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Abstract

-.,

When designing a reflector Impulse Radiating Antenna, one must choose an appropriate
feed impedance. Using the simplest approximations valid for high feed impedances, one finds that
lower feed impedances are always prcfcrablc. However, low feed impedances imply thick feed
arms, which incrcasc feed blockage for many designs, thus reducing the radiated field. Low feed
impedances also lead to a breakdown of the approximation that the cffcctivc aperture height is
equal to the radius of an aperture for circular apertures. Thus, even when there is no feed block-
age, there is a reduced aperture height at low feed impedances.

We calculate here the radiated field based on a contour integration technique that takes
into account feed blockage. With these calculations, one can find the optimal feed impedance for
a given configuration of feed arms. The analysis is valid in the limit of fast risetimes, and is car-
ried out for three different feed structures.
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I. Introduction
,

Simple models of reflector-type Impulse Radiating Antennas @As) have to date ignored
feed blockage [1, 2]. Under these simple models, one finds simply that a low feed impedance is
always preferable to a higher one. However, lower feed impedances contribute more to aperture
blockage, which reduces the radiated field. Even without feed blockage, the simple model is
known to break down at low impedances. Clearly, the simple model needs to be extended to in-
clude aperture blockage and the effects of lower impedance. This is accomplished by using a
contour integration technique similar to that used in [3], while taking into account feed blockage,
and including additional terms in the contour integration.

By way of review, consider the IRA of Figure 1.1, with diameter L), focal distance F, and
feed impedance Zc=Z#g Our simple model leads to a far field on boresight of

Ey(r,t) =~ D
[
3a(t-2F/c) -

r 47rcfg
#w -U(t -2F/c] 1 (1.1)

where the driving voltage across the feed arms is a step fimctio~ F’(t)= V“ u(t) and da(i) is the

approximate delta function [3]. If we now keep power constant, the radiated field is proportional
to fg-% If we choose to keep voltage constant, the radiated is proportional to l/fg, In either
case, these simple models suggest a smallfg is always preferable. This would imply, however, a
large aperture blockage, so we must find a way to compromise.

o
This paper builds on the work of Y. Rahrnat-Stil and D. V. GM in [4, 5]. These papers

calculated the feed blockage as a fimction of frequency and angle from boresight for the configu-
ration of facing plate feeds at 400 Cl impedance. In this paper, we calculate the high-frequency
limit of the radiated field on boresight for configurations with arbitrary feed impedances, and with
a variety of feed geometries. Furthermore, we show how to apply these results to choosing the
optimal feed impedance under a variety of conditions. The techniques of [5] could be used to op-
timize the feed impedance, however, it seems more convenient to use the techniques developed
here. A

We begin by defining the terms necessary for a description of
the radiated field. These are essentially extensions of the definition of
transient gain as described in [6]. Having defined these gains, we then

10

D

calculate them for a number of different feed geometries, building upon
the contour integration methods of [31. We handle both two-arm and
four-arm confi~rations of circular cones, curved plates, and coplanar ++
plate conical feeds.

This is the first part of an anticipated two-part series. A later Figure 1.1. An Impulse

paper will deal with optimizing the feed impedance of very long TEM Radiating Antenna.

horns, or TEM horns with a lens in the aperture (reflector IRAs).
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a II. Gain Definitions

In this section we identifi the problem to be solved, and we speci$ gain definitions that
describe the output of the antenna. Consider Figure 2.1, which shows an IIQ constructed of a
paraboloidaI reflector of circular cross section, fed by a conical TEM transmission line, When
excited by a step-fimction voltage, it has been shown that the field in some aperture plane in front
of the paraboloid is described by the two dimensional problem of two wires [1, App. A]. This
two-dimensional problem is just the stereographic projection of the conical geometry onto an ap-
erture plane [1]. We review here how to calculate the radiated field, and we also speci~ how to
express the gain of such an arrangement.

