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Abstract

We define here a new symmetry operator called reciprocation. Apertures that remain
unchanged afler reciprocation are called self-reciprocal, and have a number of unique properties.
When excited suddenly by a voltage, a self-reciprocal aperture becomes an antenna. This antenna
is an approximation to a TEM horn, to a lens IRA (TEM feed + lens), or to a reflector IRA (TEM
feed + reflector). Because of the unique properties of self-reciprocal apertures, these antenna
configurations have radiation characteristics that are of a particularly simple form. The simple
form for the radiation from self-reciprocal apertures greatly simplifies the design rind analysis of
this class of antenna.
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I. Introduction

Recent interest in the radiation of fast transients has led to investigations of the fields
o

radiated from apertures [1]. Using the concepts of [1], we can describe the prompt (early-time)
radiation of most of the common antennas used for radiating fast transients, including long TEM
horns [2], lens W (TEM feed with a lens) [1-3], and reflector IR4s [1, 4-8]. Although the
techniques of [1] are simple in principal, involving a contour integration around the aperture,
ofien the contour integral can only be carried out numerically. It would be usefid if the integral
could be simplified. We define here a new class of geometries, called self-reciprocal geometries,
for which these contour integrations simplifi considerably. This simplification Ieads to a closed-
form result, and is proportional to the field at the center of the aperture [13].

We begin by describing the reciprocation operator. A geomet~ that remains unchanged
after reciprocation is called self-reciprocal. We calculate here the field radiated flom a self-
reciprocal aperture in a number of ways; using contour integration, using the line dipole moment
of the aperture, and using the field at the center of the aperture. The technique of using the field
at the center is particularly simple to implement. Finally, we describe how this new symmetry
operator fits into the larger picture of symmetry operators in electromagnetic.



IL The Reciprocation Operator and Self-Reciprocal Apertures

—
An entire field of endeavor has grown up around the concept that by understanding

symmetry in physical systems, one can more simply describe these systems [9]. One often takes
advantage of left-right symmetry (reflection) to simpli@ a problem, but the applications of
symmetry go far beyond this. One can use a wide variety of rotations, inversions, and other
operators, as described in [9] to describe such devices and phenomena as self-complementary
antennas, dihedral capacitors, and wave propagation through chiral media. The symmetry we
describe here can be considered an additional method of simpli&ing the description of the physical
world with a new type of symmetry.

Let us consider now the new symmetry operator, reciprocation, in two dimensions. This
operator replaces each point in the original geometry by a constant times its reciprocal conjugate.
The original geometry is described in terms of the usual x and y coordinates as

(2.1)

After invoking reciprocation all points in the plane are mapped to new locations, indicated by a
subscript 2. This mapping is

C2 = xz+jyz = a21~, xz = a21x, y2 = a21y
(2.2)

<2 = Y2 #2, Y2 = a21Y, 42=4

This is in some ways similar to reflecting an object through a circle of radius a centered at the

origin. A single point maps to a new point which appears at the same angle from the x-axis, but

its new distance from the origin is a2 /Y. Thus, points outside the circle are mapped inside, and
points inside the circle are mapped outside. Points on the circle remain unchanged, Note that one
could extend this idea to three dimensions trivially.

The ideas behind this transformation are not particularly new, as they have appeared
earlier in [10, 11]. This transformation, for example, has been used to simpli~ the problem of a
line charges near a conducting cylinder, parallel to the line charge [10, pp. 69-70]. Toward the
end of this paper we develop this operation in the context of symmetry groups and symmetry
operators; a concept that is new. However, there is some precedent for using this transformation
to simpli~ problems in electromagnetic.

The operator we have defined here is not analytic in <. A related operator which maps J

to a2 /<, (without the conjugate), is both analytic and conformal. The reciprocation operator we
defined above is not analytic, nor is it conformal. It is actually a combination of the analytic

operator a2 /<, and a reflection through the x axis. Thus, it is “almost” a conformal mapping, the
angles being preserved, but reversed.
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It is pointed outin[11] that under this transformation we call reciprocation, every straight
line is transformed into a circle passing through the origin, and every circle passing through the ●
origin is transformed into a straight line. Furthermore, any circle that does not pass through the
origin is transformed into another circle. Finally, any straight line passing through the origin is
transformed onto itself We can consider a number of pairs of structures that are complementary
under reciprocation (Figure 2.1). It is clear these structures are consistent with the above rules,
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Figure 2.1. Some examples of structures and their reciprocals.

