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Abstract

The IRA considered here is a paraboloidal reflector fed by conical TEM lines.

Such an IRA has been analyzed in the past for its performance characteristics such

as the prepulse or feed step and the impulse, assuming a step function excitation.

In this note, we extend the analysis to include the diffracted fields from the launcher

plates and the circular rim of the reflector. The diffraction from the launcher plates

can be viewed to consist of two parts. one has the plate edge diffraction followed

by diffraction associated with the total currents on the plates. The leading terms

in all of these diffracted signals arriving at an observer in the far field have been

determined in this note.
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I. Introduction

The radiated field from an aperture antenna consists of a spa&1 integration of

the aperture fields- over the aperture, while the temporal behavior of the aperture

field get differediated. This is a simple physical fact well exploited in an IRA,

proposed by 13aurn’ [1]. one form of an IRA then consists of a “paraboloidal reflector—. ,-

fed by conical transmission lines that propagate a spherical TEM wave emanating..—-,.
from the focal point of the reflector. There are several factors that govern the des&n

of an optir&l IRA [1 to 5], some of which are listed below:

i)

ii]

.’.
m )

iv)

v)

Vi)

The aperture area sh&ld be as large as practical, since the far Seld is

proporjiq-m.l to the square root of this ~ea for a constant voItage at the—

feed. (The far field is proportional to the aperture area for a ‘constant*..

aperture field.)

The feed plates should be narrow to reduce aperture blockage, resulting in

high v~ues (several 100’s of Q) of feed-impedance.. .

It is preferable to have 2 pairs of feed plates Ior symmetric illumination of

the radiating aperture. Since the two pairs are connected in p&kJ, this

also halves the load impedance for the pulse generator at the focal point.

‘The feed plates, which are triangular in “shap~ can in principle, face each

other or be coplanar (Figure 1). Coplanar feed plates are preferred since

their aperture bloe@ge effect is smaller.

The terminating impedances at the junctions of feed plates and the refIec-
..:

tor rim can be tuned to balance the late-time electric and magnetic dipole
.=. --:

—.

moments of such an IRA. .. ...

The pulse generator- should be of the &fferenti~’ type in the case o~:a
–.

full IRA. It can be single-ended if half an ““IR.4 is built using ; image.,..,.<,’
plane. A single-ended pulse generator &iv&-a full IRA could “result k

both differential and common mode currents o: the- feed plates, unIess a

fast, ‘high-voltage balun is used. AMer;atively, one-can use the antefina:.. >..: , ..

mnductom & part of the balun [2]. While the di~erential mode ck&ts -

are de~&ab~{~-;~e%common mode currents can dis~ort the desired features
*... : ‘&+’— ,i JLX.kFl%23
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vii)

viii)

ix)

=4
..
—--

t . :..
—

in the far field. Care must be taken to avoid undesirable currents flowing

on the outer shield of the feed cable(s).
.

The pulse generator can be represented by a single switch near the fod
,.

point. ‘-T–he two electrodes of the switch sh~-l be at equal but ‘opposite

potentials +V[t) = *[V~/2) $(~).
.

Since tie far field o: axis is proportional to the rate-of rise_of the \ppiied

voltage [iW/8t), one would like to maximize this rate of rise. This leads

to physic~ly small switches operating in a high-pressure gin”’ te;-~:n~ to

approa~h _lO~s V/s (e.g., 100 kV in 100 ps).

The combination of requiring physically small switches, high voltages and

fast rise times implies the use of electromagnetic lenses in the switch region.

The lens can be made of an oil medium which serves the dual purposes of

high-vol~age insulation and ensuring a spherical TEM wave launch on to
.

the feed plates.

A careful consideration of the above listed factors leads one to an optirn-d”IRA

comprising of a paraboloidal reflector fed by two pairs of coplanar feed plates as
—

indicated in Figure 2. An expanded view of the switch region inciuding the lens is

shown in I?igure 3. ~~%at the lens does, is to ensure that the wavefront of the TEM....
wave in the air region outside the lens medium is spherical with its origki at the

focal point of the parabolic reflector which is also the true apex of the feed” plates.