The aperture electric field is described by the field of a quasistatic transmission line that is
turned on suddenly, In other words, the electric field is expressed as

EUJ’(X’,y’, t) = l+’, y’) u(i) (2.1)

It was shown in [3] that the aperture field E(x’, y’) can be expressed as the gradient of a complex

potential,

where

v dv(z)E(x’,y’) = l!?(z) = E. -jEy = -x= (2.2)

z=x+jy, W(Z)= U(Z)+ j v(z), & = AuIAv (2.3)

In this formulatio~ Av is the change in v around one of the conductors, and Au is the difference
in u from one conductor to the other. In was also shown in [3] that the radiated field on boresight
is

V hajpqr> t)= – da(t-r/c)
r 2zc Jg

where

(2.4)

(2.5)

‘a
In the above equatio~ Sa is the portion of the aperture that is not blocked by the feed, and Ca is
the contour around this aperture. All contour integrals in this paper are in the counterclockwise
direction. In [3] an approximation was made that feed blockage could be ignored, in which case
the integral is trivial to calculate as -D/2, for high impedances. This led to the radiated field of
(1. 1). A more accurate integral, however, excludes the portion of the aperture integral that is
blocked by the feed. The remainder of this paper will be dedicated to calculating the above inte-
gral for a number of configurations. But before doing that, we need to specify how to express the
final results.
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Figure 2.1. A two-arm IRA configuration (lefl and center), and the stereographic projection of the
conical arms into the aperture plane (right).

Let us now consider how to express the gain of such an antenna. We wish to optimize the
feed impedance under two distinct conditions -- constant input power, and constant input voltage.
Thus, we need two definitions of gain that, when optimized, provide the optimal feed impedance
under two distinct conditions. In order to express these parameters, let us recall the definition of
gain as given in [6]

Gp = 2?rc&
Ipqr,t)ll

dVin’(t)

dt

(2.6) ●

Recall that this definition is a fimction of the shape of the driving voltage and the choice of the
norm. Since we are now going to drive our antenna with a step fhnction in transmissio~ let us
assume a waveshape of a step flmction. Furthermore, a sensible choice for the norm is the area of
the resulting delta fbnctio~ the so-called A-norm of [6]. Substituting (2.4) into (2.6), and recog-

nizhg that Vine(i)= V u(t), we find

(2,7)

In this equation the subscript p indicates again that is normalized to power. By this we mean that
if the square root of the input power (V&-x) is held constant in (2.4), then the radiated field is
proportional to h&-~. We will refer to this as the power-normalized gain. Note that the units of
this gain are meters, which is typical of gain definitions in the time domain [6].

Next, we extend this concept of gain to the case where input voltage is held constant.
This has a practical application where an antenna feed can sustain some maximum voltage, due to
voltage breakdown. For this case, we modi@ (2.6) by removing the geometric factor&, to find

●
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prad(v)ll
G, = 2ZC

dVinc(t)

dt

Now, the subscript v indicates that the gain is normalized
ing the radiated field (2.4) into the above equation gives

Gv=~
fg

(2.8)

to a constant input voltage. Substitut-

(2.9)

This is the quantity one must optimize to get the best radiated field when the voltage is kept con-
stant, Agaiq one can check this by noting in (2.4) that if the input voltage is held constant, the
radiated field is proportional to h~fg We will refer to this as the voltage-normalized gain. As be-
fore, the units of this gain are meters.

Note that in [6] care was taken to confine gain definitions to power-based, or power-nor-
malized definitions. This was done in order to be consistent with IEEE gain definitions in the fre-
quency (CW) domain. It is clear, however, that under certain circumstances a voltage-based gain
makes more sense. We therefore should allow the flexibility to define the gain that is most usefid
to a particular problem.

Thus, we see that in order to optimize the radiated field under conditions of constant input
power, one optimizes the power-normalized gain, Gp=h/fg~, with respect to feed impedance.
Furthermore, if one wishes to optimize radiated field for a constant input voltage, one optimizes
the voltage-based gaiq Gv=hJfg,with respect to feed impedance.