If we now assume that the shapes in Figure 2.1 are made of perfect electric conductors,
and we assume a potential difference V between the two conductors, then we have in two
dimensions the cross section of a transmission line. We also assume that there is no net charge on
the combination of the two conductors. This two dimensional problem must satisfy Laplace’s
equation in two dimensions, so one can use a complex potential fbnction to describe the static
fields that result [10]. Thus, the complex potential is

W(4 = Z&) + j V(4 (2.3)

where the function u(O is usually taken to be proportional to the electric potential. The contours
of the two conductors that form the transmission line are contours of constant u. The fields can
be described in a number of ways as
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v dw(~
E(O ‘ -%(O - My(g) = -——Au d~

[

v Z2f(g’) 1[j‘U(O= v 6’V(Q + j‘V(O————— ———=
Au 8X dy Au 6’Y ax 1 (2.4)

H(G = HX(~-j HY(O = ~(~/(jzo)

where Au is the change in u from the first conductor to the second, and V is the potential
difference between then-i. In these equations we have used the Cauchy-Riemann expressions in
rectangular coordinates [12],

These are valid for all complex fbnctions w(O, provided its derivative w’(Q exists.

Continuing with the development of the transmission-line analogy, we can also identifi a
geometric factor~, which is the ratio of the characteristic impedance of such an arrangement to

i!!the impedance of ee space. Thus, we have

(2.6)

where Au is the change in u from one conductor to the other, Av is the change in v as one
encircles one of the conductors, and 20 is the impedance of free space.

We can also write analogous expressions for a second problem, which is the reciprocated
geometry of the first. The second problem has a complex potential that is described by

W2(43 = w*(<2) + jvo = w*(a2 /J*) + jvo

= u(a2 J<*) – jv(a21 ~*) + jvo

where VOis some real constant. Another way of expressing this is

W(Q = w2*(<2) – j V. = w2*(a2 /<”) –

= w2(a2 IQ – jvo

j v.

(2.7)

(2.8)
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We can now derive some interesting analytic properties from (2.7) and (2.8). Of course, the
fimction w is analytic in < Because of (2.8), the fimction W2must also be an analytic fimction of
< except at J= O. Finally, W2is not an analytic fhnction of ~2, but it is an analytic finction of

@

~“. Thus, the fi.mctionw2*(@ is analytic in <2. We will find these properties useful later, when
we calculate contour integrals.

The fields in the reciprocal problem can be related to those in the original problem as

E2(&) = -E*(~$ (2.9)

In order to prove this, we note that the reciprocal transform consists of a combination of an
analytic transform and a reflection through the x axis (i.e. conjugate) (Figure 2.2), First we
consider the relationship between the original problem and the analytic transform, which maps ~
into cl = azl~ We have

w(O = WI(JI) + jvo

so the relationship between the fields is

(2.10)

(2.11)

We now find the relationship between the original problem and the reciprocal problem. The
mapping between the analytic problem and the reciprocal problem is 42= ~1*, This is just a
reflection through the .xaxis. Thus, we have

*2
E2(<2) = E1*(&) = -E*(~$ (2.12)

which proves the relationship in (2.10).
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Figure 2.2. Tkeecofi~rations forcalculating thepotentials and fields.

Let us now consider the special case of self-reciprocal structures. These are structures
that remain unchanged after reciprocation. A sampling of self-reciprocal structures is shown in
Figure 2.3. In this case, the structure is unchanged afler reciprocatio~ so the potential flmction
maps onto itself (to within a constant) as

w(O = W*(J2) + jvo = w*(a21 <*) + jvo

U(O = U(J.’) (2.13)

V(O = –v(C2) + jvo

where V. is a real constant, which determines the location of the branch cut. We will see later that
a convenient location for the branch cut is on the circle through < = – a, which makes the value
of V. equal to zero. We can also establish a relationship between the fields in self-reciprocal
structures. Using (2. 12) we have

*2
E(~2) = c-E*(~Y (2.14)

a

Having established some of the basic properties of self-reciprocal apertures, let us now consider
the radiation from such apertures.
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Figure 2.3. Some examples of self-reciprocal apertures.
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e m. Radiation from Self-Reciprocal Apertures Using Contour Integration

The theory of radiation from apertures using contour integration has already been
developed well in [1]. Our purpose here is to show some special results that relate to self-
reciprocal apertures.

