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Abstract

In designing EMP simulators for various systems to be tested, one is often faced with the case of long
conductors (cables) ta be illuminated. In some cases this can be accomplished by local pulsers which are inductively
coupled to the cable. This paper considers the design of such devices with particular attention to the requirement of
small equivalent source impedance (compared to the cable (antenna) impedance) so as to not significanty change
the complex resonance frequencies. Various other aspects, such as the exciting waveform and distribution of
multiple inductive drivers, are also considered.

CLEARED
FOR PUBLIC RELEASE
pL/ts 3 Fed 3




L " Introduction

EMP simulation comes in various forms (8, 13]. While a "complete simulation" involving the full
environmental spatial, amplitude, and temporal distribution gives the best results (involving the fewest assumptions),
this is sometimes impractical due to the extreme size of the system to be tested. Such is the case when long
conductors (such as power and/or communications cables) are connected to some facility (such as a communications
center). In such a case one would like to have some way properly exciting these conductors with appropriate
waveforms and associated frequency spectra, even to full environmental amplitudes where practical.

Idealizing this problem somewhat, consider the cases illustrated in Fig. 1.1. Here we have some one or
more conductors which might represent some sort of power or communications cable. With the diameter of this
conductor bundle (cable) assumed small compared to wavelengths of interest (in the local surrounding medium) one
can consider the cable as being excited byva single component of the incident electric field as

—(inc)

EMOL)=T) Er (¢)
{= coordinate (meters) along caBIe (1.1)

-
1¢({)= direction parallel to cable

_)
While the examples in Fig. 1.1 have the cable straight, this is not necessary, and 1 ;({ ) can assume different
orientations along the cable.

This paper is in part based on some notes I generated in 1983 in The Hague, Netherlands for Peter Sevat at
the TNO Physics and Electronics Laboratory concerning low-insertion-impedance inductive line drivers.
Subsequently a set of these were built by Physics International for this laboratory. The present paper is then
intended to document these concepts. While this exposition is based on one-dimensional (line) structures, there is
another concept (PARTES) relating to two-dimensional (surface) conducting structures driven by discrete sources
[10].
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Fig. 1.1. One-Dimensional Conductor (Cable) Excited by Parallel Component of Incident Electric Field



I1, Integral-Equation Representation of Cable Current in Terms of an Appropriate Incident Electric Field

In order to compare discrete versus distributed excitation, consider first a general way to describe both.
One can write a general linear relation between the incident electric field (field with no system (cable) present) and
the surface current density on the system as an integral equation of the form

S (- o S (= o (- o(ine)
Zylrssrsssh Js| rsssf)y= lejrsi- E |
2

« (= -
1] r s |=tangential dyad on S at coordinate 7 5

S = system surface

( . )=symmetric product

’

-
= integration with respect to common coordinates (rs here) over S
(2.1)

s =Q+ jo = Laplace - transform variabie or complex frequency
~ = Laplace - transform (two sided) with respect to time ¢

Here (Z, is a dyadic kernel related to the Green's function for the system currents, including the effect of the
surrounding medium (such as soil, water, etc., as in Fig. 1.1). Furthermore, it has the properties of a passive
impedance operator.

With the assumption of a basically one-dimensionat structure as in Fig. 1.1, the integral equation (2.1) can
be reduced to the general one-dimensional form

(Zi(C, ¢ sk T (¢ 8)) = EZ™(Ls) 2.2)

with integration over the common coordinate . Note now that this is strictly correct for the case of a single thin
conductor for which a single current is appropriate, noting the assumption of wavelengths large compared to the
conductor cross-section dimensions. There are various traditional forms (such as the Pocklington form) that such
one-dimensional integral equations take, with perhaps various degrees of approximation involved. Here it is the
form, and not the details, that concern us.

If the structure of interest is a bundle of distinct conductors (multiconductor cable) then the problem is more
complicated. While Ef’"“' ) can still represent the source, strictly one may wish to consider the differences between
the incident electric fields on the different conductors. More importantly, there are a number of differential modes
of propagation supported by the conductor set. These interact with the terminating impedances at discontinuities
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(e.g. ends) and thereby can significantly alter the impedance properties of the system as driven locally by Et(i"c ), In
' a special case of interest where there is an outer cable shield, there is an approximate separation of outside from
inside characteristics, allowing one to first solve for the shield current before considering the internal response [14].



ML Driving the Cable at Discrete Positions

Now, as indicated in Fig. 3.1, let us consider some localized driver which is designed to insert some series
voltage source in the cable, with in general some series source impedance to give the Thevenin equivalent circuit.
Note that this is an equivalent source, and the cable need not be broken providing it takes the form of a transformer
(inductive coupling). This is especially important in the case of a multiconductor cable, such as a shielded cable.
The polarity of the voltage source is chosen according to the scattered tangential electric field (negative of the
incident tangential electric field) so that the current flows in the proper direction on the cable.

