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Abstract

The IRA considered here is a paraboloidal reflector fed by conical TEM lines.
Such an IRA has been analyzed in the past for its performance characteristics such
as the prepulse or feed step and the impulse, assuming a step function excitation.
In this note, we extend the analysis to include the diffracted fields from the launcher
plates and the circular rim of the reflector. The diffraction from the launcher plates
can be viewed to consist of two parts. One has the plate edge diffraction followed
by diffraction associated with the total currents on the plates. The leading terms
in all of these diffracted signals arriving at an observer in the far field have been

determined in this note.
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I. Introduction

The radiated éelrl from an aperture antenna consists of aﬁrspatia.l integr;ationwof
the aperture ﬁelzds;oi;erthe aperture while thetemporal beﬁavior of the aperture
field get d1ﬁ'erent1ated This is a simple physical fact well explmted in an IRA,
proposed by Baum [ 1]. One form of an IRA then consxsts ofa parabolmdal reflector
fed by conical transrmssmn lines that propagate a spherlcal TEM wave emana.tmg
from the focal pomt of the reﬂector There are several factors that govern the desxgn
of an optimal IRA It to 5] some of which are  listed Below

i) The aperture area should be as large as practical since the far ﬁeid is

feed. (The far ﬁeld is proportlonal to the aperture area for a constant
aperture ﬁeld ) e

ii) The feed plates should be narrow to reduce aperture blockage, resultlng in
high values (several 100’s of §2) of feed—zmpedance

m) It is preferable to have 2 pairs of feed plates for symmetric 111ummat10n of

the radlatmg aperture. Since the two pairs are connected in parallel this

also halves the load nnpedance for the pulse generator at the focal pomt

“iv) The feed plates, which are tr1a.ngular in shape can in principle, face each
other or be coplanar (Figure 1). Coplanar feed plates are preferred. since

their aperture blockage effect i is smaller.

V) The termmatlng impedances at the Junctlons of feed plates and the reﬁec—

moments of such an IRA.

full IRA. It can be s1ngle -ended if half an IRA is buﬂt usmg an rmage

plane. A smgle—ended pulse generator dnvmg a full IRA could result 1n

‘both differential and common mode cu_rrents on. the feed platesl unIess a

-16‘6.1;.‘;_‘3 ) qub‘q it

2

tor rim can be tuned to balance the late-time electmc and magnetxc dxpole

fast, hlg;h Voltage balun is used. Alteruatwely, one can use the antenna '
conductors as part of the balun [2]. Whﬂe the drfferentlal mode currents

are desnabfe, the ‘common mode currents can distort the &eswed features 7
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in the far ﬁeld Care must be taken to avoid undesirable currents ﬂowmg ;

on the outer shleld of the feed cable(s}

vii}) The pulse generator can be represented by a smgle swztch near the focal

point. The two electrodes of the switch shall be at equa,l but opposzte

potentlals :tV(t) = j:(Vg/2) f(t)

viil) Since the far field on axis is proportlona.l to the rate of rise of the apphed

voltage (6V/ 8t) one would like to maximize this rate of rise. Thls Ieads o

to physmally small switches operatmg in a high- pressure gas tenamg to
approach 101% V/s (e g., 100 kV in 100 ps).

“ix) The combmatmn of requiring physmally small sw1tches h1gh Voltages and
fast rise tzmes implies the use of electromagnetxc lenses in the sw1tch region.

