ c a -

0 for Y’> a

qx’,y’) = -Vp(x’,y’)

v; ● j(%’,y’) = -v~%(x’,y’) = o

(4.1)

i.e., the spatial distribution is derived from a scalar potential satisfying the twe-dimensional Laplace

equation in the transverse (x’, y’) coordinates. This is an important type of field distribution associated

with a TEM plane wave (propagating in the z direction).

In [5] it is shown that a spherical TEM wave (as on a conical wave launcher) can be converted into a

planar TEM wave by a suitably positioned paraboloidal reflector. It is shown that besides a uniform

arrival time on the aperture plane the TEM plane wave has its field components given by the reflector

transform which is just the usual stereographic transform [14] with a minus sign. Furthermore, this solu-

tion is exact up to the time at which scattering from the reflector edge or feed arms (blockage) reaches the

observer. Not only the reflector type of IRA (impulse radiating antenna) has this property, but also the

lens type of IRA using appropriate leases in [15] which convert spherical TEM waves into pianar TEM

waves.

In [4] the form in (4.1) with f(t) as u(t) is used to find the coeffiaent of the approximate delta func-

tion 6. in the “far field.” Here the result can be considered in greater detail on the z axis in a more exact

sense. So let us consider the fields on the z axis with the distribution in (4.1) substituted into the integral

in (1.2) and “(1.3).

Expand the two-dimensional potential in cylindrical (Y’,@’) coordinates [14] on the aperture plane

as

m

Q(z), y’) = ~Y’n[an cos(n~’) + bn sin(mj’)] (4.2)
n=l)

●

where only terms with no singularities (in Y’< a) are included and the coeffiaents an and bn are real

since d?is assumed real. Then we have
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m

~(x’,y’) = -~{@W’n-l[an cos[m#) + bn sin(n@’)]
n=l

+i@lnY’n–l [-an sin(n~’) + bncos(n~’)]]

where the unit vectors are related to the Cartesian components as

(4.3)

(4.4)

Note in what follows that only n 21 are included.

In evaluating the integrals over the aperture field note the use of the Cartesian field components.

The incremental area is Y’dY’d# from (2.3) and R are not functions of @’ as in (2.2). Since the aperture

boundary is on constant V’(= a) let us consider the integral of the various terms in (4.3) with (4.4) over

r)<&<2~.

For the electric field in (1.2) with the observer on the z axis we have for n # 1 integrals of the form

for Ex and Ey

j2:os(@’)cos(n@’)d@’=0 ,

f:os(@’)sin(no’)d@’=o ,
0

(4.5)

which can be found using standard formulas (e.g., [13]). So only n = 1 contributes to these field compo-

nents through integrals of COS2($’) and sin2 (@’) which give n. For EZ noting the inclusion of

x’= Y?’cos(@’) , y’= Y’ sin(~’) (4.6)

then we have for all n the integrals which are grouped (for cancellation) as the coefficients of the an and

bn as

a~jti[cos2(@’)cos(n@’)+cos(@’)sin(@’)sin(n@’)
o

+ sin2(@’)cos(n@’) - cos(@’) sin(@’) sin(n@’)ld@’
1
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bn~[cos2(@’)sin(~@’)-cos($’)sin(@’)cos(~@’)
o

+ sin2(@’) sin(w$’) + cos(~’) sin(@’)cos(n#)]d@’ (4.7) o

Hence there are only Ex and Ey components on the z axis, these coming from then= 1 term in the

expansion.

For the magnetic field in (1.3) first consider the similar integrals for Hx and HY. Each is written as

the sum of two integrals. Looking at the second integrals note first that some of the terms have no x’ or

y’ dependence shown (other than in E; and E: respectively). These lead to integrals over ~’ just like

those for EXand EYin (4.5) and result in contributions only from n =1. TMS leaves terms with coefficients

x’y’, y’2, and x‘2 (noting (x, y) = (O,O))which fortunately all multiply a term with RA times the three-

term sum involving the same time derivative, constant, and integrai. Then for H, group the coefficients

of these terms according to the amand h. coefficients given, for n * 1

an~[-cos2(o')sin($')cos(~@')+cos(@')sin2(@')sino

-sin3 (@’)cos(m$’} - cos(@’)sin2(#’) sin(n~)]fifh’

=-anj~n(o’)cos(~o’)d$’=o

bnj2z[-cos2(@')si:(@')sin(n@')+cos(@')sin2(@')cos(n@')o

- sin3[@’) sin(n@’) - cos(#’)sin2(@) cos(ru$)]do’

J=-bn?in(@’)sin(n@) = O
0

SimilarIy for Hy group the coefficients of these terms the same way giving, for n # 1

anj~[cos($t)sin2(@)cos(n@)-cos2(@)sin(@))sin(n@/)

-t-cos3(@’)cos(@’) + cos2($’)sin(@’} sin(n@’)ld@’

