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Abstract

This paper considers two classes of antennas which under the right conditions can be considered

as accurate timedomain sensors of an incident electric field. One cIass gives an output proportional to

the incident time-domain field, while the second class gives the time integral. As these are electrically

large but not infinitely large, there is in general a limited time based on when the truncation sends a

signal to the output terminal pair. Furthermore there are limitations on the allowable angles of incidence

of a plane wave for ideal performance. They do not measure a single component of the incident field,

independent of angle of incidence, in the manner of the cIassicaI electrically smaII eIectricdipoIe sensor.
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I. Introduction

By an electromagnetic sensor we do not mean just any antenna. As discussed in [8, 20, 21] a

sensor is a special kind of antenna which has been optimized in certain respects. Limiting ourselves to

fields (instead of voltage and current which invo~vespatial integrals), we consider the usual passive

linear antennas but require that their sensitivity be accurately calculable for frequencies/times of interest

(calibratable by a ruler, a few percent accuracy being easily attainable). In addition one would like such a

sensitivity parameter to be simple across a wide frequency band. This could be a constant times a vector

component of the field, its time derivative, its time integral, or some other simple mathematical operation.

Which form one chooses depends on various considerations such as signal-to-noise ratio, geometry of the

measurement, etc. From the chosen mathematical form of the transfer function, other forms are

generated by simple mathematical operations. There is no a priori reason to prefer in general one form

such as the waveform of the field component as compared to say its time derivative. If one thinks in

terms of the important frequencies of interest in the waveform, then the field-component waveform, or

even its time integral may be more useful. However, for high-frequencies (as say in the numerical Fourier

transform) or for good resolution around the fast rise of the waveform the timedenvative of the field-

component waveform may be more useful. For constructing the Fourier transform over a wideband of

frequencies, all of the above forms (and others, e.g. second derivative) maybe useful in composite sense.

o
An important concept in such field measurements is that of a point measurement. By this is

meant that at some specified point ?U in space one measures a field in the sense of some voltage (or

current) at a terminal pair as

+
Im = measurement direction (constant unit vector)

T(s) = sensor transfer function

.= Laplace transform (two sided) (1,1)

s = a+j~ = Laplace-transform variable or complex frequency

- (inc) (inc)

z (7’,s) , 2 (7’,s) = incident electric and magnetic fields in the absense of the sensor

2



.

J

●
Note that the incident fields of course satisfy the Maxwell equations, but are not assumed to be of any

particular form such as a single plane wave.

These conditions are somewhat restrictive in that the dot-product relationship leads to basically

electric- and magnetic-dipole sensors. There is also a special form of point measurement combining the

electric and magnetic fields [10] via two dipoles (electric and magnetic) which may even be made to be

present in the same antenna. This class of sensors is basically electrically small so that only the

appropriate dipole moment (in the multipole expansion) is significant. By use of symmetries and

multiple sampling positions around the sensor structure, some of the unwanted multiples can be

suppressed leading to a higher frequency response in the dipole mode for a given antenna size and

associated sensitivity. This aspect is discussed in some detail in [91and briefly reviewed in [15]. w~le

these are often used in the mode of the time-derivative of the field-component waveform (because of the

relatively large signals from the passive sensor) they also can function in the mode of the field-component

waveform itself.

Suppose now that one relaxes the constraint of (1.1). This allows the possibility of antennas

which are not characterized by a particular electric or magnetic dipole oriented in some particular

direction such as ;~, at least for some frequencies (particularly high frequencies) and associated times of

interest. This raises the possibility of electrically large antennas. Well, if the response is not to be dipolar,

what other kind of response might be useful. Suppose that the incident field is constrained to be a single

plane wave as

- (inc)
2 (?,s) = E. f(s) ip e-y il. ?

_ (inc)

[)

+

2
11.7

(?/t)= Eoip ff-—
c
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polarization unit vector

direction-of-incidence unit vector

o

H

1 – II 71 = transverse identity

1

[1

~~= wave impedance of free space
e.

.