The lens can be made of an oil medium Wh1ch serves the dual purposes of

high- voltage msulat:on and ensuring a sphenca.l TEM wave launch on to

the feed plates

A careful consideration of the above listed factors leads one to an opti"friél'iﬁA » '

comprising of a para,bolmdal reflector fed by two palrs of coplanar feed plates as
mdlcated in Flgure 2. An expa,nded view of the sthch reglon including the lens is
shown in Figure 3. \,Vhat the lens does, is to ensure that the wavefront of the TEM
wave in the air regmn outSIde the lens medium is spherical with its orwm at the

focal point of the parabohc reflector which is also the true apex of the feed pla,tes

We also essume that the switch located at ; = —z, in Figure 3 closes at a
time t = ¢ = [{@1(1”— VE) + 2,V } /¢ so that in eﬁ'ect an ideel soui::c?e;i;,ufns

on at t = 0 at the apex and the wave propagates in air. In the expressmn for t;,

£; is the length of the lens along the negative z axis as 1nchcated in F1gure 3 The
lens medium (e g, 011 in a container whose dzelectrlc constant is the same as oﬂ)
also helps in h;gh-voitage stand off. Tt is further noted that the lens lowers the
characteristic 1mpedance of conical transmission line by (1/ \/—— ) except for small
changes due to angies Er is the dielectric constant of the lens medium (e g., oil
with &, ~ 2.25). This change in dielectric constant, also 1nc;eases early-time ﬁeid

due to transmission coefficient of the electric field (TEM ‘voltage) (> 1) in going
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Figure 2. An example IRA fed by a pair of coplanar conical TEM lines. o
NOTES |
a) Adjacent plates are tied together near the apex which halves the net impedance. | o

b) The load on the pulser is half of ZC(TEM) of either pair.
¢) The resultant boresight radiation is along a 45° angle ¢ = 45° in the z-y plane.
d) One can rotate the above structure by 45° so that the resultant E-field is

oriented along 1, direction in the far field. E
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from the lens dielectric to air.

- Next, we turn our attention to the radiated waveform on boresight of an op-
timally designed IRA. Although our interest is iﬁ the performance characteristics
of an IRA fed by 4 plates as in Figure 2, it is adeQuate to consider the canonical
problem of an IRA fed by 2 plates as in Figure 1b. The resultant radiated field
for the 4 plates can be obtained by a superpositfon of the fields for each set of two
plates. As shown in Figure 2, the resulrtant field for 4 plates is along a ¢ = 45°
direction. We then note that the formulae developed in this note are for the case of
2 plates with an applied poténtial of Vo u(t) between the two plates. To obtain the
- corresponding results for the 4 plate situation, we observe that the geometric factor
fg should be multiplied by (1/2) to account for the parallel connection of the two
sets of plates. Likewise, the radiated fields amplitudes should be multiplied by v/2,
while noting a new principal direction at 45°. These changes are required in going
from 2-plate feed to 4-plate feed via vectorial additon of ¢ and y components of the
radiated field. |

We also emphasize that we have considered an ideal excitation of Vou(t). In
practice the applied voltage will have a finite rise time, e.g., Vo(1 — e %*)u(t) and
the radiated fields in this note will have to be suitably modified for the finite-rise

excitation via convolution integrals.

Having outlined the IRA, its feed configuration and launcher considerations,
we proceed in Section II with a characterization of its performance in terms of the

time-domain far field on boresight.



II. Boresight Radiation
The basic principles of an IRA illustrated in Figures 1 and 2 are by now, well
analyzed and understood [1, 5 and 6]. When this form of IRA was originally pro-
posed [1], the boresight radiation was predicted to consist of a feed-step followed
by an impulse-like behavior as indicated in Figure 4 for a step function source.
Later numerical analysis [4] produced a similar radiated wave as shown in Figure
5. Of late, the emphasis has shifted to obtaining closed-form expressions for var-
ious temporal elements of the boresight radiation [5 and 6]. We can build on the
past analyses, and concéptually list the various temporal elements of the boresight
radiation as follows, assuming that the step-function pulse generator is switched on
at ¢t = 0, and the observer is at a distance r (= z) to the right of the focal point of
the parabola. The focal point coincides with the theoretical apex of the launcher
plates. These elements are:
A. Prepulse—
1) feed step
B. Main pulse of interest
2) impulse
C. Postpulse
3) feed plate diffraction consisting of two parts
a) plate edge on plate of finite width, large compared to wavelength
b) plate of finite width, small compared to wavelength, modelled by cir-
“cular cylinder '
4} edge diffraction from the circular rim of the parabolic reflector
D. Constraints on entire pulse

5) low-frequency dipole moment radiation and no radiation at zero frequency

(de).