Finally, we consider the case of an IRA fed by four arms (Figure 2.2). We calculate the
radiated field for an excitation ofjust two arms at a time. Although one would normally excite all
four arms at once, it is simplest to treat two arms at a time, and then take the linear superposition
of each pair of arms later. To find the radiated fields, we calculate a new effective height of the
aperture, similar to (2.5), except that we exclude the portion of the integral due to the second pair
of feed arms. If we call the new aperture height ha4, then our two gains are

ha4
GP4 = — GV4

.~

K
9

fg
(2,10)

g

Let us now apply these gains to some typical examples.
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Figure 2.2 A four-arm IR4 configuration (lefl and center), and
the aperture plane (right).

t

b

its stereographic projection into
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0 III. Circular Cone Feeds

Consider now perhaps the simplest case one can think o~ that of two circular cone feeds
shown in Figure 2.1. The contour one must integrate around is shown in Figure 3.1. For our
purposes, it is simplest to keep be, the electrical center of the wire, equal to one meter, md to ca-
lculateall our gains for a reflector of radius 1 m. Note that

~2 = be2 i- a2 (3.1)

or if we assume be = 1 ~

b2=l+a2 (3,2)

We have chosen to work in unitless dimensions, adding them at the end. If we do not do this,
then we have to carry the symbol be through all of our calculations, which is somewhat cumber-
some.

‘Py ‘T’y

Figure 3.1. Integration contour for two round wires (left) and four round wires (right).
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We now need to calculate the aperture height ha as a fimction of impedance using (2.5).
To do so, we need the complex potential fhnction describing this geometry. According to [7, 3], o
the potential fbnction is

w= ()U(Z)+ j v(z) = 2 j arccot(z) = in ~
z–J

(3.3)

A map of this potential fimction is plotted in Figure 3.2, which is reproduced from [3]. This can
be separated into

u(z) = ~ In[1X2+(1 +y)2

X2+(1 – y)2

[12x
v(z) = arctan

Xz+y 2–1

Alternatively, one could express the above as

sin(v)
x=

cosh(u) – COS(V)

Sinh(u)

y = cosh(u) – COS(V)

The conductors are defined by circles of +uO,so the feed impedance is

The aperture height fkom (2.5) is now just

ha = -+ I$V(y)dj
c:

(3.4)

(3.5)

o

(3.6)

(3.7)

where C; is the contour around the exposed portion of the aperture in the upper right quadrant.
Furthermore, for this configuration Av = 2 n.

Next, let us calculate where the edge of the reflector intersects with the wire at the top.
The top wire is defined by a circle of constant u ==UO,which is expressed as

X2+[y - coth(uo)]2 = csch2(uo) (3.8)

●
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Figure 3.2. Complex potential for two wires, upper right quadrant.
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Furthermore, the edge of the reflector is defined by
●

●
x2+y2 = 1 (3.9)

Combining the above two equations, we find the intersection of the upper conductor with the rim
of the reflector occurs at

Furthermore, we need for the four-arm case the intersection of the edge of the reflector with the
wire on the right. By symmetry, this occurs simply at

(%Y1) = (~(%), -(%)) (3,11)

We now have enough information to calculate the contour integral in (3.7).

Consider first the contour integral for the two-arm case. On the horizontal arm of the
contour Cl, @ = O,so there is no contribution due to it. Thus,

4 = p(Y)@= o (3.12)
cl

e
Along the outer edge of the reflector, C2, v = 7c/2,so

12= p(Y)41 = ; tanh(zfo)

q

On C3, x = y csch(uo), so

‘(y)=z+wctm[[:::!ll

(3.13)

(3,14)

Note that we have added n to the result, in order to use the correct branch of the arctangent
fimction. Thus, the integral along the radial portion becomes

With these integrals defined, we find the overall aperture height from (3.7) as simply

c

10



(3.16)

This completes the formulation for the two-arm case, The various integrals are carried out nu-
merically using the program Mathematical [12]. In the case shown here, this program is merely a
convenience. However, for the more complicated cases to follow, this program is used as an im-
plementation of special ii.mctionswith complex arguments.

Next, we consider the four-arm case. Along the bottom portion of the contour, we have
x= y sinh (UO). Substituting into (3.4) gives

I 2ysinh(zfO)
v(y) = 7r+ arctan ~ 1 (3.17)

IL
so the contour integral along 14 is

Next, the portion of the contour integral

cosh(uO)]2 - 1~

along the arc, C5,is simply

tanh(uo) - sech(uO) ]

Finally, along C6, the integral is the same as for the two-arm case. Thus,

(3,18)

16 = 13

and the overall aperture height for the four-arm case is

ha4 = ‘2(~4+~5+~6)
n

This completes the formulation of the four-arm case.