First, we review the theory of radiation from apertures from [1]. If some potential is
turned on suddenly, then we have a radiated field on boresight of

V ha
E(r, t) = –— C$a(t)

r 2zcfg
(3.1)

where c is the speed of light, fg is the normalized impedance of the transmission line fo~ed bYthe
two wires, and da(t) is an approximate Dirac delta fimction, which becomes exact in the limit as r
approaches infinity, Furthermore, the aperture height, ha can be calculated as

ha = haXix + haYiy = -+ HL=~(’>Y)A&
(3.2)

where the surface integral is taken over the entire cross section, excluding the conductors.
Alternatively, this can be expressed in complex field notation as

Note that the real and imaginary parts of ha correspond to the x and y components of the vector
aperture height. The Integral can be written in a variety of ways as

or by combining the above two forms of the contour integral,

(3.4)

(3.5)

where the contour integral is taken around the entire cross section, as shown in Figure 3.1. Recall
that this final result can be compared to the Cauchy integral theorem,

fcW(od( = O
a

(3.6)
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which is valid for all w(O as long as there is no singularity within Ca. The difference between
(3.5) and (3.6) is the conjugation. o

Figure 3.1, The contour Ca, where surface Sa is the area contained within Ca The net charge
on the conductors is zero.

Another way of expressing the integral W involves breaking up the potential fimction into
its real and imaginary parts. Thus, [1]

This allows one to separate out the x and y components of ha in (3.3).

Let us now consider the effect of using a self-reciprocal structure. The shape of the
contour can now be deformed to be the sum of four contours (Figure 3.2). The two contours
near the circle of reciprocation are the “diverted” contours, C+ and C-, and they map onto each
other under reciprocation. The two other contours, at y+ m and Y+ O, also map onto each
other under reciprocation.

10
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Figure 3.2. Thelocationof C+ and C.. Note that Ca=C+u C,+ C-u Cot Also, the net
charge on the conductors is zero.
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Recall that a self-reciprocal structure has the property that

W(O = w*(<2) + jvo
z/(# = U(<2) (3.8)

v(g) = -v(<2) + ~vo

with V. being an arbitrary real constant. It is convenient, for self-reciprocal structures, to impose
the condition that w(<=a) = 0. This leads to a branch cut on the reciprocation circle through
J= -a, as shown in Figure 3.2. This is a convenient place to have a branch cut, since the branch
cut does not move when the structure is reciprocated. Thus, if w(O is chosen conveniently, the
value of VOin the above relation is zero. Other possible choices for the branch cut might be on the
y axis at either Iyl<a or Iyl>a. These two choices transform onto each other under

reciprocation.

Let us now simpli~ the contour integral. Starting horn (3.5), we can express Was

w= W++w. = q w(c)& +; +C-”coNo d2 C+uc.
(3.9)

since Ca = C+UC= UC. UCO. Consider first the integral around the combination of

C+ u Cm. We may invoke reciprocation to simpli$ the integral W+, and we find that Cm maps to

-Co, and C+ maps to -C.. These mappings are true because the aperture is self-reciprocal. Thus, *
we find

(3.10)

where W2(<2)is the potential fbnction for the reciprocal problem. In the above equation we used

the fact that ~“ = az [ <2, so d<”/ d< = – a2 / <22. We now need to test the analyticity of the
fbnction W2*(J2)(a2/<22), which appears in the integral in (3. 10). We have already shown that

W*(<2)is an analytic fimction of <2 in Section II, equation (2.8). This implies that the function

W2*(C2) (a’ / ~2) is an analytic flmction of (2 except at <2= O. So the integral in (3.10)is
around a closed contour that contains no singularities. Thus, by Cauchy’s integral theorem
(equation (3.6)),

W+=o (3.11)

Substituting into (3.9), noting that the integral around Co is trivialiy zero in the limit as VO+ O,
we have

12

(3.12)
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e We therefore find that the portion of the aperture integral outside the circle of reciprocation
provides nonetcontribution tothe total integral W. This implies that theaperture fields outside
the circle of reciprocation in a self-reciprocal structure make no net contribution to the radiated
field on boresight. Using (3.7), the integral W can be expressed in various forms as

Therefore, the final result for ha for a self-reciprocal aperture is

(3.13)

(3.14)

A considerable simplification has been achieved by only needing the contour integral around C.,
rather than around all of Ca.