We now discuss each of the above elements.
1) Feed step or pre-pulse [t, <t < (t, + 2F/c)]
This is a direct radiation from the source or the “switch” towards the observer.

It starts at a time t = ¢, = (r/c) and lasts for a duration approximately = (2F'/c).

8
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4——— 2F/c ~———— 3
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(main pulse of interest)

postpulse
(not considered)

Figure 4. Far field orrlra;cisr fr;mran IRA fed by an ideal step function.
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risetime launched
toward reflector

Figure 5.

%»expected postpulse

Far field on axis from an IRA fed by a fast-rising function.
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The feed step is negative for the assumed signs of voltages on the launcher plates.
For one pair of narrow plates (plate width << plate separation) with applied
voltages of [i%‘lu(t)], the feed step in the far field may be written as [5],

CEu(r, t) = —T—fl 439 i}fﬁ [u(t—-tr) —u (t— (z:r %F—)H (1)

Vu = potential difference between the two feed plates

where

D = diameter of the reflector = 2b
fs = feed impedance/free space impedance
F = focal length

¢ = speed of light

The “exact” feed step amplitude, available in ((33) of [5]) is

Vo 1
"1 2K(m) cot(B2/2) (22)

with m = (b;/b2)? and by, b2 and 3, are shown in Figure 1b. The above expression
has simpler asymptotic forms for narrow plates ((b/b;) — 1) and wide plates

((bz/b;) — o). The following expressions [5] are useful in evaluating the exact

feed step amplitude in (2a) above. We specify fg = F/D and f; = ZgTEM) [Zy
and then compute m, fy, 51 and B2 using
fo = K(m)/K'(m) ]
1
Bo = arctan { ]

By = 2 arctan [mlﬂ tan(ﬁo/Q)}

B2 = 2 arctan {m—lﬂ taﬂ(ﬁo/z)} )

More importantly, the turn-off of the feed step occurs at ¢ = ¢, +(2F/c) which
can be explained as follows. Assuming a current flow of J(F, t) in retarded time on

the plates, the feed step can be computed via,

E,(r,t) = -4%9;?2 . % /;, J(7, t = (2/c))dV (3)

10



Fort < (t. + (2F/c)), this integral must give the same answer as before. Assuming
that the current J| (7, t). is perfectly terminated at reflector and is a step-function
wave propagating on conical plates, for times larger than (¢, + (2F/c¢)), Jis a
constant anciiﬂh;nce the time derivative vanishes and the feed step turns off. What
hgppens at this instant is that the current J goes on to other parts of antennas
and the integrals such as (3) give other terms e.g., main pulse, postpulse, etc. In
the subscript for the radiated field on the left side of above equation, y refers to
the y-component and the number following the y refers to the numbering scheme
of the various tempofal elements in the radiated field, as listed earlier (e.g., 1 refers

to feed step).

2) Impulse at t = [tr + (2F/c)]

The impulse-like radiation occurs at a time ¢ = [t + (2F/c)] for an observer
location on axis. Recall that the switch center is located at z = —z, with 2 = 0
being the focal point or the launcher apex. Although the transient wave has to
propagate a short distance in the oil medium of the lens, the design of the lens
ensures that the wavefront outside the lens regibn is a sphere centered at the focal

point. The impulse amplitude is given by [5],

ha \
Eyg(r, t) = -?— é‘;c—"}; ) (t - <f7~ + g‘?‘)) (4)

where the effective antenna height is given by [11],
Tm~1/4 2 1~ /m
he, = ———0b|l—= in | ——— 5
. Rim) {1 — arcsin (1 T m>} (5)

Once again, the asymptotic forms are

Bl ) = 2 2 6 (o= (14 2)) ©)

for narrow plates (b2/b;) — 1 for which ks, > (D/2) (see Appendix C), and
Vo D 2F
EyQ(T', t) ~ —‘9‘ —3:6 <t - (tr + —‘c—>> (7)

T TeC

for wide plates for which

ba b
(—b—zb—l>-—>oo ; fg—>0

2D . ®
he, = — fo+--- see Appendix C)
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One also notes that above expressions are the ideal results of a delta function
radiator. The correct field is limited in amplitude by the aperture field with a
small pulse width (replace § by é,) to give the correct impulse or time integral [3].