[pOCO]-; = speed of light

s
– = propagation constant
c

(1.2)

Here the polarization is taken as time invariant, but this is often not important since an arbitrary

polarization can be decomposed into two orthogonal polarizations. The antenna of interest can also be

designed with appropriate symmetry planes [171 such that it is only sensitive to one of these

polarizations. Direction of incidence is a different matter which requires careful consideration, One can o

observe that general incident fields as in (1.1) can be considered as an integral over a distribution of plane

waves [19]. However, we shall now restrict the direction of incidence not to vary over 4Z steradians, but

over some more limited range consistent with the types of antennas under consideration, such that over

this limited range some response similar to (1.1) results.
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II. Voltage Proportional to Incident Electric Field

For our first class of these limited-angle-of-incidence sensors, consider the case that the sensor

conductors, etc. are positioned in space such that there is no scattering of the incident wave. Noting that

this implies that no energy is delivered to a load (such as the input to a coaxial cable) let us consider one

of the two possibilities, i.e. the open circuit voltage (the second being the short-circuit current). Later, the

load is reinserted, for which case one needs the antenna impedance.

As indicated in fig. 2.1 let us consider that the incident wave is polarized in the z direction, i.e.

-+
lp=iz

Then in cylindrical coordinates

x = Y?cos(@)

il = iXcOs.(~:

A. A

(2.1)

Y, $, z) we have

r y = Y sin(~)

+ iy sin(~)

.

(2.2)

l’I x l’P = l’xsin(~) - lYcos(~)

so that O < q$ e 27r characterizes the direction of incidence, The orientation of the magnetic field is then
+

only constrained to be perpendicular to 1 Z. With the sensor structure assumed to lie only on two planes,

z = ~ b, the incident field is everywhere perpendicular to these planes and no scattering occurs. Note that

the sensor structure on each of these planes is idealized as infinitesimally thin (or at least much thinner

than h), and can consist of conducting sheets (idealized as perfectly conducting), or even resistive sheets.

(Permeable sheets are in general avoided.)

Let us define the open-circuit voltage as

h ~(irzc)

Jl
Vo,c,(t) = - E (7, f , i. dz = - 2b E. ~(f)

-h (xry)=(0,0)

where, for convenience, the integral is taken along the z axis. The two points (x, y, z) = O,0, ~ b) then can

be used to define a terminal pair where eventually a load impedance will be added connecting these two

e
points. Note now that the open-circuit voltage is independent of the limited direction of incidence.

(2.3)
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1~ (= lZ) incident

polarization

+
11 direction

incidence
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z

z=b

possible symmetry plane
——— ——— —.— —
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or ground plane Y x

z=-b

Fig. 2.1 Sensor Structure on Planes of Constant z
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o At this point note that the concept is similar to that developed in [3,41 which gives the design

principles of the PI’D (parallel-plate dipole) sensor. As indicated there and in (2.3) the sensor bandwidth

in this open-circuit bandwidth can be quite high, The size of the sensor structure is not a limitation but b

can be, depending on the details of how the signal is extracted at the terminal. One kind of high-

resistance output is discussed in [4] which allows one to match the resistor into the field configuration,

thereby avoiding some of the problems with stray capacitance, but that is not the approach considered in

the present paper.

Suppose now that a wave has the direction of incidence 71 limited as in (2.2), but with

polarization

+ ++
Ip = ilxiz , lP. lZ=O (2.4)

By making the z = Oplane a symmetry plane such an incident wave is symmetric as compared with the

antisymrnetric case given by (2.1) [14, 171. By making the two parts of the sensor structure (on z = * b)

have the same projection on the z = o plane (a plane of reflection symmetry), then the scattered field due

to this cross-polarized incident field in (2.4) is also a symmetric wave which gives exactly zero in the

●
integral along the z axis in (2.3). So now let us impose such symmetry on the sensor. Note that if the z =

Oplane is a ground plane (ideally perfectly conducting) only the antisymmetric field distribution (for z >

O)is allowed to exist.