Before plotting our results, we need to establish a value for 2., the impedance of free
space. We have the option of expressing our results as a fbnction of feed impedance, in Ohms, or
in terms of the normalized feed impedance, & which is unitless. We choose to use actual imped-
ance, however, we must be carefi.d to spec@ the impedance of flee space 20 as accurately as
possible. Thus, we speci~

Z* = poc = 4ZX10-7 H/m x 2.99790 x108 m/s = 376.727fl

(3.19)

(3.20)

(3.21)

(3.22)

11



This provides sufficient accuracy, since we claim no more than four significant figures of accuracy
,

in our numerical results. ●

Let us present now our results. First, we calculate the feed impedance as a fi.mction of a/b
and a/be (Figure 3.3). These results help to speci~ the geometry, since all fbture results are
plotted as a fhnction of feed impedance.

Next, we calculate the aperture height as a finction of characteristic impedance, for both
the two-arm and four-arm cases (Figure 3.4). Recall that all of these results are presented for the
case of an aperture radius of 1 m (be= 1 m). For these cases, when we ignore aperture blockage,
we expect the aperture height to be 1 m [3], and that is what we see in the limit of high imped-
ances. Note that the penalty for the second pair of arms is small at high impedances, and more
substantial at smaller impedances.

Next we plot the power-normalized gai% h~~g%, as a function of feed impedance (F@ure
3.5). This is the quantity one optimizes when a fixed amount of power is available. Although the
maximum is rather broad, we can see a peak. We find the peak for the two-arm case to be at
ZC=311.9 Q where GP= 0.8491 m. For the four-arm case, the peak occurs at ZC= 406.2 S2,
where GP4= 0.8060 m. The second pair of arms pushes the optimal case to higher impedances
(thinner feed arms) where there is less aperture blockage, as we expect.

Finally, we calculate the voltage-nornxdized gai~ h~jg, for both the two-arm and four-
arm cases (Figure 3.6). This is the quantity one optimizes when a fixed maximum voltage is
available. For the two-arm case, we find that the optimal value occurs at ZC= O. Since one can-

8

not have an impedance of zero, in practice one chooses to make the feed arms as large as possible
within the space available. The four-arm case is also shown in Figure 3.6, having a maximum at
266.8 Q, where GV4 = 0.8688 m.

Note that in the four-arm case we cannot calculate the various gains to as low an imped-
ance as we might like, since we are not modifjing the impedance calculation to account for the
second pair of arms. As long as the second pair of arms is thiq this is similar to placing a conduc-
tor in the plane of symmetry, which has no effect. As the second pair of arms becomes thicker at
lower impedances, the approximation breaks down.
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Circular Cones, Impedance vs. a/b
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Figure 3.3. Feed impedance as a finction of wire radius.
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Figure 3.4. Variation of aperture height with feed impedance for two-arm (top) and four-arm
(bottom) circular cone feeds. o
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Two Circular Cones, Gv vs. Impedance
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Figure 3.6. Variation of voltage-normalized gain with feed impedance, for the two-arm and four-
arm circular cone feeds. The four-arm case (bottom) has a peak of GV4= 0.8688 m
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● v. Curved Plates

Next, we consider the case of curved plates that are confined to lie in a circle of radius
1 m, The projection of this geometry into the aperture plane is shown in Figure 4.1. The proce-
dure for solving this is exactly the same as that for the circular cones, treated in the previous sec-
tion,

1lm

0

Figure 4.1. The geometry for curved plates, two-arm and four-arm configurations.