3) Feed-plate diffraction

The diffraction from the feed plates may be classified into two parts. As the
spherical TEM wave launched by the feed plates scatters off the paraboloidal surface,
it encounters the plate edge and then the plates themselves. Consequentlry‘, the fe;d- :
plate diffraction occurs from the plate edge at the early time.

a) Plate edge diffraction

At early times when the finiteness of the plate edge is unobservable, this prob-
lem can be modelled by the classical diffraction from half-plane [7]. Keller and
Blank [7] have treated a general problem of diffraction from a wedge, which can be
simplified and specialized to a half-plane by making the wedge angle equal to zero.
This solution is presented in Appendix A and the resultant far field on axis due to

the diffraction from plate edge at early times is given by

Eysa(r, t) = —1:2 \/a—i(,m (x@lﬂ?) @) (%)
2a r_2F
\/ —ermn-i-%)

recalling that the source is turned on at ¢t = 0 and the origin of coordinates is the

focal point of the reflector, which is also the true apex of launcher plates. Strictly
speaking, the above equation is asymptotically valid for a time less than (a/c) on
average, after this diffraction process is initiated at a time t = [t, + (2F/¢)].

b) Diffraction from the plates of finite width (<< wavelength)

For times larger than (a/c) and smaller than (b/c) so that, only the total
current on plates is important, the scattered wave is diffracted from the plates.
We can estimate this by modelling the plates by equivalent round conductors and
quantifying the diffraction [8]. This solution is presented in Appendix B and the

leading term in the resultant far field on axis due to the diffraction from the plates

12



(assumed to be 1 pair initially) is given by

Vo 1 1

T 4 sin(Bo) en[ri {az(cstm_(;z) +1H T (10)

Ey3b(7‘, t) >~ -

where
a. = equivalent radius of the plates

I'e = exponential of Euler’s constant = 1.7810 - - -
It should be remarked that we have estimated the diffraction from the plates
in 2 time regimes. It is not clear how the two time regime solutions connect up.
The diffraction from the launcher plates is of opposite sign compared to the impulse

like radiation and initially falls off like (1/+/%) and then asymptotically behaves like

(1/env1).

4) Diffracted fields from reflector edge

Immediately following the impulse, one also has the diffracted signal from the
circular rim of the parabolic reflector arriving at an observer on axis. We now
estimate this edge diffracted signal. |

The cross sectional view at z = —z,. is shown in Figure 6. This is the plane
in which the circular rim of the parabolic reflector is located. It is clear that in
the z = —z, plane, the illuminating TEM flelds are in the ¢ direction and hence
parallel to the rim of the reflector. We look at the edge diffraction from one pair
of plates (A-B) illustrated in Figure 6. The incident field illuminating the rim may

be written as

E"(inc)(;ﬂ’ t)=E4(7',t) 1z  time domain

~inc (11)

—

E (7', jw)=E4(F', jw) 1s  frequency domain

The general far field expression for the edge diffraction in frequency domain is given

by [9],
-~ -—jkri 7 . / " N
Ee(r—"’ w) = _6_4.;7‘_. i [19 (Eglnc) F9

+ Zoﬁglnc) Gg) -+ Tas E¢ Ggs} ejkf"?ldg (12)

13



+(V0/2) u(t-tb)

Plate A at ¢ = 490

Plate B at g = m 90'