Consider first what should the equivalent voltage source Vs be. In some sense it should approximate the
distributed source Et("‘c ). Asafirst approximation one might set

C(Z)
Velt) = j £ (¢,1)dl a0
g(l)

Now, what should the limits ¢ and ¢(®) be? They might correspond to the ends of the cable (including the

terminations, such as theé vertical risers in the case of a power line). However, if { @ _ ¢ M i greater than a radian
wavelength X at some frequency of interest, such a lumped source does not approximate the true distributed source.

As will be considered later, some source with inductive coupler has some equivalent series source
impedance Z(s) (Thevenin equivalent) inserted in the cable. As indicated in Fig. 3.1, one can think of this
equivalent source as being at some position ¢ on the cable, driving between positions marked 1’ and 1. As such
it is driving some impedance we might call Z; (s), thinking of this as some antenna input impedance. This is
computed as

- - - -1 -
I(¢.s) = [Zuls) + Zs] V(o) (3.2)
which leads directly to the idea that one should have

[25(5)| << 2109) (33)

for a good simulation. Now Z; will have to be considered when putting restrictions on Z. Depending on the
medium in which the cable lies, other adjacent structures, length, etc., Z; can vary considerably. Note that for
certain (complex) values of s, namely natural frequencies sy, we have

Zi(sqg) = 0 | (3.4)

so one much replace (3.3) for s near s.. by a requirement that the change of the natural frequency As.. be small
where

Zi(sq +Asq) + Zg(sg +Asy) = 0 (3.5)

One may also have another kind of loading (capacitive or conductive) associated with the presence of the
physical source in that it is in general somewhat larger than the cable cross-section dimensions. This is a parallel
kind of loading with admittance Y which should be small enough not to perturb the cable current.
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Fig. 3.1. Insertion of a Local Equivalent Source



As discussed earlier, a single source has limitations when simulating the effect of a distributed source
(incident field), particularly at high frequencies. So one can limit the range of { in (3.1) to be simulated by a single
source. So let there be N sources located at {, for n=1,2,-.-, N. Then define the individual sources by

1

Rk

Vs, (6) = J. EF™(g.0)d¢
. e,
2
3.6
¢ .1 = position between n and $pat
n+l
: ,

where the end points of the integration are chosen for convenience, such as to give uniform amplitudes to the Vs,
perhaps allowing for time delays (phase shifts) from one source to the next.

Now the cable driven at N positions is represented by an N X N impedance matrix and (3.2) is replaced by
i 5(c) s T (7
(Ta(s)) = [(Zn,m“)) + (zs’f : (s)ﬂ V5, )
I(s)=1({,,s)= curmentat {,

Vs, (5) = equivalent voltage source at {j,

37
(2,(:,)"(3)) = impedance matrix for cable
(25, )= Z5(5) (tn,m)
Z(s) = source impedance assumed same for each of the N sources
3.7

. _ 1forn=m
mWmTNG fornem

Of course, one can have more general forms than the above, but this simplifies the consideration. This is the same
kind of equation as in [12], and as such the same norm concepts can be applied. This gives the requirement (like
(3.3)) that

IZs(s)l << smallest eigenvalue magnitude of (Z,,,m(s)) | (3.8)

The natural frequencies are now given by

det((Znm(50))) = 0 39)



and the perturbation as in (3.5) is given by
det{(Zy,m(sa + A5 )) + Zs (s + B35 )(1,,,,,1)) =0 (3.10)

Note that with N sources the source impedances are effectively in series connection at low frequencies, for which
case the individual source impedances need to be reduced by 1/N from that for the previously discussed single
source,



Iv. Inductive Line Driver with Low Insertion Impedance

Consider first a somewhat idealized source as indicated in Fig. 4.1. Here an ideal transformer of turns ratio
Np:1 is used to connect a pulser (or even CW source) of voltage ‘7’;,(.9) (open circuit) and impedance Zp (s) to the
effective load of the cable Z;(s) as discussed in the previous section. Of course this could also be one of N pulsers
connected to a matrix load.

Now with this ideal transformer the pulser has the equivalent parameters (as a Therenin equivalent series
source in the cable) as

Vs(s)=M
Np
“.1)

Zy(s)= Z;(S)

2
P

This points out one function of the inductive coupler, namely to reduce the source impedance by a factor N;z to
achieve the low source impedance required. However, the source voltage is decreased by a factor 1/Np, or fora
given V the pulser voltage Vp required is correspondingly increased.

Referring to Fig. 4.2 we have some idea of what a practical inductive line driver might look like. There isa
core of permeability 1 (or g for an air core) of dimensions as indicated. On this is wound a coil made of coaxial (or
even triaxial etc.) cable with characteristic impedance Z¢, approximately a constant resistance such as 50 Q. This
winding can use various of the techniques discussed in [3, 4, 6, 11] to suppress resonances on the winding and
improve bandwidth. In the example. the winding is differential with grounds to case at both ends (A) and midpoint
(B). The signal enters at the center of each half winding where one may terminate the coaxial signal in Z}I) /2
which may be selected as Z (to avoid resonances). Alternately one can terminate the cables in 21("2) /2 back at the
pulser. These terminations are similar to those which can be used with electromagnetic sensors [1, 2], For the
present analysis we will use the first form, noting that a similar result applies with the second form.