According to [8, 11], the potential fimction is described by

[11 z–1 1+ j m%n(w m)
w = arcsn ——

jm’AZ+l ‘ z = 1-j m%sn(w m)
(4. 1)

where sn(wlm) is one of the Jacobian elliptic fimctions [9], and arcsn is its inverse. This complex
potential fi.mction is plotted in Figure 4.2, which is reproduced from [8]. The relationship
between m and a is

l-sin(a) 4
tan(cz) = l~m~~ , m =

[1 Cos(cz)

The characteristic impedance of the configuration is Zc = ZO&, where

K(m)

‘g = K(ml)

(4.2)

(4.3)

In this equatio~ K(m) is the complete elliptic integral [9], and ml = 1 -m.
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We now need to find the aperture height. As with the circular cones,

ho = -$ ‘$v(Y)@ (4,4)
CL

where v(y) = Im[w@)], and the contour CL is the contour that surrounds the portion of the aper-
ture in the upper right quadrant that is not blocked by the feed arms. These contours are shown
for both the 2-arm and 4-arm cases in Figure 4.3. Furthermore, Av = 2K(m1) for this conf@ura-
tion,

‘ry +y

Figure 4,3. The integration contours for the 2-arm and 4-arm curved plate feeds.

We begin with the two-arm case. Along Cl,@= O, so 11= O. It was shown in [8] that
along the circular arc C2, v@)= O, so 12= O. Thus, the only contour of interest is C3. Along this
contour, x =y tan(cz), so

13= jv(Y)@ = ]q4Ydd+~Y)]@ (4.5)
c~ cos(a)

where w(z) is defined in (4. 1). Thus, the aperture height, fi-om(4.4), is

– -~13‘a- K(q)

This concludes the formulation of the two-arm case.

(4.6)

Let us consider now the four-arm case. Along C4,x =y cot(a), so
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●
sin(a)

h = JV(YMY= p.+(Y4$+jY)]@ (4.7)

cd o

Furthermore, along C5 v(y)= O,so 15= O. In additio~ along CGwe get the same result as for C3,
so

15=0

16 = 1~

Thus, the aperture height for the four-arm case is just

(4.8)

(4.9)

This completes the formulation for the four-arm configuration,

We begin our results by plotting the feed impedance as a function of a (Figure 4,4). We
do so because all subsequent results will be expressed in terms of the feed impedance,

Next, we calculate the aperture heights for the two-arm and four-arm cases (Figure 4.5),
All cah.dations, as before, are for an aperture of radius 1 m. Thus, when one ignores aperture @

blockage at high impedances, one calculates an aperture height of 1 m, In the results shown here,
the aperture heights approach 1 m at high impedances, and degrade as the impedance decreases,
as we expect.

Next, we calculate the power-normalized gai~ h~fg%, which one optimizes when a fied
amount of power is available @igure 4,6). The peak for the two-arm case occurs at
ZC= 412,6 Q, where GP = 0.7789 m, The peak for the four-arm case occurs at Zc = 505.6 Q,
where GP4= 0.7455 m. Note that these values of gain are lower than the corresponding gains of
the circular-cone feed in the previous section,

Finally, we calculate the voltage-normalized gain, h~fg, which one optimizes when a fixed

voltage level is available (F@re 4.7). The peak for the two-arm case occurs at Zc = 232.3 Q
where GP = 0.8727 m. The peak for the four-arm case occurs at ZC= 371.3 Q where
G@ = 0.7004 m. Note that adding a second pair of arms in this case introduces a significant
penalty in performance.
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Figure 4.4. Characteristic impedance as a fimction of a for two curved plates.
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Two Curved Plates, ha vs. Zc
1r

0.8

0.6
ha (m) F

0.4

0.2

0

7

100 200 300 400 500 600 700

Impedance (Ohms)

Four Cuwed Plates, ha4 vs. Zc
1 .“””

.8 ;

ha4 (m) “6 :

.4 ;

.2 :

0
100 200 300 400 500 600 700

Impedance (Ohms)

Figure 4.5. Aperture heights as a finction of feed impedance for curved plates,
and four-arm (bottom) conjurations.
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Figure 4.6. Power normalized gain as a fi.mction of feed impedance for curved plate feeds. The
two-arm case (top) has a peak of GP = 0.7789 m at 2= = 412.6 Q. The four-arm case
(bottom) has a peak of GM = 0.7455 m at ZC= 505.6 Q
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Two Curved Plates, Gv vs. Zc
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Figure 4.7. Voltage normalized gain as a fimction of feed impedance for curved plate feeds. The
two-arm case (top) has a peak of GV= 0.8727 mat ZC= 232.3 Q. The four-arm case
(bottom) has a peak of GV4= 0.7004 m at ZC= 371.3 Cl
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● v. Coplanar Plates

Finally, we consider the configuration of coplanar plates (?3gure 5.1). This is an appealing
configuratio~ since there is no aperture blockage, at least using our simple approximation of
geometrical optics. Although there is no aperture blockage, the approximation that the aperture
height is equal to the aperture radius breaks down at low impedances. The approximation is still
very good at higher impedances. As usual, we work the problem for an aperture of radius 1 m.