We also assume that the switch located at z = —z~ in Figure 3 closes at a

time -t = -tI = [{11(1 – ~) + z.@]/c] so that in effect, an ideal source turns

on at t = O at the apex and the wave propagates in air. In the expressio~ ‘for tl,

21 is the length of the lens along the negative z axis as indicated in Figure 3. ‘The

lens medium (e;g., oil in a container whose dielectric constant is the sa.rrie as oil)

also helps in high-voltage stand off. It is further noted that the lens lowers the

characteristic impedance of conical transmission line by (1/~)” except for small

changes due to angles. E, is the dielectric constant of the lens medium [e.g., oil..
with S, H 2.25). This change in dielectric constant, also increases eariy-~im”; field

due to transmission coefficient of the electric field (TEM voltage) (> 1) in” going
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Figure 2. An example IRA fe~? by a pair of coplanar conical TEM lines.

NO T_ES

a)

b)

c)

cl)

Afljnccllt IJlates nrc [,iefl tf)gctller mntr the apex wl~icll lmlvcs tl~c net impedance,

(TEM) of either pair.The load on the plllscr is half of 2.

The resldtant borcsigllt radiation is along a 45o angle 4 = 45° in the x-y plane.

One can rotate the al>ove structure by 45° so that the resultant E-field is

oriel]tefl along i,,tlirect,ion in the far fielclo
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Figure 3. An expanded view of the launch region of the IRA in Figure 1 (switch

center is located at z = –zS).
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from the lens dielectric to air.

Next, we turn our attention to the radiated waveform on boresight of an op-

timally designed IRA. Although our interest is in the performance characteristics

of an IRA fed by 4 plates as in Figure 2, it is adequate to consider the canonical

problem of an IRA fed by 2 plates as in Figure lb. The resultant radiated field

for the 4 plates cag be obtained by a superposition of the fields for each set of two

plates. As shown in Figure 2, the resultant field for 4 plates is along a @ = 45°

direction. We then note that the formulae developed in ,this note are for the case of

2 plates with an applied potential of VOu(t) between the two plates. To obtain the

corresponding results for the 4 plate situation, we observe that the geometric factor—

?~ should be multiplied by (1/2) to account for the parallel connection of the two

sets of plates. Likewise, the radiated fields amplitudes should be multiplied by ~,

while noting a new principal direction at 45°. These changes are required in going

from 2-plate feed to 4-plate feed via vectorial additon of x and y components of the

radiated field.

We also emphasize that we have considered an ideal excitation of V. u(t). In

practice the applied voltage will have a finite rise time, e.g,, V. (1 – e-at) u(t) and

the radiated fields in this note will have to be suitably modified for the finite-rise

excitation via convolution integrals.

Having outlined the IRA, its feed configuration and launcher considerations,

we proceed in Section II with a characterization of its performance in terms of the

time-do-main far field on boresight.
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11. Boresight Radiation

The basic principles of an IRA illustrated in Figures 1 and 2 are by now, well

analyzed and understood [1, 5 and 6]. When this form of IRA was originally pro-

posed [I], the boresight radiation was predicted to consist of a feed-step followed

by an impulse-like behavior as indicated in Figure 4 for a step function source.

Later numerical analysis [4] produced a similar radiated wave as shown in Figure

5. Of late, the emphasis has shifted to obtaining closed-form expressions for W-

ious temporal elements of the boresight radiation [5 and 6]. We can build on the

past analyses, and conceptually list the various temporal elements of the boresight

radiation as follows, assuming that the step-function pulse generator is switched on

at t = 0, and the observer is at a distance r (= z) to the right of the focal point of

the parabola. The focal point coincides with the theoretical apex of the launcher

plates. These elements are:

A. Prepulse—

1) feed step

13. Main pulse of interest

2) impulse

C. Po@ube

3) feed plate diffraction consisting of two parts

a) plate edge on plate of finite width, large compared to wavelength

b) plate of finite width, small compared to wavelength, modelled by cir-

‘ cular cylinder

4) edge diffraction from the circular rim of the parabolic reflector

13. Constraints on entire pulse

5) low-frequency dipole moment radiation and no radiation at zero frequency

(de).

