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Abstract

We generate here an approximation to the step response of reflector Impulse Radiating
Antennas (IRAs) in the E- and H-planes. These step responses are then convolved with the
derivative of the driving voltage to find the radiated fields. This allows a determination of the
radiation pattern of reflector IRAs.
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L Introduction

The transient radiation from a planar aperture field distribution was developed in [1]. This
o

was fbrther specialized to two-wire apertures in [2], but only on boresight. The off-boresight
fields created by a two-wire aperture were never developed. We do so in this paper.

The results we provide here are valid for a wide variety of practical cases. Although it is
true that these results are valid only at high impedances, this is not very conilning in practice,
because at low impedances one incurs significant feed blockage anyway, Furthermore, our
expressions are derived explicitly only for round wire feeds, But since the feed arms are relatively
thin at high impedances, the specific shape of the feed should not matter very much. Thus, the
results developed here are usefil for other feed arm shapes, such as coplanar plates and curved
plates [3].

We begin by providing a review of the static fields between two wires. This is the field we
find in the aperture of a reflector IRA. Next, we radiate this field with a step-fimction driving
voltage. Expressions are provided for the E-plane and H-plane fields (pattern) created when the
aperture fields are turned on suddenly. Furthermore, we demonstrate that on boresight our results
are consistent with earlier results calculated by contour integration. Finally, we convolve the step
response with the derivative of a typical driving voltage, in order to get the response to a realistic
driving voltage. With this inforrnatio~ we can calculate a gain and antenna patte~ according to
the definitions of [4].
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al IL Static Fields in the Two-Wire Aperture

Let us review first the static fields in a two-wire aperture. We assume a Reflector IIL4
with a relatively high feed impedance, so we can ignore aperture blockage for early times. We
can estimate the error incurred by ignoring aperture blockage from [3].

Recall that the effect of the paraboloidal reflector is to convert a spherical TEM wave into
a (locally) planar TEM wave [5, Appendix A]. Thus, we must radiate an aperture field that turns
on suddenly, as shown in Figure 1. We assume the tangential aperture field has the form

(2.1)

where V is the voltage between the two wires, u(~) is the Heaviside step function, and w(O is the
complex potential between the two wires described by

w(O = u(O + j V(C3

<=x+jy

U(O & V(O = real iimctions

(2.2)

Furthermore, we restrict ourselves to round wires, which makes the math considerably simpler.

a
For this case, the potential fhnction is [6]

()In C- .ia
W(O = 2 j arccot(~l a) =

~+ ja
(2.3)

where a is the aperture radius. This potential fimction is plotted in Figure 2. The real and
imaginary parts of the potential can be separated as [10]

Finally, the impedance is

(2.4)

(2.5)

where Au is the change in u from one conductor to the other, and Av is the change in v as one
encircles a conductor (in this case 2z).
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Figure 1. The aperture field to be radiated.
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Figure 2. The complex potential map for round wires, upper right quadrant, from [2].
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So far, this theory has just been a review.
u

But in looking ahead, we know that certain
additional fi.mctions will be of use to us later. Thus, let us define the following normalized
potential ii.mction. o

dqx) = ; J&)%@ (2.6)

where the contour Cl(x) is a vertical line through the point (x,O) for the length of the circular
aperture (Figure 3). We will see later that the radiated field in the H-plane is proportional to the

above integral. As time progresses, the field will be proportional to ~(h)(x) as the contour Cl(x)
sweeps across the aperture. To simpli~ this integral, we use a standard formula for the y
component of the electric field,

v C%J(x,y)
Ey = –—

Au 8Y

where u(O is defined in (2.4). Thus, we have

1qj(~)(x) = —
J

du
—@Y=&

Au cI(~) 6’Y
U(X>J73)

(2.7)

(2.8)

This is just the relative change in u along the path Cl(x). When Cl cuts through the metal
conductor, the relative change in u is unity, To the Iefl and right of the conductor, the change in u
tapers off, reaching zero at the edge of the aperture. Using (2.4), after some simplification we

o

find

[

1I (@g) mcsech(-x /a) –a<x<-asech(~fg)

mqx) = 1 –a sech(~yg) < xs a sech(zyg) (2.9)

1/ (d’) arcsech(x / a) asech(xfg)<x< a

This is plotted in Figure 4 for several values offg.
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Figure 3. Location of Cl(x).
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Figure 4. Plots of ~(~)(x) as a fimction of x/a andjg.