The sensor structure is still rather general as in fig. 2.1 consisting of a structure on two parallel

planes, symmetric with respect to the z = Oplane. This leaves a lot of flexibility concerning the shape etc.

of these plates which can be exploited for other desirable characteristics. In particular, suppose that the

load impedance is a finite resistance RL (say 50 Q or 100 Q) such as is characteristic of one or more

transmission lines (coaxial cables, etc.). One may wish the antenna impedance Za(s) to have some nice

properties so that the voltage delivered to the load is simply related to Vo.c,, Considering the case of

circular disks as in [3,4], the source impedance is approximately characterized by Bessel functions due to

the cylindrical propagation of the wave outward from the load. More convenient would be a

transmission-line geometry with a characteristic impedance ZCindependent of position along the line. If

infinitely long, this would bean antenna impedance of ZC/2 due to the waves propagating in both

directions away from the load (or ZCif the transmission line extended in only one direction away from

the load). For a finite length, still in time domain there is a certain clear time given by the round-trip time

to one or both truncations, during which time the transmission-line behaves as though it were infinitely

long.
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As indicated in fig. 2.2 we have the special case of a transmission line of total length 1 with the

terminal pair in the center. This has two additional symmetry planes (x = Oand y = 0). The antenna

impedance can be estimated for radian wavelength 2 >> b, a and 1>> b, a as

(2.5)

For the clear time of l/c as discussed above this is just Z, /2. The voltage delivered to the load is just

;(s) = Z@ + 5.(s)]-1 tio.c.(s)

(2.6)

[

Zc
=l-f— —

( )]

Coth g ‘1 -
2 RL 2

Vo.c.(s)

For the special case that the load is matched in an early-time sense to the two transmission lines in

parallel we have

Zc =2RL

ti,s,=~ + coth(;)~ ~oc(S)

= ++] %..(4
(2.7)

v(f) = ;
[ ( )1
Vo,c.(t) – Voc+ f – :

so that what would otherwise be an infinite series of such time-domain terms truncates at two terms.

Rearranging (2.7) as

()v..,.(f) = 2 v(f) + %.. f -: (2.8)

then consider a signal which starts at t = O. Vo.c.(f) can then be reconstructed from the measured V(f) as

8
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Fig.2.2 Transmission-LineS ensor
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2V(t) for O < f < ~

c

()
V..,.(f) = 2 V[f) + Vo... f-~ for n$ S f < (n+l]f

n = 1,2, 3,.,.

i

o
(2.9)

t

After the first time interval of length //c one goes to successive intervals using the reconstructed Vo,c.

from the previous interval. One should be cautious, however, in this reconstruction for later time

intervals since there is some high-frequency loss for the waves propagating on the not-perfectly-

conducting transmission-line structure, and some high-frequency limitation in the reflections at the ends

of line (x = * //2).

For comparison consider the case of an approximate integrator, such as given by a simple series

RC circuit (Appendix A) as

- = [l+sf,]-’ , fi E R~
in

(2.10)

where the output voltage Vouf is measured across the capacitor. Note that the transfer function goes to
o

zero at low frequencies. Rearranging gives

(2.11)

L
t

J..
f

vi~(t’)df’ = fi VJf) + Vout(f’)df’

showing how to correct Vouf to obtain the time integral of V~n. The summation from previous time

intervals in (2.9) is replaced by an integral over previous times in (2.11). This type of integration

correction is sometimes used in conjunction with differentiating field sensors such as discussed in

Section L

Another detail concerns the optimization of the connection to the load at the terminal pair, AS

illustrated in fig. 2,3 consider the case of a single strip parallel to a (perfectly conducting) ground plane

(z= 0). Then considering the incident field as propagating along the ground plane one can replace 2b by

&in (2.3) and regard ~ as the characteristic impedance of the strip over the ground plane. For a load RL

as, say, a 50 Q coax, a Zc of 100 Q is appropriate giving a ratio of b/a E 1.235 where a is the strip half o

10



top conductor

r conical feed (not necessarily
circular) or characteristic
impedance RL

b

4

Zc

o

ground plane (4
~(e.g. 100 Q)

w
x

coax (e.g. 50 S2)
RL = ZC

T

Fig. 2.3 Feed Details for Terminal Pair in Case With Ground Plane
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L

width [5]. With the coax diameter assumed small compared to b one can transition from the strip on

z = b to the coax center conductor via a conducting cone of characteristic impedance RL (with respect to
@

the ground plane). This can be a circukr cone with a half-angle of ~47° or a flat-plate cone with a half

angle of =78° for the case of RL = 50 Q [1, 2]. Of course we are assuming that -f>> b so that the local

distortion of the field near ~ = 6 negligibly affects the open circuit voltage (for k >> b).