We now discuss each of the above elements.

1) Feed step or pre-pube [tr < t < (tr + 2F/c)]

This is a direct radiation from the source or the “switch” towards the observer.

It starts at a time -t = t, = (r/c) and lasts for a duration approximately = (2.F/c).

—

.

—
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V.

(dimensionless
prepulse

t r =(r/c)

impulse
(main pulse of interest)

postpulse
(not considered)
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Figure 4, Far field on axis from an IRAfed byan ideal step function.
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Figure 5. Farfield onaxis from an IRAfed- bya fast-rising function.
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The feed step is negative for the assumed signs of voltages on the launcher plates.

For one pair of narrow plates [plate width << pIate separation) with applied

voltages of [~~u(t)], the feed step in the far field may be written as [5],

v~Dl
lq~(?-, q = –— — —

Y 47rj9 2F [ “’-’”(+wl+wl ‘“

where
V. s potential difference between the two feed plates

L? s diameter of the reflector = 2b

.f~ ~ feed impedance/free space impedance

F E focal length

c s speed of light

The “exact” feed step amplitude, available in ((33) of [5]) is

Vo 1

– 7 2K[rn) cot(&, /2)
(2a)

with m = (tIl /b2)2 and bl, 62 and ~2 are shown in Figure lb. The above expression

has simpler asymptotic forms for narrow plates ((b2/61 ) ~ 1) and wide plates

((b2/h ) + cm). The following expressions [5] are useful in evaluating the exact
[TE~)/~o

feed step amplitude in (2a) above. We specify ~~ = F/~ and .f~ = Zc

and then compute m, @O, I% and @2 Usiw

f,= ~(~)/K’(m]

[
Po = arctan 1

2~~ – l/(8~~) 1

—

(2b)

More importantly, the turn-off of, the feed step occurs at t = t. + (2.F/c) which

can be explained as follows. Assuming a current flow of 34(7, t) in retarded time OQ

the plates, the feed step can be computed via,



For t < (tr+ (2 F’/c)), this integral must give the same answer as before. Assuming

that the current Y(F, t). is perfectly terminated at reflector and is a step-function

wave propagating on conical plates, for times larger than (t. + (2 F/c)), J- is a

constant and hence the time derivative vanishes and the feed step turns off. What

happens at this instant is that the current ~ goes on to other parts of antennas

and the integrals such as (3) give other terms e.g., main pulse, postpulse, etc. In

the subscript for the radiated field on the left side of above equation, y refers to

the y-component and the number following the y refers to the numbering

of the various temporal elements in the radiated field, as listed earlier (e.g.,

to feed step).

2) Impulse at t = [t. + (2F/c)]

scheme

1 refers

The impulse-like radiation occurs at a time t = [t.+ (2 F/c)] for an observer

location on axis. Recall that the switch center is located at z = –z. with z = O

being the focal point or the launcher apex. Although the transient wave has to

propagate a short distance in the oil medium of the lens, the design of the lens

ensures that the wavefront outside the lens region is a sphere centered at the focal

p-oint. The impulse amplitude is given by [5],

:* ’(’-fT++))
E@(r, t) = —

where the effective antenna height is given by [11],

ha,=
7rm-’~4

K(m) b[’-:arcsin(:ml

Once again,_ the asymptotic forms are

:&+(:r+3)Ey~(7-,t) = —

for narrow plates (bz/bl ) ~ 1 for which h., ~ (~/2) (see Appendix C), and

42(7-, t) E

: W++3)
for wide plates for which

()b2 b—=— .
b )

~Qi!L+”’”; ~e~Ap’endi’c)

(4)

(5)

(6)

(7)

(8)
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One also notes that above expressions are the ideal results of a delta function

radiator. The correct field is limited in amplitude by the aperture field with a

small pulse width (replace 6 by 6.) to give the correct impulse or time integral [3].