There is a similar fimction we can define which is usefhl for a pattern cut in the E-plane.
We will see later that the field in the E-plane is proportional to the line integral

(2.10)

7



w’

where C2@) is a horizontal line through the point (O,y), for the length of the circular aperture
(Figure 5). The field in the E-plane ‘is proportional to the above integral as C2@) sweeps across o
the aperture, We now write the usual expression for EP and convert to a derivative with respect
to x with the Cauchy-lliemann equations [9]. Thus, we have

v 8U =V(?v
Ey = -—— ——

Au ~y Au 6’X
(2.11)

Combining the above two equations, we find

We can simpli~ the above by noticing that for almost all values of y, the expression in square
brackets is – Av / 4. If C2@) intersects one of the wires, there is a small deviation from this
simple result. But at high impedances the error is negligible because the wires are small. Thus,
we have

{

wfg) Iyl < a
Q(e)(y) = o

else
(2.13)

This is just a pulse fimction of width a and magnitude l/(2fg). Another way of expressing this is

a)(e)(y) = ~P(y,a) (2.14)

where P(y,a) is a pulse

This completes
to the radiated field.

~J g

fi.mctionof value unity for Iyl < a and zero elsewhere.

the review of the static fields in the aperture. Next, we apply this theo~

Figure 5. Location of C2@).
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HL The Radiated Field

In [1] a general expression for the radiated far field generated by an arbitrary aperture field
was derived. We now wish to specialize that expression to the field resulting from the aperture
field between two wires.

Let us first provide some definitions.

s = Laplace Transform variable

y = Slc

c = speed of light

I = iXiX+ iYiY+ iziz

i= = i – iziz = iYiY+ iziz

Furthermore, we define the tangential aperture field as

#iqx’,y’,t) = [ixEx(x’,y’)+iyEy(x’,yf)]u(t)
= Eo[ixgxwy) +iygywo]w

(3.1)

(3,2)

= I?. g(x’,y’) Zf(t)

where EOis the field at the center of the aperture. The radiated far field is now [1]

E(F,s) = e–~ — = -ZyrF(lr , s)

=-
F(lr, s) = +[(GW - (izir)]j’s eYIi,”7’Jp(.v~,Y~)~~

a

(3.3)

where we have assumed a step-fimction time dependence of the driving voltage. To get the result
for arbitrary time dependence, one would convolve the step response with the derivative of the
driving voltage.

It can be shown from symmetry arguments [7] that the radiated field in the dominant
planes (E-plane and H-plane) can be represented by just the dominant polarizatio~ without a
,secondary or crosspol component. Another way of saying this is that it is only EYin the aperture
that contributes to the radiated far field in the two major plane cuts, If we now specialize the
above relationship to include just I.ZYwe have in the principal planes
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E(?,s) = e-T- ~E;frF(ir, S)

=.
F(lr ,S) = [t XL]?.(LS)

= [Wine+ .WM(W+] .md)

.L(i,s) = * j~ e ‘(T’”7’)gY(x’,y’) W’
a

Ttisisthe expression reintegrate overtoget the field forthedotinant polatiation. Note that
we have used the vector expression

to get the result in (3.4).

Let us simpli~ firther (3.4), which is the complete radiated far field in one of the principal
planes. The y component of the aperture electric field can be expressed in various ways as

v a
Efy(x’, y’) = E. gY(x’, y’) = –——

Au dy
(3.7)

so the fimction gy is
@

@’,Y’) = - ~ ‘A* ‘U:;y) (3,8)
o

The fhnction la (Ir ,s) in (3.4) now simplifies to

Converting to the time domai~ we find

.fa(ir,t) = - ~EvAuj~a8u$~,y’)d(t +ir .?’ / c)dS’
o

This is the result we must ewduate in both the E- and H-planes.

10
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In the H-plane, where@= Oor n, the function j’a (ir, t) simplifies to

jy(e,t) = - v =---j 8u(cI / sin(@),y’) ~,

AEO Au sin(0) C.(X) dy’

v
(3.11)

c O(h)(Ct / sin(9)= .— —
Al10 sin(e)

where we have used the finction @@)(x)as defined in Section II. The superscript h indicates that
the expression is specialized to the H-plane. “Combiningthis with (3.4), and noting that @= Oor z
in the H-plane, we find

(3.12)

Recall that in the H-plane, iY = + i+ , where the “+” sign applies if $ = O and the “-” sign applies

for $ = Z, This is the final expression we need for the field in the H-plane. Note that we have
normalized out a time delay of vii, to keep the expression simple.