As a consequence of this complex field theory, we may infer some practical results. In
particular, this provides insight concerning the size of lens one might use in a lens IRA. Consider
the lens IRA shown in Figure 3.3. The horn portion of the TEM horn is constructed out of a
portion of a circular cone. It had previously been thought that one would like to have a lens that

*

included the entire aperture, extending out to infinity. Clearly this is not practical, but we have
just shown that the fields outside the horn aperture make no net contribution to the radiated field
on boresight. In other words, if the lens extends only out to the edge of the horn, then one can
achieve the same effect as if the lens extended out to infinity,

Similarly, one might wonder if the truncation of the aperture in a reflector I&4 reduces the
totaI output of the antenna. We assume here a circular reflector and also the projection of the
conical feed onto the aperture plane is self-reciprocal. Under this assumption, the fields outside
the aperture make no net contribution to the radiated field on boresight. This had been known
previously for thin wires [1], but we have just proven it for arbitrary self-reciprocal apertures.

13
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Figure 3.3. A lens IRA.

o
14



6 Iv. Radiation from Self-Reciprocal Apertures Using the Field at the Center of the
Aperture

Although we have already succeeded in simpli~lng the contour integral, it turns out that
we can simplifi it even more by calculating the field at the center of the aperture. This is an
extension of [13], which calculated the radiated field for any circular aperture with no conductors
or singularities within the aperture. We demonstrate now that a similar result applies to self-
reciprocal apertures.

The result of [13] was that the radiated far field could be expressed in terms of the field at
the center of a circular aperture of radius a as

(4$1)

where EO is the field at the center of the aperture. Although EOwas a scalar quantity in [13], one
can simply extend this formula to a vector quantity by superposition, so

1CZ2— C$a(t)E(r, t) = ~OX L + EOYiY ~cr

(4.2)

[
E(r, t) = EOX - jEOY 1: Z$a(t)

Let us now make a conjecture that the field at the center of self-reciprocal apertures describes the
radiated far field in a similar manner. If this is true, then by comparing (4.1) to (3.1) it must also
be true that

V ha EO a2—— = ——
r 2zcyg r 2C

so the field at the center must be

EO = EOX-j EO
Y

Furthermore, it was shown in [1]

ha=~=L
2 Q’ 2C’V

Vlh——— (= fg ~a2 “x – j haY)

that

P fg

= 2&ov

(4.3)

(4.4)

(4.5)

15
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where p is the complex electric line dipole moment of the aperture, p = px – j py, and Q’ is the

charge per unit length on one of the conductors. Thus, in order for the conjecture to be true, it 0

must also be true that

Eo =-p
2n&oc12

EOX–jEOY = –
Zz:oaz ‘p’ ‘~py)

(4.6)

If the above relationship holds true for arbitrary self-reciprocal apertures, then we can use (4, 1) to
describe the radiated field in terms of the field at the center. This is simpler than carrying out one
of the contour integrations of (3.14).

In order to express the field at <= Oin terms of the line dipole moment, we must first find
the field at infinity in terms of the line dipole moment. Consider two wires which create a line
dipole moment py (Figure 4.1).For this arrangement it is simple to show that EYon the x-axis is

Ey(x+m, y=o) = –
2 Q’Q Py=— (4.7)

2 n&ox2 2 ?r&ox2

By symmetry, we can write a similar expression relating px to Ex on they axis. Note that this
field at infinity is dependent only upon the line dipole moment, so this field at infinity applies @
equally well to an arbitrary self-reciprocal structure.

+y

+Q’

‘r ●

I x
2& ............... ...... . ........... ...... ....... ......E +

1 ‘l/Y
+ ● -Q,

Figure 4.1. The field at infinity due to a simple line dipole, py = 2@’.

Now that we have the field at infhity for a self-reciprocal structure, all that is left is to find
a relationship between the field at infinity and the field at ~= O. Using (2.14), at J= x +jO where
x + m, we find

16
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X2
EV(x=O, y=O) = lim EV(X, y = O)Y (4,8)

/
X+CO “

Combining this with (4,7), we find the field
structure in terms of its line dipole moment as

.

in the center of the aperture of a self-reciprocal

EY(x=O, y=O) = -
Py (4.9)

2 ?TEoa2

By symmetry, the field at <= Odue to a line dipole in the x direction in a self-reciprocal structure
is

EX(x=O,y=O) = - ‘x (4.10)
27r&oa2

so the total field at the center is

E(C= O) = - 2X: a2 (4.11)
o

This proves (4.6), which was the condition for being able to express the radiated field in terms of
the field at the center. of the aperture. Thus, the radiated field on boresight can be described by
(4. 1). This is much simpler than using any of the contour integrals or sufiace integrals we
provided earlier.