3) Feed-plate diflraciion

The diffraction from the feed plates may be classified into two parts. As the

spherical TEM wave launched by the feed plates scatters off the paraboloidal surface,

it encounters the plate edge and then the plates themselves. Consequently, the feed-

plate diffraction occurs from the plate edge at the early time.

a) Plate edge diffraction

At early times when the finiteness of the plate edge is unobservable, this prob-

lem can be modelled by the classical diffraction from half-plane [7]. Keller and

Blank [7] have treated a general problem of diffraction from a wedge, which can be

simplified and specialized to a half-plane by making the wedge angle equal to zero.

This solution is presented in Appendix A and the resultant far field on axis due to

the diffraction from plate edge at early times is given by

recalling that the source is turned on at t = O and the origin of coordinates is the

focal point of the reflector, which is also the true apex afilauncher plates. Strictly

speaking, the above equation is asymptotically valid for a time less than (a/c) on

average, after this diffraction process is initiated at a time -t = [t. + (2 F/c)].

b) Diffraction from the plates of finite width (<< wavelength)

For times larger than (a/c) and smaller than (b/c) so that, only the total

current on plates is important, the scattered wave is diffracted fi-om the plates.

We can estimate this by modelling the plates by equivalent round conductors and

quantifying the diffraction [8]. This solution is presented in Appendix B and the

leading term in the resultant far field on axis due to the diffraction from the plates

-
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(assumed to be 1 pair initially) is given by

.

where
ae s equivalent radius of the plates

I’, s exponential of Euler’s constant = 1.7810”0 c

It should be remarked that we have estimated the diffraction from the plates

in 2 time regimes. It is not clear how the two time regime solutions connect up.

The diffraction from the launcher plates is of opposite sign compared to the impulse

like radiation and initially falls off like (l/@) and then asymptotically behaves like

(1/A@.

4) Diffracted fields from reflector edge

Immediately following the impulse, one also has the diffracted signal from the

circular rim of the parabolic reflector arriving at an observer on axis. We now

estimate this edge diffracted signal.

The cross sectional view at z = —z. is shown in Figure 6. This is the plane

in which the circular rim of the parabolic reflector is located. It is clear that in

the z = —.zr plane, the illuminating TEM fields are in the @ direction and hence

parallel to the rim of the reflector, We look at the edge diffraction from one pair

of plates (A-B) illustrated in Figure 6. The incident field illuminating the rim may

be written as

The general far field expression for the edge diffraction in frequency domain is given

bY [91”,

(12)

13
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+(vo/2] U(t-tb)

Plate A at $ = +90=

x

Plate ~ at ~ = ~ go”
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-(vO/z) U(t-tb)

b
launcher plate)/c

Figure6. Circular rim of the reflector irithe z=–.z. plane.
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where the one-dimensional integral is along the circular reflector edge. We now

specialize the above equation for an observer on axis. The diffraction coefficients

are given by [9]

–Fe = G+ =
()

1 – sin(~~/2) = tm 7r– @O
and GO = O (13)

Cos(pl) /2) 4

The vector F’ denotes a point on the circular rim and for an observer on axis r, = r=

- (inc) o for TEM waves on self reciproczdso that e~~i’”~’ = e–.ikzr. Substituting, -EO =

apertures (Appendix B and [12]); Go = O, we have

(14)

we also know that for an observer on axis, there is no z-component of the rim

diffracted field and consequently, we can consider the y-component of the above

equation

or

ZY4 = –

e_–jk(r+z. )

G+
4n_r f

cos(q$)~oe-~krodl
cb

e–jk(r+z, +ro)

=—
4m

G4
/

fid cos(q$)dl
cb

e–jk(r+2F)