We can now plot some examples of these fields (Figure 6). If we normalize the time scale

e

properly, the step response is dependent solely upon~g and 19.Thus, it is convenient to normalize
the time scale to ta = tic.

4.00 T
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1“ II
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/ \,
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1,00 --

‘-”-”-”--”-” 20 deg
0.50- -

0.00 ,’--’— , , ,
-0.40 -0.20 0.00 0.20 0.40

Ctia

Figure 6. H-plane step response, for various values of 0. For these plots, ZC= 400 Q
(fg = 1.0631).
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We can find similar expressions now for the E-plane. Proceeding from (3.1O), and
w

confining ourselves to the E-plane, where # = 727’2or 3ni2, we find a

“ty(e,i) = - v -J-- J ~u(x’,ct / sin(6)) ~,

AEO Au sin(0) %(Y) dy’

Vc ! 6’v(x’,et/sin(@)&,
=

AEO Au sin(@) ~20) ax’

(3.13)

Expressing this in terms of the normalized potential fimction for the E-plane, @(e)(y), we find

c q$e)(ct/ sin(0))jy(d,t) = -L—
AEO sin(d)

Vcl= ——— —P(x, a)
AEO sin(~ 2fg

(3.14)

where P(x,a) is the pulse fimction described in Section II. Combining this with (3.4), and noting
that @= m’2or3727’2in the E-plane, we have

E(eyr,e,t) ()-v 1. *18 —
()

~(e) ct
r 2msin(@) sin(9

()

-v 1

()

Cf
. ~id — P—

r 4z7g sin(t?) sin(t?)’a

(3.15)
o

where the “+” applies if # = 727’2,and the “-” sign applies if # = 3n/2. This is the final expression
for the field in th; E-plane due to the y component of the aperture field. Some examples of these
fields are plotted in Figure 7.
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Figure7. E-plane step response, for various values of 6? For these plots, ZC=400f2
(&= 1.063 1),

Let us review now the approximations we have used. We have ignored aperture blockage,
which limits us to higher feed impedances. We have also ignored some of the fine detail in the E-
plane step response that occurs close to the wires. This has the effect of making the E-plane step
response a slightly sharper pulse fimction than it actually is. We have not invoked any small-angle
approximations, however, so our expressions should be approximately valid out to O= 90°.

We now have the step response in the E- and H-planes of an IRA in equations (3. 12) and
(3. 15), Before going firther, we check that our two expressions provide the correct result on
boresight.
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Iv. Consistency Check on Boresight

We need to check that the expressions we have just developed for the H-plane and E-
0

plane fields generate the correct results on boresight. Recall that the high-impedance
approximation on boresight calculated by contour integration is [2]

-V a
E(r, t) = — C$a(t)

r 27rcf~
(4.1)

where da(t) is the approximate delta fimction [1], which converges to a true delta finction in the
limit as r-+m. Thus, the expressions for the E-plane and H-plane fields must approach this
answer at @=O, and at high impedances. Since it is simplest to show this for the E-plane result,
we do this first.

The E-plane expression for the field on boresight is

In comparing (4.:

(4.2)

) and (4.2), we find that if the two expressions are equivalent on boresight, then
the following must also be true

()
c$(t) = lim ~ P -Q-,a

6%0 2a sin(@) sin(9

*
(4,3)

Recall now the characteristics of a fimction that make it a d fimction. First, the value of the
fimction must approach infinity at t= O. For the above fimction, this is obviously true. Second,
the integral of the function (area) must be unity. Integrating (4.3), we find

Thus, the area under the curve is unity, and the finction approaches the C$tl.mction on boresight.
Therefore, our E-plane expression is consistent with previous results on boresight.

In the H-plane, the proof is only a little more complicated, The field we calculated is

jj(h)(r,~)= L(+)* @(h)(&)
Comparing this with (4, 1), we find that for the two to be the same
true that

(4.5)

on boresight, it must also be
a
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where

(4.6)

[

1/(Mg) arcsech(–x / a) –a<x<–asech(nfg)

@@@) = 1 -a sech(zfg) < xs a sech(zfg) (4.7)

1I ($g) arcsech(x I a) a sech(zfg)<x < a

Clearly the expression in (4.6) approaches irdhity at t = O. Next we check that the htegrd is

equal to unity, Integrating (4.6), we find

To carry out the integral, we need the result from Dwight[S, #/738], that

Jarcsech(x/a)dx = x arcsech(x / a) + a arcsin(x / a) , [arcsech(x / a) > O] (4.9)

This leads to a final result for the integral of

Ja a)(h)(x) Ctt
2a

= 2asech(zfg) + —
–a ~

arcsech(x / a) &
~fg a sech(mfg )

( )

(4.10)

~ l-~
‘fg~

arcsin(sech(~fg ))

At high impedances sech(m fg ) + 0, so the second term in the above expression awroaches 0.