Considering the orientation of the sensor with respect to the direction of incidence, some choices

of ~ may be better than others. Suppose that the incident wave comes from some small source a

distance d away from the origin, The far field behaves as r‘-1 for distances r’ from the source. Other

higher order terms go as r’-z and r’-3.
+

Referring to fig. 2.2, if 11 = lx (i.e., ~ = O)then there is

maximum variation of r’-* over the sensor. Another way to look at this is that there is a small

component of the electric field in the x direction on z = h If, on the other hand, we select ?1 = ;Y (i.e.

~ = 7r/2) this problem is minimized since a cc 2 and the variation of r’-l over the 2a strip width is much

smaller. An added benefit of choosing this particular direction of incidence is indicated in fig. 2.4 where
+
1 I is kept parallel to the x = O plane, but is allowed to arrive from a source positioned above the z = O

plane. Then there is an image wave from below the ground plane and the open circuit voltage is

proportional to 2b E. sin (e) including the ground-plane reflection. The high-frequency limitation is

based on the a and b dimensions which are assumed small. For this raised direction of incidence with

$1 = 7r/2there is still no component of the incident electric field in the x direction along the major
o

dimension of the sensor conductor on z = b.

The sensor conductor on z = b can even be curved in an S-shaped curve or whatever provided the

desired transmission-line impedance properties are retained as in (2,5), and the p~ane-wave properties are

retained as in (2.1) and (2.2). However, the more refined considerations involving r’-l variation of the

fields, and the possibility of elevated incidence suggests the straight conductor on z = b with q$ = n/2 as a

better choice. Note that while the coaxial output is indicated as connected in the center of the strip, it can

also be connected at one end with a change to ZCcoth(yl) in (2.5) and following equations. While the

ideal considerations here indicate a thin sheet for the sensor conductor(s) on z = ~b, one can alw use

wire(s) (circular cylindrical conductors) for this purpose if the equivalent height is substituted for b [18].

While we have been discussing this type of an antenna as a receiving sensor, reciprocity gives its

performance as a transmitter [11]. With its open-circuit voltage characterized as a constant times the

incident field in (2.3), then driving a current into the antenna terminal pair produces a far field

proportional to the time derivative of this current. Of course this result applies to far fields near the z = O

plane as well as to fields on the x = Oplane with a factor of sin(e~), since these are the conditions under
o

12
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Fig. 2.4 Elevated Source in x = Oplane Incident on Transmission-Line Sensor
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which the open-circuit voltage has been considered. Another way to look at this antenna in transrnission

is to consider the directions to which the currents on z = b will not radiate (including the image on z = -b), e
leaving only the cunents in the z direction in the terminal region to radiate.
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III. Voltage Proportional to Time Integral of Incident Elechic Field

For a sensor with voltage proportional to the time integral (out to some clear time) of the incident

elecbic field, let us consider the case of conical structures (perfectly conducting) such as illustrated in fig.

3.1. In approaching this problem it is convenient to look at such antennas in transmission and then apply

reciprocity to determine their response in reception. Consider two perfectly conducting cones of arbitrary

cross section with common apex at ~ = d where the terminal pair is also taken. The cones are of finite

length, but behave as though infinite until some clear time tc determined by when the signal from the

truncation reaches the origin provided the direction of incidence is from outside the cones.

Considering the cones in transmission, let them be infinitely long and introduce a transient signal

V~(t) at the terminal pair. The outgoing spherical wave is then a TEM wave [6,7, 12,13,16, 22] of the

form

()v(Y, e,@;f) = v~ f – : u(e, @)

(3.1)

where u can be thought of as part of a complex potential

( (3)w(f?, @) = u(e, @) + j v(d, @) = w 2N tan

(3.2)

This leads to the well-known concept of the stereographic transformation, which in an equivalent

cylindrical coordinate system (V’, @, z) is

()Y’ = 2zOtan~

Z’=r

(3.3)

o which is solved for various geometries by conformal transformation.
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With

Au = difference of u on the two conical conductors (positive)

(3.4)