=— c+ h
47rr

(16)

where the diffraction coefficient G@ is given in (6) and (g represents the integral

(17)

It is also noted that the negative sign in (15) and (16) represents the sign reversal

when the incident field hits the metallic rim. The above integral is evaluated in

Appendix C and is given by

(18)

15



where
K(m) = complete elliptic function of the first kind

m s parameter = (bl /62)2 (see Figure 6b)

It has been verified that the f~ expression of (18) is consistent with asymptotic

results obtaiued for narrow and wide plates. Substituting (18) into (16) and taking

the inverse transform, we have

The above expression is the leading term in y-directed rim-diffracted field on axis,

at a distance r from the focal point for the case of one pair of coplanar plates (see

Figure 6). It is noted that the above expression is asymptotically exact, since we

have used the exact TEM incident field (~-directed) which is parallel to the circular

rim of the reflector. This result is a step function in an early-time sense.

5) Constraints on entire pulse

The radiation at low frequencies may be characterized by a set of electric and

magnetic dipole moments. Let us denote these Iate-time dipole moments by fit)

and iii(t) respectively. With reference to Figure 6, it is observed that the fit) [IO]

is oriented along iv and iii(t) is oriented along – ~z direction so that- th-e~esultant

radiation is along IY x (— IZ ) or r~ direction. The iow-frequency radiation pattern

from this pair of balanced (lfil = cl~) dipole moments is (1 + cos(i9)) where O is

the polar angle measured from the +,z axis. It is noted that the –z axis behind

the reflector is a direction of null (6 = +~) for the low-frequency radiation. This

physical fact can be used in the experimental balancing of the two dipole moments

by varying the terminating impedances at the junction of the feed plates and the

refiector rim. For example, increasing the terminating impedance in the loop over

(TEM)
the value of the characteristic impedance Z. would lower the loop current

and hence lower the magnetic dipole moment.

one can summarize the constraints on the entire radiated pulse [13, 14] by

observing: (i) that the complete time integral of the radiated waveform must be

16
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zero and (ii) the low-frequency radiation is proportional

are the late-time dipole moments. The constraints on fif

/“
if(r, t)dt = o

—cc

to ~(m) or ti(m)

are given below

which

(20a)

(20b)

As noted earlier, for properly terminated TEM lines, the low-frequency radiation

pattern associated with the dipole moments is a cardioid with its maximum along

the boresight and a null in the backward direction.

Gathering various temporal elements of the boresight radiation discussed above,

one arrives at Figure 7 for the far field from a reflector IRA fed by one set of coplanar

plates. The IRA under discussion is illustrated at the top of Figure 7, and the y-

directed far field (normalized) at the bottom. The practical switch at z = –z.

closes at t = tl as mentioned earlier, which in effect turns on an ideal source at

-t = O at the apex. Under this assumption, the feed step for an on-axis observer

starts at t = tr = r/c. The feed step is negative, while the impulse 2 is positive.

The feed plate diffraction is negative ( 3a and 3b ) while the rim diffraction 4-is

positive. The results can be expressed as

3f(F, t) = iy-?q(~,t)

Ey(r,t)= Eyl(r,t)+Ey2(7-, ~)+ -Ey3(7-, ~)+ -%4(7-) ~)

+ low-frequency radiation from dipole

moments resulting in time integral

constraints on entire pulse (21)

17



Coplanar plates in Z = O plane
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4
Y d = D2/(16F)

Figure 7. On-axis radiation from a canonical IRA
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r
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plate diffraction
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plate edge diffraction
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18



where

Eyl (r, t) s feed step = prepulse

(22)

(for narrow plates with width << separation)

-–4-W=VO ha,

r 27fcfg

“:& ’O-:-:)
(23)

(for narrow plates with width << separation)

~v3~(T, t) ~plate-edge diffraction

__~ 1
— (A)(:) /et-;hJ’)r m’wi /377-’

‘H-a (24)

(see Appendix A for the approximations in above)

EY~~(r, t) s plate diffraction (round conductor approx.)