1Im

Figure 5.1. Projection of the coplanar plate configuration onto the aperture plane, 2-arm and 4-
arm configurations,

The potential fi.mctionfor this configuration is adapted slightly from[11] as

where the arcsn

( -Yi )w(z) = arcsn –jm z , z = jm% sn(w)

fhnction is the inverse of the Jacobian elliptic sn fimctio~ and

Furthermore, the characteristic impedance is ZO&, where

K(m) K(m)
fg = K(l-m) = K’(m)

(5.1)

(5.2)

(5.3)

An approximate potential limction map is plotted in Figure 5.2.

●
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Figure 5.2. Approximate complex potential map for coplanar plates, A more accurate diagram of
a closely related configuration appears in [11, p. 71].
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As usual, we need to find the aperture height

(5.4)

where A v is the change in v around one of the conductors, in this case 2 K’. Interestingly, we
need to calculate this only for the 2-arm case, since the integral for the four-arm case is identical.
This is a true no matter how low the feed impedance is, since the second pair of arms does not af-
fect the integral.

Figure 5.3. Contours for the coplanar plate aperture integratio~ 2-arm and 4-arm arrangements.

Before proceeding to the contour integral calcuiatioq we need to prove that the contour
C2, described by x2+y2=l, also lies on the contour v = -K’/2. To demonstrate this, we note that
[9, p. 575],

sn(u+jvlm) =
sn(ulm) dn(vlnq) + j cn(ulm) dn(ulm) sn(vlnq) cn(vlnq)

(5.5)
cn2(vlnq) + nzsn2(ulm) sn2(vlnq)

Substituting this into (5. 1), and noting that v = -K’/2, we find

= cn(ul m) dn(ul m) (I+itz$rl(u]nz)
x

l+m% sn2(ulm) ‘
Y=

1+ ~%sn2(~l~)
(5.6)

on the contour C2. Note also that [9, p. 573]

l-m-dn2(u\m) = -nzcn2(ulnz) = msn2(ulm)-m
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By combining (5.6) and (5.7) one can show with a little algebra that x2+y2=l on the contour de-
scribed by v = -K’/2, ●

L@ us now calculate the contour integral. The contours to be followed are shown in Fig-
ure 5.3. Along Cl, dy = O,so 11= O. Along C2, we have just proven that v = -K’/2, so

(5.8)

Finally, along C3, v = Ofor the portion of the curve not touching the feed aq so there is no con-
tribution. Where it touches, there is a contribution. Thus, z =j y along C3, so the integral is

1/4m

( -MY))+13 = J v(y) dy = ~Im(arcsn m (5.9)
q 1

It is simplest to evaluate the above integral numerically, by using a program such as Mathematic~
which has the inverse sn fimction built in. However, it is possible to evaluate this finction
analytically, in closed form. One can obtain some interesting results by generating the closed form
solutio~ so it is worth the extra effort.

We begin the evaluation of 13by noting that on the upper plate u(z) = K, so

w(y) = ()K + j v(y) = arcsn m-%y

o
(5.10)

It is straightforward to show that sn(K + j v \m) = nd(v Inq) , soon the upper plate

v(y) = (arcnd zn-%y Iml) (5.11)

where the nd iimction is one of the Jacobian elliptic fi.mctions, and arcnd is its inverse, This
simplifies the evaluation of13 to

13 =

=

(5.12)

where y’= m-~ y. Itis unclear how to carry out the above integration directly, however, one can
differentiate the above integrand simply. This makes the integral a good candidate for integration
by parts. Thus, the derivative is [13, p. 286]
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-$ arcnd(y’ lnq) =

h

Using this, the integral becomes

1
#y’ arcnd(y’lnq)

f t

y’=m-%
- “f:-%*

K’ 1/4 1 I I
—_
2“

‘“-’*

If we now make the substitution $ = y’2, we have

1/4

13=; –q
d~

2 m-%
~

K’ m% 1
J

d~= ———
2 2 m-% ~

-l+(m+l)~-m~

o The integral now simplifies by using [14,p.81]

which is valid for c <0 and 4ac - bz <0. Thus we have

This completes the evaluation of 13.