Note also that we now can describe the early-time step response in the near field on
boresight in somewhat more detail. According to [13], the early-time radiated field on boresight
must be simply the field at the center of the aperture, up to a certain clear time. This clear time is
just the time difference between the ray from the center of the aperture, and the ray from the edge
of the conductor that is closest to the center (Figure 4.2). Thus, this clear time is t2- tl.

3

‘2
,,,, ,,
:’ \ /

\: ;!

=!!! “
Observation

Point

Figure 4.2. The clear time for which the radiated field on boresight is the field at the center.
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v. Definition of the Reciprocation Group P

We now define thereciprocation group P, and show howit relates to other symmetry –
groups. Much of the notation and concepts in this section are extensions of [9], so it is assumed
the reader has some familiarity with this reference.

Recall that a Finite Group is a set of a finite number of elements, one of which is the
identity. Furthermore, each element of the group has an inverse, and all “products” are also
elements. The reciprocation group P (where P is understood to be upper-case p @ho) ) is defined
as

P = {(l), (P)) (5.1)

where (P) is a means of implementing the transformation of equations (2.1) and (2.2). The
operator (P) is meant to be in two dimensions, but its extension to three dimensions is
straightforward [3]. Note that (P) = (P)-l, so (P) (P)-l = 1. A geometry which remains invariant
under reciprocation is called “self-reciprocal”.

The reciprocation operator is an example of an involution group [14]. An involution
group is any group consisting of a single operator (in this case (P) ) and the identity operator.
There is only one such abstract group, but there are many matrix representations of such a group.
Other examples of involution are the reflection groups through they and x axes,

RX = {(l), (RX)}, RY = {(l), (RY)) (5.2) o

whose matrix representations (for dot multiplication) are

()(1)+;;
()

(%) = (RJ1 + -; :
()

1 _; (5.3)(Ry) = (RY)-l + ~

These are often thought of in terms of simple mirror images.

Let us consider now the practical case where all three involutions can be applied. By that,
we mean that a geometry is invariant under either reciprocation (F’),or reflection through the x or
y axes (Rx) and(Ry). The group representing all the combinations of these three operators is

G = {(l), (P), (RX), (RJ, (P)(RX), (P)(RY), (RJ(RY), (Pa)} (5.4)

Since all of the above combinations of operators commute, this is a commutative (or Abelian)
group, Certain of the above combinations can be expressed in other ways. For example a
reflection through the x and y axes, (RX) (Ry), is equivalent to either an inversion through the
origin, (1), or a rotation though 1800, (C2) [9]. Note also that the combination of(P) (Ry) is the
analytic version of the reciprocation operator, i.e., the operation that maps ~ to a2/~ without the
conjugation. e
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●
A structure that is invariant under the three transformations described above has a

potential fimction with certain special properties. Inparticular

W(C*) = *w*(~ + w’ Reflection through x axis

W(–<*) = *w*(~ + w“ Reflection through y axis

w(a2 I<*) = w*(# + w’” Reciprocation

(5.5)

where w’, w“, and w’” are arbitrary complex constants. The sign ambiguity in the two reflection
expressions must be resolved by whether or not the transformation is symmetric or antisymmetric
[9] (electric field parallel or perpendicular to the plane of symmetry). One can add a constant to
the potentials because it is only the fields that must be preserved, and the fields depend only on
the derivatives of the potentials.

If a structure has a potential fimction which satisfies the above two relations for reflection
symmetry, then the fields radiating from that aperture can be evaluated from the potential in just a
single quadrant, multiplying the result by four. If the structure’s potential fimctions satisfies the
above condition for reciprocation symmetry, then the radiated fields can be evaluated from just
the potential inside the circle Id< a. In this case, the potential finction outside the circle makes

no net contribution, so an evaluation of the potential fimction contained within the circle is the
total solution. If all three of the above symmetry conditions are satisfied, then the radiated fields

●
can be evaluated with just the portion of the potential contained within a single quadrant, inside
the circle ~s a, again multiplying the result by four.
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VL Conclusions

We have described here a technique for calculating the field radiated from a self-reciprocal
o

aperture. Such apertures are good approximations to a variety of antennas used to radiated
transients, includlng Impulse Radiating Antennas and long TEM horns, or TEM horns with lenses.
The technique developed here demonstrates that if the aperture has reciprocal symmetry, then one
only needs to know the field at the center of the aperture in order to calculate the far field on
boresight. This is a considerable simplification over previous methods, which required either a
surface integral or a contour integral.
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