Av = change of v in going around either of the conical conductors (positive)

we have the characteristic impedance for the TEM mode as

Zc=gzo

The electric field is given by

E(7,t)= ()~.-&v*,@ U(e,(i))-b, f-:
r

In [11] the transmission and receiving characteristics of an antenna are related. In complex-

frequency form the transmission is characterized by

zf(?,s) =
~-v =) -+ ~-v> +— Fv(l,,s) ;(s) =— FI(1,,S)7(S) =~-rr q +

— Fw(l I,s) ti,(S)
r r r

+-+
1, .Fv(lr,s)= o ,

V(s)
zin(s) = z, = ~

I (s)

<+
F1(lr,s) = z. Fv(ir,d = [z. +RL] FW(ir, d

(3.5)

(3.6)

(3.7)

[1RL -
~,(s) = 1 + ~ V(s) = source voltage with source impedance also RL

c

Note that the current convention is here taken into the port (instead of into the load). we can identify the

far field in the general case with the exact rz dependence in (3.6) giving

(3.8)
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In reception we have

.

- (inc)

V,,C.(S) s Ivtil,d . E (’6,s) = open-circuit voltage

- (inc)

l,.C.(S) - Zdilrs) . E (6,s) = short-circuit voltage

- (inc) (3.9)

tiL(s) = iw(il,s) . 2 (d,s) = voltage into impedance RL loading antenna port

[ 1--zcZdil,d = Zv(ibd = 1+~ Zdil,d
RL

where the incident wave is a plane wave as in (1.2). Replacing ;~ by - II the receive and transmit

parameters are related by

Thus the reception parameters can be written (noting that the incident field is perpendicular to 71) as

(3.11)

Considering first the open arcuit voltage we have

18



- (inc) t ~(inc) ~

VO+C.M = : 70.C,(71). F (lb) , J_Vo.c.(f)= &(71) “ E (o/f’)dt’
s

(3.12)

which in time domain is valid for truncated cones out to some clear time fcafter first arrival of the signal

at the cone apex. The sensitivity parameter is

The symbolism is that of a velocity (m/s) which gives the units of this parameter.

other parameters as

(3.13)

This can be related to

L
t ~(inc) ~ -1

vL(f)= ;did . E (O,f’) df’
[1

z, ?~(il) = I + ~
l?~

;Oc(il )

(3.14)

J_
~-)(inc) ~ +

~s.c.(f) = ?S.c.(;l ) “ E (O, f’)df’ , 7S.C,(71)= - zc-l ?O,c.(1I)

o In short circuit the parameter has an extra factor of admittance in the units.

So now consider the angular dependence of ~Oc (;1). This if found from the TEM modal

distribution in (3.13) where it is in terms of 0, @ which is related to the transmission direction 7,(= – 71).

Rewriting

r&zc=fgzo=f8Eo

fg=g = geometric impedance factor

[ ][
4zfgv*@U(e,qb) = -c ~;oc~il)=-c ~ , 4n v~,p u(e,~). . 1

To what extent can we make ;,,, independent of angle, giving a response similar to (1.1)?

(3.15)

Appealing to symmetry let us consider a body of revolution, i.e. let the perfectly conducting

e
cones be arcular and coaxial with respect to the z axis. This removes the # dependence. A special case of

19



interest is a monotone with a ground plane (the z = Oplane} as illustrated in fig. 3.2. This case has been

considered in transmission in [1]. With the cone truncated at slant length t the clear time is
o

fc= $[1 - Cos(o- O.)]

(3.16)

80 = half angle of circular cone

If one wishes one can remove some of the cone structure on the side away from the incident wave (“lee”

side) without reducing the clear time.