Finally, let us calculate ha using (5.4). The total effective height is just

ha = -*(12+13)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

where 12 is given in (5.8), and 13 is given in (5.17). Thus, we have

o
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‘a==[l-:mcsin[(l-:)2)1
As we said earlier, this is valid for both the 2-arm and 4-arm configurations.
of this expression at high impedances, for m+ 1or nq + O, is

which converges to the correct answer for high impedances.

,

(5.19) ●

The asymptotic limit

(5.20)

This concludes the evaluation of ha,

We can make an interesting comparison now between the analytic form of ha and some
other results obtained for circular aperture distributions [15]. It was shown in [15] that for a
circular aperture whose aperture field could be expressed as a sum of circular harmonics (i.e., a
TEM field with no singularities internal to the aperture), and whose time dependence was a
uniform step fi.mctio~ the radiated far field on boresight is

E(Z, t) = g &a(t-r/c) (5.21)

where a is the aperture radius, r is the distance out on boresight, and EO is the field at the center 9
of the aperture. Furthermore, the fimction da(t) is the approximate delta function that has
appeared in many earlier papers. For the current geometry of coplanar plates, the field at the
center of the aperture is

V du(x = o,y)
EO=—

2Ka 4 y=o

Vd . vm-?4
—arcs”(m-% Y)

= 2KQ dy 2aK
(5.22)

y=o

Thus, if the theory of [15] held true for the current geometry, we would expect a radiated field of

V am-%
E(z, t) = ;Eda(t-rlc)

Comparing this to (2.4), we have an effective aperture height ha of

Zfg a -+4

ha =
7ram

2K = 2K’

(5.23)

(5.24)

This is clearly different from the effective height developed in (5.19), which we know must be
correct. In fact, it is exactly the first term of (5.19). (Recall that (5.19) was calculated based on
an aperture radius of unity, so we must multiply the result of (5.19) by the radius a in order to
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● make a direct comparison.) We therefore conclude that the theory of [15] does not hold in this
case, perhaps because of the presence of the metal in the aperture, which gives a singularity in the
aperture fields. It is worthwhile to note, however, that the expression in (5.24) approaches the
aperture radius a at high impedances, as it must. Thus, the two expressions are equivalent in the
limit as b#bz+l.

Let us now present our results. First, we show a plot of 2= as a fimction of bl/b2, and as a
fhnction of bl (Figure 5.4). We do so since all subsequent results are provided in terms of the
feed impedance,

Next, we plot the aperture height as a fi.mction of 2= in Figure 5.5. At high impedances
there is relatively little degradatio~ however as one approaches zero impedance the effective
height does tend toward zero. This is not due to aperture blockag~ this simply represents a more
accurate calculation that what was done previously. Recall that we expect an aperture height of
1 m only as an approximation at high impedances [3]. This calculation is valid for both two-arm
and four-arm conjurations.

The power-normalized gain, h~fg~, is shown in Figure 5.6. For this configuration we get
a peak of 0.9132 m at an impedance of 301.8 Q. Note that this peak occurs at about the same
impedance as with the circular cone feed (3 11.9 Q), however, the peak power-normalized gain
for that case was only 0.8491 m. Thus, we do see the effects of aperture blockage. Even more
interesting is to compare the four-arm cases, The same peak of 0,9132 m is still valid for the co-
planar plate case. But for the circular cones the peak power-normalized gain is only 0.8060 m.
Thus, the improvement with coplanar plates becomes even more significant with four arms.