Figure 4.3 gives an equivalent circuit for a realistic inductive line driver, noting the coaxial cables are not
included in this simplified equivalent circuit, but can be included if desired. So this equivalent circuit applies to
sufficiently low frequencies that cable effects (such as inductance and capacitance) can be neglected compared to the
effects of the other impedances. As previously noted the cable effects at high frequencies are a delay from pulser to
winding gaps, with resonances suppressed by suitable choice of 2}1) (or 2}2) if desired).

This type of transformer is characterized by an impedance matrix

(28,) = {Lnm)

(L )_ Ll,l Ln.m _ L M 4o
) =ty Loz) "M L 2

det(Lnm) = LL, -M220
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Figure 4.1. Equivalent Circuit of Pulser with Ideal Transformer.
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Figure 4.3. Equivalent Circuit of Pulser with Inductive Coupler (Simplified)
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where the 1 indices refer to primary and 2 indices to secondary. A strictly positive determinant is associated with
the (realistic) condition of non-unity coupling through the transformer (non ideal).

Considering tl"xe secondary first, let the primary winding be open circuited (I, = 0) and note that the
transformer core presents an inductance to the cable (through the core of permeability |t with dimensions as in
Figure 4.2) of

L=+ w g,{.‘*’_Z) @3)

Looking at the primary, let the secondary be open circuited (I = 0), giving an inductance
L= Ng L, ‘ ' @.4)
A more accurate estimate is slightly larger owing to the finite number of turns Np and the resulting nonuniform

distribution of the current around the core. The mutual inductance is found by driving a current from either side (by
reciprocity) and looking at the open-circuit voltage on the other side, giving

M = NpL, (4.5)

Following the procedure of driving the secondary, the flux in the core is quite uniform giving (4.5) as an accurate
estimate for the voltage on the primary. Note now that the determinant relation in (4.2) is satisfied.

With this we can now find the equivalent source in the secondary cable as in Figure 3.1. The equivalent
voltage source is found by open circuiting the secondary and computing

} ) (1)1 a7t
V() _ sMiu() _ M [ZT ) + L] ]
L

ANy . v Oq R -1
VPO () Vp () [21(}) l(s) + {sL}"l] + ZgO)
_ -1
=M {1 + z;,°><s)[z.,@> () + [sL]'l]} 4.6)

L

_ -1
= N;! {1 + z';m(s)[zgﬁ or [sL]‘l]}

The equivalent source impedance is found by setting V;O) to zero and driving the secondary giving
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- 4 1 !
To() = s M i(s){[z}l) o)+ 2O 1(5)] + sL}

f(s) = —[V(s) + s M iw(s)} [SLO]_I

- 4 7l -1
= - {V(@s) + [sM]? i(s)ﬂi}” ‘o) + Z;(:O) 1<S)] + SL} [sLo] ™!

4.7
Vv : -1 -1 -1 -1
Zs) = — Y9 o g M [Z:(rl) (s)+ z® (s)] + sL
I(s) F
Setting
Z}l)(s) =27, (resistive) 4.83)
to terminate the coaxial cables at high frequencies, and setting
30) ()= L
ZT (s)= st
4.9
Cp = pulser capacitance
gives a pulser example (such as for a Marx generator). At low frequencies we then have
Zs(s) = sL, as s—0 (4.10)
which can be small (as desired). At high frequencies we have
. M2
Zy(s)= l-L I sL, as s~ o0 4.11)

Note that the coefficient can be quite small (particularly for large Np) as the transformer coupling is made to
approach unity. For intermediate frequencies this impedance depends on the size of the various parameters, but can
be kept reasonably low.

For such a capacitive pulser one can select a voltage source

VI(,O)(t) = Vu(t) , V§°)(z) = Yf @.12)

which is limited by a finite rise time for a real pulser. For low frequencies the equivalent source voltage for the
cable is

- M VoCpL
Vi(s) = T Vs Cp L-os — as s—0 4.13)

p
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For high frequencies this is

Vel(s) = il e (4.14)

which corresponds to a step rise in time domain. For intermediate frequencies the relative sizes of Z¢, Cg, and L
need to be adjusted to control the waveform, such as by making it non resonant.
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V.  Concluding Remarks

‘ One of the fundamental problems of simulator design is simulator/test-object interaction [7, 9, 13] which
limits simulation accuracy, including extrapolation to (partly) correct for environmental deficiencies. By choice of
sufficiently large Np one can make Z small enough that it does not significantly load the driven cable (a form of
simulator/test-object interaction). Of course, this reduces the coupling efficiency, lowering the pulser voltage by
1/Np to give V. Note also that this inductive line driver is like an inductive current sensor operated in reverse
direction [5].

By use of multiple inductive couplers (electrically isolated from each other) one can distribute the source
over the cable to better simulate the incident wave. By triggering the pulsers at different times one can vary the
direction of incidence of the incident wave being simulated. ’

One can also vary the design of the pulser by addition of various impedance elements. Thereby one has
some control over the shape of V(z).

While this paper has considered inductive couplers, capacitive couplers are also possible. There are certain

advantages to inductive couplers, including efficiency due the transformer action (multiple turns and core).
However, one may wish to consider an array of couplers containing both kinds.
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