~_~ 1 1
—

[{

r 4sin(@O) ~n _l_ 2(ct–r) +1

r. a.sin(@O) }1
(see Appendix B for the approximations in above)

(25)
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EY4 (T, -1) e diffraction from the circular rim of the reflector

In addition to the prepulse, pulse of main interest and the post pulse listed

above, one also recognizes the constraints on the entire radiated waveform in the

form of time integrals. These constrain~s were discussed earlier and require that

the first time-integral of the entire pulse be zero and the second time-integral be

proportional to late-time dipole moment of the IRA.

Recall that the radiated field outlined above is for a step function u(t) excita-

tion. In practical situations, one never has an ideal step function and so u(t) may

be replaced by a general ~(t) and J(t) in (23) then becomes [d~/&$). Examples of

f(t)are:

a)

.fl(~) = ~(~)[1 – e-a’] (27)

a fast-rising “step function”

for which the impulse J(t) would be replaced by (~~1 /6Y)

b)

~z(t) = (e-~’ – e-fft)u(f) with Q >> @ (28)

s fast-rising, slowly decaying “double-exponential” function

for which the impulse ti(t) would be replaced by (@~z/&).

The leading terms of the time-domain radiated field on axis described above

are useful in the design and evaluation of IRAs of this type. A prototype IRA is

under construction and its measured performance data may be compared with the

expressions in this note, at a later date.

—
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III. Summary

In this note, the past analyses of the on-axis radiation from reflector IRAs are

extended to include the diffraction from the feed plates as well as the circular rim of

the reflector. Leading terms of these diffracted signals in time-domain are obtained

in closed form, under the assumption of a step function excitation. We recall that

the feed step (or prepulse) is a negative going step with a duration of (2 F/c). The

impulse is of the opposite sign. The amplitude of the feed step and also the area

under the impulse are known from past analyses. In this note, we have obtained

the leading terms for diffractions from the plate edge, plate(s) and the reflector

rim, The diffraction from the plate edge is based on a classical half-plane solution

valid at early times. The diffraction from the plates are obtained by estimating

the diffraction from an equivalent cylindrical conductor. The diffraction from the

circular reflector rim is obtained accurately since the incident field on the rim is

well known from the spherical TEM wave propagating on the feed plates.

The radiated waveform is decomposed into prepulse, main pulse and postpulse.

oThe postpulse is seen to consist of plate edge diffraction 3a , diffraction from plate

o 0of width << wavelength 3b and the rim diffraction 4 . The formulas derived for

003a and 3b can be improved by evaluating integrals over non-uniform -EYincidence,

operhaps numerically. The rim diffraction 4 on the other hand is asymptotically

exact and appears to be complete.

It is noted that at low frequencies one can characterize the radiated field from a

set of electric and magnetic dipole moments which results in certain constraints on

time integrals of the entire radiated waveform. Essentially, the complete first-time

integral of the radiated waveform must be zero and the second-time integral must

be proportional to the late-time dipole moment. Formally, this analysis completes

all aspects of the radiated fields on axis from reflector IRAs. The results obtained

here are useful in designing and evaluating the performance of this type of IRA.
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APPENDIX A

Plate Edge Diffraction

We start with the Keller and Blank [7] formulation for the diffraction from a

wedge and specialize it to a half plane. With reference to Figure 8, the incident

field is given by

(29)

The rectangular coordinate sys tern (x, y, z) indicated in Figure 8 is for the purposes

of this Appendix only. It should not to be confused with the coordinate system in

Sections I and IT. The approach is as follows. For the given incident field, one

finds the diffracted/scattered field everywhere from which the current induced on

the metallic conductors may be found. By integrating these currents, one gets the

radiated field.