With the $ dependence removed we have

which for 50 LIgives 00 = 47°. The normalized potential distribution is

401
.!?cot ;

I

lfor @=60
u(e)—. =
Au

HI
L?cot +

Ofor@=~

From this we find

-~v’’u(’)=[sin(o)’icot(+)lri’

2C
ZO.c.(il ) = — ie

sin(e)

(3.17)

(3.18)
o

(3.19)

which is conveniently independent of 60.
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Suppose now that we let the incident wave be characterized by

+
lp = -3

i.e. by “vertical”polarization. Then we have

t
VOc(f) = -~ EO

J
f(t’) df’

sin(f3) -

(3.20)

(3.21)

Note the dependence as I/sin(O) which is opposite to that of a dipole in (1.1) (i.e. proportional to sin(e)

from a dot product). So one needs to know 6 accurately to use this as the sensor sensitivity. Another

way to view this case is to consider the resultant field on the ground plane in the absence of the cone. At

(x, y, z) = (O,O,0+) the electric field is just

;(t)= 2(7P - i.) EOiZ f(t) (3.22)

In terms of this field with the Polarization as in (3.20) we have

;(f) = 2 sin(0) EO;Z ~(t)
(3.23)

f+
v..,.(f) = - -+7= . J E(t’) df’

sin (0) _

In this latter form we can let 8 + 7c/2for incidence along the ground plane with the image field combined

with the incident field as the usual resultant field. This gives

J-
t+

vo,c.(t) = - c 7. . E(t’) dt’ for 6 = ~ (3,24)

which is quite simple in form, These results are readily adapted to various loads RL via (3.14). For the

case of RL = Zc the voltage is simply reduced by half.

These results are also directly applicable to coaxial biconical antennas, even if the two angles

defining the cones, say t?O and f.?O’,are not related by 60 + @O’= z. Away to interpret these simple

results is to note that in transmission, for coaxial arcular cones, the field is proportional to the driving

e

22
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current, independent of f10 and 130’.The reciprocity theorem relates open-circuit voltage to driving

current. For all these cases (3.21) applies.

Besides the clear-time limitation (3.16), there are other accuracy issues. As discussed in Section II,

the incident field is usually a spherical wave instead of a plane wave. If the small source of the spherical

wave is at a distance d away, and r’ is the spherical radius from the source, then the variation of r’ over

the antenna structure (out to distances that at a particular time < fc can influence the signal at the

terminal pair) can introduce some error. Sod should be much larger than cfc for an accurate result out to

f = fe The dimensions of the terminal-pair region (e.g. coax radius, etc.) also need to be small compared

to % for high frequencies of interest. Furthermore, the direction of incidence (or equivalently 0) must be

accurately known.
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Iv. Concluding Remarks

So as discussed in this paper there are these two classes of interest electrically large antennas.

One gives an output proportional to the incident field in time domain, The second gives an output

proportional to the time integral of the incident field. Due to the finite size of such antennas this response

is generally limited to some maximum time. There are also restrictions on the angle of incidence for this

behavior to apply. Provided these limitations and accuracy considerations are observed then these

antennas can be regarded as electromagnetic sensors and used as primary standards, being “calibratable

by a mler” [20, 21].
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Appendix A: Approximate Integrator

o
An oft used technique is the approximate integration of the time-derivative waveform via an RC

integrator, i.e. one characterized by a transfer function

f~ds) = [1i- sfJ1

tj = integration time constant

= RC

which goes to one at low frequencies, but to 1/(sti) at high frequencies (like an ideal integrator which

behaves as constant/s). Assuming that the sensor from (1.1) behaves as

1
-(kc) - (inc)

5 (70,s) = ~E (70,s)
E

ti(s)=s Aim o or

[

G-’
f(s) = s A or (ideal differentiator)

P
-1

A = equivalent area of sensor

then the voltage out of approximate integrator is

I
- (inc)

2 (70 ,s)

fiRc(S) = f“ds) ~(s) = S A &_(s) im c

- (inc)

z (7.,s)

Define the corrected voltage as (with zero initial conditions)

t
V&(s) = + v(s) , Vm,(f) = + J v(f’) at’

i i-

(Al)

(A.2)

(A.3)

(A.4)

25
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i.e. as the true time integral. Solving (A,3) and (A.4) for fi(s] gives

from which we find (with zero initial conditions)

[1
Vcm(s) = 1 + -j v~~(s)

i
(A.6)

f

t
Vco,(f) = v~df) + # VRC(f’) df’

i-m

Thus the approximate integrator has a simple correction procedure which can be numerically integrated

and/or used to estimate times for which the integrator output has a specified accuracy. Of course, one

need not limit oneself to integrators, but similar considerations can be applied to differentiators (for say

first or second time derivatives of the field-component waveform).
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