=~n~s(@’)cos(n@’)d$’=oo
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o ~njh[cos(@')sin2(@')sin(~@')+cos2(@')sin(4')c
o

+coss(o’)sin(n~’) - cos2(~’)sin(~’) cos(n~)]~@’

= bn ~%3(@’)sin(n@’) fi@’= O
JO

For Hz the situation is somewhat simpler and we have the coefficients for all n as

~n~[cos(o’)sin(o’)cos(~o’)+sinz(o’)sin(~o’)
o

-cos(gY) sin(@’)cos(mj’) + cos2(@’) sin(n#’)]d@’

=.J%W)W=O

~nj2z[cos(@’)sin(@’)sin(~@’)-sin2(@’)c~s(~o’)
o

(4.9)

(4.10)

- cos(#J’)sin(@’) sin(@’) - cos2(@’) cold@’

J
= -bn %S(@J’)d@’ = O

0

0
similar to the results for Ez in (4.7). Hence there are only E?zand Hy components on the z axis, these

coming from the n = 1 term in the expansion,

An alternate way to show that only the n = 1 term contributes to the z-axis fields which are trans-

verse to the z axis avoids looking at the details of the integrals. Instead symmetry considerations can be

applied [71. The circular aperture itself has C. symmetry with respect to the z axis. However, the

particular terms in (4,3) indexed by n and an or bn have discrete rotation symmetry C, in which rotation

by 2Z /n brings the fields (magnitude and orientation) back to their origin configurations. Each of these

field terms has 2n symmetry planes (containing the z axis), n with respect to which the fields are

symmetric and n antisymmetric. These symmetries with respect to such a plane are defined by a reflec-

tion dyad which relates electric fields at mirror positions by a plus sign (plus for components parallel to

plane) for symmetric fields and minus sign for antisymmetric fields, and conversely for the magnetic field

[1,6].

For n >2 with n planes giving antisymmetric fields, the electric field must be perpendicular to each

symmetry plane. Hence on the z axis, not only does this mean that here is no Ez, but also no transverse

field (Ex and Ey) on the z axis due to the fact that a field perpendicular to one of the n planes is not

perpendicular to any of the other n-l planes (on the z axis). For the magnetic field use then planes giving

o
symmetric fields and repeat the above argument. Hence, for n 22, there are no fields on the z axis.
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For n = 1 there is only one plane for antisyrnrnetric fields allowing a transverse, but no Longitudi-

nal, electric field on the z axis. Similarly, the one plane for symmetric fields allows a transverse, but no

longitudinal magnetic field on the z axis. This agrees with the foregoing detailed calculations. o

Since the n = 1 term in the aperture field is the important term, let us Iook at this term in more

detail. Using a subscript “l” to distinguish this term (4.2) gives

@l(x’, y’)= Y’[rzlCOS(O’)+ &lsin(@’)]

= Ulx’+ tqy’

and (4.3) gives

jl(x’,y’) = -iw)[~lcos(I#’)+b~sin($’)] -ioz[-~lsin(@’)+h cos(#)]

=–alix-~iy

(4,11)

(4.12)

This is merely a uniform electric field with a constant direction (polarization) on the aperture.

Furthermore, this represents the tangential electric field at the center of the aperture where only the n = 1

term in (4.3) is non zero. So (4.1) becomes at the origin

L -.

Since only the n = 1 term gives the fields on the z axis then it is a field as in (4.13), extended to the ●
entire circular aperture, which contributes to the integrals for these fields. To evaluate such fields note

that (4.13) can be rotated about the z axis to give any polarization as desired. In particular it can be

rotated to be parallel to the y direction, and thereby assume exactly the form in (2.1). The conclusion is

then that the planar TEM field throughout a circular aperture of radius a (no singularities for 0< ?P’< a)

with zero tangential electric fieId outside the circle (as in (4.1)) gives the same result as a uniform field in

(2.1) and the results of sections II and HI apply here. One replaces the distribution in (4.1) by the

distribution at the origin to define the equivalent uniform field for the entire aperture. This gives an

alternate way to view the approximate impulse da in [3,4] in terms of the exact results in the previous

sections.
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o
v. Concluding Remarks

SOnow we have exact expressions for both ~ and ~ for the fields on the z axis for a circular aper-

ture antenna. This applies not only to a uniform tangential electric field on the aperture, but also the

electric field due to a TEM plane wave (in general inhomogeneous) on the aperture by using the field at

the center of the aperture as an equivalent uniform field. By the duality principle these results apply to

an electric current sheet with the same spatial distributions on interchanging the roles of electric and

magnetic fields.

Of course, this is an ideal type of aperture distribution, applying approximately to real antennas,

such as IRA (with reflectors or lenses). For its intended use, however, to the impulsive part of the

waveform it is a rather useful approximation. Other parts of the time-domain waveform are associated

with feeds and how the portions of the aperture plane outside of the circular disk of interest here are

treated.
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