Keller and Blank [7] compute the diffracted fields via a computation of the

electric potential function U, also indicated in Figure 8. We can specialize the

potential function (Equation 16 of [7]) to the case of ~1 = (1 and ~0 = O to get-the

potential function for diffraction from a half-plane. Letting +1 = O and do = O, we

have the potential function given by

U = 1 – z arctan

{}

(1 -p)

T

()

$-7r
2p1/2 Cos —

2

The values for the potential u ranges from O to 1 and the (arctari) values go from

O to (7r/2). In the above expression,

w –arccosh(Ct/v) (31)
p = c-t + (C%z – Wz)lfz = e

where V is the cylindrical radius. Substituting (31) into (30), the potential function

becomes

1/2

()_,+-T
Cos —

2
(32)

22
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Wenow observe that if theincidence were notnormzd

normal at an angle 6i, the incident field amplitude in (29) is

of -?30. For present purposes @i is taken as the leading edge

and therefore Oi = @l and ~z does not enter this formulation.

and magnetic fields in cartesian coordinates are given by [15]

as in Figure 8, but “ofl?

now EO SiIl(Oi) in place

in this edge diffraction

The diffracted electric

(33)

(34)

(35)

or

To find the currents induced the x-component of the- magnetic field is the

interesting quantity and, it is given by

8Hz
Zox=– c

au

sin(6~ ) ~

20 8HZ c

(
~ux, y,

t

()

SiIl(t9i) ~ t = ‘sin Oi d~ sin($~) )
Sill(di)

The sheet current ~~ is given by

j. = J. ~. = r. ~–HQ ].=0+ + HwI.=0-I

Using (32) in (34), the sheet current becomes

For a general value of z, we have

2

, 1/2

[

Ct
: COS(Oi)Eo4fi ;+Z

7.= L-—
Zo T ()

–1 u~
Sin($i ) x

Figure 9 shows a strip of constant width I&., the

direction of current flow along the z-axis. Knowing

is given by

(37)

(38)

(39)

J

angle of incidence Oi and the

the sheet current, the far field

24



constant width V.

~ig~re 90 Geometry of sheet current ffoww.r.t. the incident field.
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Substituting for ~. from (38), we have on axis

‘o / sin[~~) 1P~f(nt+; ‘–— 4m-

‘/[]

‘O EO 4fi.—
0 Zl) T

Using (po/Zo) = C-l and dr’ = dzl/ sin(~i)}

C3

[1

1/2
Ct

dr’
z’ sin(6~)

(41)

lP..= polarization of the e-field

l?=b~ ; Eo=%
2b1

on average
(43)

while ‘J?Ois a position dependent plate width with minimum and maximum values

of O and 2a respectively, the average value of ~ in above is given by

(44)

So, to a first order

This expression is

diffraction process

‘,(*) (;) L%[.’-”) [45,

asymptotically vaIid for a time Iess than (Ii?o/c) or (cz/’c) after

is. initiated at t = [tr + (21?/c)], noting that an average value of

V. is a. As noted earlier, we can use Oi = ~1 [see (2b)] for numerical computa-

—

tions. Substituting a more accurate y-dependent expression for the incident field
(inc)

(E. replaced by 17Y (Y)) cou~d lead to more accurate results in the future.
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APPENDIX B

Diffraction from the Plates of Finite Width (<< Wavelength)

The diffraction from the plates may be modelled by considering an equivalent

problem of diffraction from a cylinder. The cylinder has an effective radius a. which

can be approximated to be (1/4) of plate width [16]. The maximum plate width is

2a so that the maximum value of a. = (a/2). The geometry of the model problem

is shown in Figure 10. Once again, the rectangular coordinate system (z, y, Z)

indicated in Figure 10 is for the purposes of this Appendix only. It should not be

confused with the coordinate system in Sections I and II. We follow the analysis of

[8] and defineanorrnalized time

[

Ct
q“ = +1

(ZeSin(6j) 1
(46)

So that the induced current is zero for negative values of q*. Note that the incidence

angle 6i is well approximated by /30 of (2 b). Let us denote the incident field by

(47)

Using the results of [8] which is for an impulse excitation, for our step-function

excitation, we have

1

‘* 2Ta.
I(t) = — Eo F(q”)clq”

-CQ Zo

or

where

to e
a, Sin(Oi)

c

I’(q*) = 1 *

()
.!?-l ~

r.