Combining this with (4.8), we find the area under the fbnction is

~ c fg cot(o)

6-+0 a Jo(h)(a)”=1 (4.10)

This is the second condition required for the H-plane field to approach a t$fbnction on boresight.
Thus, the proof is complete and all our off-boresight fields are consistent with known results on
boresight.
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v. Sample Field CaIculations

Now that we are assured that the step responses are correct, we use them to plot some ●
sample fields. To do so, we convolve the derivative of a typical driving voltage with the step
response.

We use the integral of a Gaussian waveform to drive the antenna. Thus, the step response
is convolved with a Gaussian waveform to get the actual radiated field. It is convenient to define
the driving waveforms as

&(t) = ~ ~-~fftd)z

d

v(t) =

t~
,

where t~ is the Full Width Half Max
These waveforms are plotted in Figure 8.
waveform is

td =
max (v(t))

ma.x(dv(t) / dt)

tfl~~ = 0.940 td

tl&90 = 1.023 td

of dvlcit, and tlo.go is the 10-90°/0 risetime

(5.1)

(5.2)

of .V(t).
Recall the defi~tion of the derivative risetime of a

(5,3)

‘Thus, the derivative risetime is inversely proportional to the maximum derivative of the driving
ovoltage. This is a usefhl property, since the peak of the radiated field is proportional to the peak

of the derivative of the voltage. Note also that for the integrated Gaussian waveform shown
above, the derivative risetime td is within two percent of the 10-90°/0risetime, tlo.go.

The above expression for v(t) can also be expressed in terms of the complementary error
fimction. Thus,

{

V[ (1/2) etic(~ Ill/ t~)] t<o
v(f) =

V[l - (1/2) erf~(Lt/ td)] t>o

where the complementary error finction is defined in [11].

(5,4)
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Figure 8. Derivative of driving voltage (top), and its integral (bottom).
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The radiated field is now calculated simply from

1 ~(0 ~@V@, 6, #, 0
E(r, 8, ~, t) = ~ ~

o
(5.5)

‘tep r 6 +,t) is the step response in the E- orwhere the o operator indicates a convolution, and E ( , ,
H-plane, as calculated in Section III of this paper. We can reduce the number of cases that need
to be calculated by defining a rise parameter

(5.6)

All problems
is a fimction

with equal rise parameters have the same shape radiated field. Thus, a field pattern
only of Td, fq, and (3. There is no need to include a dependence upon both the

aperture radius a and the d~rivative risetime, td, because all the ifiormation is contained in Td.

Let us now provide a typical example. Consider an lRA with a 400 S2feed impedance and
a radius of 0.3 w driven by an integrated Gaussian voltage with td = 250 ps (tlo.go = 256 ns).
For this configuratio~ Td = 0.25, so all possible configurations with Td= 0.25 and ZC= 400 Q
can be plotted on the same graph with proper scaling. The fields in the E-plane and H-plane are
shown in Figure 9. The time scale has to be normalized to either ta or ~d ; it does not matter
which. We have chosen to normalize to ta = a/c,. For this configuration ta = 1 ns, so it is trivial
to normalize the x axis. e

With these results, we may now establish an antenna pattern. We do so in the section that
follows.
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w. Antenna Pattern

With the off-boresight fields now calculated (at least approximately), we can establish the e

antenna pattern. Recall from [4] the gain of an antenna in a particular direction for transmit mode
is

2 xc & rE”ad(r, 0, ~, t)
G(e, ~) = (6.1)

dVinc@)ldt

It is simplest to think of the norm operator II IIas being the peak of the waveform (m–norm), Of
course, other interpretations are possible, such as the area under the curve (l-norm) or square
root of power in the waveform (2-norm). Recall the definition of an arbitrary p-norm

[If(t)llp = [1~lf(t)lpdt “p,
-m

The norm one chooses must correspond to the experimental technique used in detecting the pulse.
Thus, when we use the peak norm (m–norm) in these calculations, we assume an experimental
system that responds to the peak in the received waveform, as opposed to the power in the
waveform (2-norm) or area in the waveform (l-norm).