Finally, we plot the voltage-normalized gai~ h~f, in Figure 5.7. For this case, the peak
ioccurs at zero Ohms, so one is limited by the amount oft e feed arm one can allow to project be-

yond the edge of the reflector.
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Feed Impedance vs. bl/b2
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Figure 5.4. Feed impedance for coplanar plates as a fimction of bl/b2 (top), and as a fimction of

bl (bottom) for a radius of 1 m.
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Coplanar Plates, ha vs. Zc
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Figure 5.6. Power normalized gain as a fbnction of feed impedance

The peak is ha =0.9132 mat ZC=301.8 S2.
for coplanar plate feeds.
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Coplanar Plates, Gv vs. Zc
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Figure 5.7. Voltage-normalized gain as a ilmction of feed impedance for coplanar plate feeds.
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e VI. Discussion

For most of the configurations discussed here, there are maxima in the gains that optimize
the radiated field. It should be pointed out, however, that these peaks tend to be rather broad, so
one can miss the optimal feed impedance by a fair amount, and still be within ten percent or so of
the maximum gain.

One question that remains is whether or not a second pair of arms increases the radiated
field. Consider fist the case of constant input power. With two arms, one feeds the antenna with
a voltage 1? With four arms, one connects pairs of arms in parallel, thereby rotating the field by
450 [10]. Now each pair of opposite arms is fd with half the power, or a voltage of P72%,
assuming the same impedance for each pair of arms as for the two-arm case. Since the maximum
field is polarized at an angle of 450 to either pair of arms, there is no net effect if one ignores feed
blockage. If one includes feed blockage there is a slight disadvantage with using four arms. The
total radiated field with four arms is down by a factor of ha4/ha from the two-arm case. Since this
ratio is equal to one for the coplanar plate case, in this case there is no penalty at all. On the other
hand, there is a significant advantage in using four arms, since doing so reduces the input imped-
ance by a factor of two. This could be important when matching the antenna impedance to the
source impedance, since source impedances are typically lower than antenna impedances. An-
other use of the second pair of arms is that it allows one to transmit two polarizations.

Next, consider the case of constant voltage. The constraint we used was that the voltage

o
across each pair of opposite arms was set to some maximum which was determined by the break-
down properties of the medium, This constraint makes sense for the two-arm configuratio~ but it
requires some modification in order to make sense in the four-arm configuration. In a two-arm
configuration the maximum voltage across the two arms is V. In a four-arm configuration if volt-
age breakdown occurs, it occurs between oppositely charged arms that are next to each other,
rather than opposite to each other. This, in practice, would limit the total sustainable voltage
between two opposite arms to be somewhat less than K If it were ?72X, then once again the
second pair of arms would introduce a small penalty in the radiated field, quantified as ha4/h~.
However, in general this arrangement should be able to sustain somewhat more than V/2~, In
fact, for thin wires, it is known that four wires can sustain a voltage of almost V. Thus, the
second pair of feed arms might allow an increase in the radiated field by somewhat less than 2% of
the total radiated field, depending on the details of the feed structure. Clearly more work will be
needed to clari@ the four-arm case when limited by voltage breakdown.

Certain feed impedances are natural choices. For example, a feed impedance that is 50 Cl
times an even integer exponent of 2 (50 Q x 2z~) is convenient when building a balun or imped-
ance transformer (with turns ratio 1:N). For this reasoq a fked impedance value of 400 Q for two
feed arms (effectively 200 Q with four feed arms) was previously thought to represent a good
tradeoff between low feed impedance and minimal aperture blockage. The results generated here
tend to confirm that the maximum occurs in the vicinity of 400 Q for most of the sets of
constraints in which we might be interested. If the optimum radiated field is required, however,

● we now understand how to choose the feed impedance. This might be useful, for example, if no
balun were required, or if one fed the antenna with an impedance other than 50 Q.
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VII. Conclusion

In this paper we have described a simple technique for trading off low feed impedances in
an IRA against aperture blockage. The technique involved a contour integration that included
more terms than earlier works had calculated, thereby accounting for aperture blockage. Optimi-
zation were carried out based on constraints of constant input power and constant input voltage.
Configurations with both two arms and four arms were analyzed. A later paper will provide
similar results for a long TEM hoq or a TEM horn with a lens in the aperture (lens IRA).
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