(48)

(49)

17, = 1.7810.. . = exponential of Euler’s constant
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t =
o

–t = time waves first touch the
o

cylinder on z=() plane i

I
I

a. sin(6~) ,_M[

F&Ire 10C Geometry ofdiffraction from a cylindrical conductor.
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We can now evaluate the far field from the knowledge of the current flow as follows

+’,~+~)=-&;{rp(sin(oi))~eng,h+;)a}
i91(t)

–@-ipt F
= 47rr

(51)

Substituting for (~1/~) from (49), we have

(52)

Once again, an average value of .EO~ VO/(2bl ) and / = bl, which reduces (52) to

VIEf(r, t) s –~

As we remarked earlier,

1

[{

~n-l 1 2(ct – r)

}1
+1 +...

Sin(Oi) ~ a. Sin(@i)
(53)

the incidence angle 19iin above may be replaced by

/30 found in (2b), Once again as in the previous appendix, using more accurate,

‘inc)(y t) in (48) could lead to more accurateposition dependent incident field Ey >

results in the future.
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APPENDIX C

.

Diffraction from the Reflector Rim

[Evaluation of ~v in (17)]

Equation (17) is reproduced below

(y = ~, % ~os(+)d~ = / & d~ = f 2EY Cl/ (54)
~k C&=

This applies to contour Cb on the circle of radius b with the incident electric field

parallel to Cb (= C6. U Cb[). These contours are shown in Figure 11. b general

Substituting
V. dw(~)

E= EZ–jEy=–— —
AU d~ ‘

Integrating by parts,

Noting we-jd 1~~,2 = uy[–j) – u–(–j) + jv(–j) – jt~(j) = –A’(mI)

Using w = u + jv and considering

so,

(56)

(57)

(58)

(59)

(60)

(61)
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Contour

Contour
%r

D

Figure Il. Geometry of the problem showing the integration paths.
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The y-component of ~ reduces to

But, for a symmetric aperture where C: is closed containing no singularities [3],

or

The above integral is performed in [11] and is given by

where

m= (bl/b’)2, ml = (1 –m)

f,=
K(m)

K(ml)

Using (51) and (50) in (49), we get

(63)

(64)

(65)

(66)

(67)

which is the desired result,

Asymptotic forms of h., and (y for narrow and wide plates may be derived as

follows.

a) narrow plates [11] (plate width << pIate separation)

(68)



.

—.

Consequently,
vo~h ~_vQ

ty=–~~ .,
x

b) wide plates (plate width >> plate separation)

()b2 b—=—
b bl ‘a ;

m~()

ml~l ; fg+o 1
We can expand IY(m) and the- arcsin( ) in (67) as follows,

K(m) = ~ [1+~ +O(m2)] (for m + O)

Using

arcsin(l – z) = ~ – & [1 + ; + o(~)] (for x ~ O)

we have

arcsi”(w)‘ar-csin(’-l--%)=~–27721/4 [1+ o(h)] (for m ~ O)

Using (72) and (74) in (67), we get

m-1/4

(Y=–vo;m
~ [1+ O(m)]

[1-: (;-2m’/4{l+ o(@)})]

= -M [l+o(@z)] (for m ~ O)
7(

Consequently,

ha, =
‘--$ fg’~=(:fg+”””) “

(

2D
= ;fg +......

)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)
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For wide coplanar plates considered above, one can also derive the asymptotic

forms of CY and h., from the known electric field. One observes that for wide

coplanar plates, the potential @ is only a function of azimuthal angle # given by

The electric field in the right half plane (–7r/2 < ~ < 7r/2) is given by

then

(77)

(79)

resulting in

<y= .$ and hay =
()

; fg (80)

for the wide plates (m j O or ~~ ~ 0). (80) is in agreement with (75) and (76).
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