The above gain definition may seem unusual at first, because it defines a gain with units of
meters. This definitio~ however, has a critical property that other definitions sometimes lack; i.e.,
it provides tiormation about antenna performance in receive mode. Thus, in receive mode, if the
incident waveshape is a derivative of the driving voltage used in transmit mode (ii this case a
Gaussian), then the received voltage wave is described by

Vrec(t,8,~)II = & G(8,#) llEinc((?,#,t)l[ (6.3)

In other words, the peak received voltage is a simple fimction of the peak incident field. Some
other gain definitions do not offer such simple interpretations consistent with reciprocity.

We now plot the gain as a fi.mction of angle for the configuration of the previous section
(F@re 10). It is interesting to note that on boresight, the gain is just the aperture radius divided
by~ 1/2. Furthermore, the pattern in the E-plane is somewhat more compressed than that in the
H-pfwe.
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The particular choice of parameters we have used until now has a slower rise parameter Td
than what may be more typicaI. In order to see the difference, we plot the gain for a faster

@
configuratio~ with Td = 0.1 and the same feed impedance, ZC= 400$2. If we assume the same
radius as before (a= 0.3 m), we have id = 0.1 ns., which k 2,5 times faster than the first case.
The gain for this arrangement is shown in Figure 11. The overall effect is to make the patterns
narrower. Also, we can see here more clearly that the E-plane pattern is narrower than the H-
plane pattern.

It maybe surprising, at first, to notice that the boresight gains of the two arrangements are
the same. The faster configuration has a larger radiated field on boresight by a factor of 2.5, so
one might think that the boresight gain must also be 2.5 times larger. But our definition of gain in
(6, 1) is such that the faster risetime appears in the denominator of (6. 1) (the dddt term), not k

the gain. One could define a gain that included the factor of 2,5, but it’s meaning in receive mode
would then become less clear.

We can define a bearnwidth as being the angular width where the pattern is down by a
factor of two from its peak, Since this angular width depends upon the selection of the norm used
in the gain definitio~ we call this beamwidth the Half Norm Beam Width (HNBW), analogous to
the fill-width half max (FWHM) beamwidth commonly used in the frequency domain. At higher
TJs (larger apertures or faster risetimes) the beamwidth becomes narrower,
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m VU. Discussion

There are a number of ways of controlling antenna pattern. Let us assume we have
calculated a patteW and we wish to make it broader. There are several ways of doing so.

The first technique for broadening pattern is to defocus the feed point of the aperture.
Although this is conceptually simple, no simple models exist yet for predicting the effect. If one
wanted to pursue this, one might use a technique similar to that used to predict TEM horn
performance [12], which is another defocused aperture.

The second technique of broadening an antenna pattern is to use a smaller radius aperture.
The third technique is to use a slower driving waveform (with a larger id). Both of these last two
techniques increase the rise parameter Td.In doing so, the on-boresight radiated field is reduced
in inverse proportion to Td. If one defocuses the antenn~ the on-boresight radiated field is
similarly reduced, but it is somewhat more difficult to predict the magnitude of this reduction,

The final technique for broadening an antenna pattern is to change the norm one is using
to detect the signal. Recall that the norm one chooses in the gain definition must correspond to
the experimental method of detecting the pulse. We have used the peak norm (m-norm) in this
paper, however, both the 2-norm (power) and l-norm (area) are reasonable choices.
Furthermore, it can be shown that the 2-norm provides a broader pattern than the m-norq and
the l-norm is broader still. Thus, if one is detecting a pulse using peak detection (m-norm), one

9
could get a broader antenna pattern by detecting the power in the pulse (2-norm), One would get
a broader pattern still by detecting the integral over the pulse (l-norm).

Conversely, if one wanted a narrower beam with a larger signal on boresight, one could
use the opposite of these techniques. Thus, one would use large, well-focused apertures with fast
risetimes (small Td). Furthermore, one would detect the signal using peak detection (m-norm).
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VIII. Conclusion

We have demonstrated a simple technique for calculating the early-time off-boresight *

radiated field generated by a reflector Impulse Radiating Antenna. Aperture blockage is not
included in the model, so the model is valid only at higher feed impedances. This model leads to a
simple interpretation of transient antenna gaiL which we plot for some sample cases. Because the
models we developed are simple, one can readily understand how to control the antema pattern
by adjusting antenna parameters.
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