NOTE: t, = (slant length of —(VOIZ) u(t—tb)

b launcher plate)/c

Figure 6. Circular rim of the reflector in the z = —z, plane.
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where the one-dimensional integral is along the circular reflector edge. We now
specialize the above equation for an observer on axis. The diffraction coefficients
are given by [9]

L 1=sin(/2) . (75 ~

The vector 7/ denotes a point on the circular rim and for an observer on axis Tr = Tz
so that ef*r ™' = g=ikzr Substituting, Egmc) = 0 for TEM waves on self reciprocal
apertures (Appendix B and [12]); G4 = 0, we have

- e—jk(r+z,.) ;(inc)
Bulrw) =" @, / BT wyde (1)
L

47r

we also know that for an observer on axis, there is no z-component of the rim

diffracted field and consequently, we can consider the y-component of the above

equation
. ~ -~ —jk(r+z.) - ;(il’lC)
L, Bl w) =Bufw) = -Gy [ 1, B e ()
47r L
or
E e:jk(r'l'zr) a E, —jkrg 5y
w=—" 0y jib cos(¢) Eg e
e—jk(r+z,.+ro) N
= —T G¢ i E¢ COS(QS)CM
b
e—ik(r+2F)
=G (16)

where the diffraction coefficient G4 is given in (6) and {, represents the integral

&y = 740 Ey4 cos(¢)dl = j{, E, & (17)

It is also noted that the negative sign in (15) and (16) represents the sign reversal
when the incident field hits the metallic rim. The above integral is evaluated in
Appendix C and is given by

T 2 [(1-ym
o= ey [ 2 {15 e

15



where
K(m) = complete elliptic function of the first kind

m = parameter = (b; /b3)? (see Figure 6b)
It has been verified that the £, expression of (18) is consistent with asymptotic
results obtained for narrow and wide plates. Substituting (18) into (16) and taking

the inverse transform, we have

Vo (z) 1~ Sin(ﬂo/z) 1
dzr \2/) cos(Bu/2) mY/AK(m)

[1 - -f; arcsin Gi%)} u(t —~ —’C: - %F—) (19)

The above expression is the leading term in y-directed rim-diffracted field on axis,

Ey4(r7 t) =

at a distance r from the focal point for the case of one pair of coplanar plates (see
Figure 6). It is noted that the above expression is asymptotically exact, since we
have used the exact TEM incident field (¢-directed) which is parallel to the circular

rim of the reflector. This result is a step function in an early-time sense.

5) Constraints on entire pulse

The radiation at low frequencies may be characterized by a set of electric and
magnetic dipole moments. Let us denote these late-time dipole moments by p{¢)
and m(t) respectively. With reference to Figure 6, it is observed that the g?(t) 7[10]
is oriented along fy and mi(t) is oriented along —7, direction so that the resultant
radiation is along fy x (—1,) or 1, direction. The low-frequency radiation pattern
from this pair of balanced (|| = ¢|p]) dipole moments is (1 4 cos(6)) where 6 is
the polar angle measured from the +2z axis. It is noted that the —z axis behind
the reflector is a direction of null (§ = +£x) for the low-frequency radiation. This
physical fact can be used in the experimental balancing of the two dipole moments
by varying the terminating impedances at the junction of the feed plates and the
reflector rim. For example, increasing the terminating impedance in the loop over
the value of the characteristic impedance ZgTEM) would lower the loop current
and hence lower the magnetic dipole moment.

One can summarize the constraints on the entire radiated pulse [13, 14] by

observing: (i) that the complete time integral of the radiated waveform must be

16
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zero and (ii) the low-frequency radiation is proportional to p(co) or mi(co) which

are the late-time dipole moments. The constraints on E ¢ are given below

/ ” Ef(r, t)dt =0 (20a)

/_ B /_ Bys(r, ') dt' dt = —2% l:ﬁ(oo) - lc- x rﬁ(oo)} (20b)

As noted earlier, for prorpezjlzwtfarminated TEM lines, the low-frequency radiation
pattern associéted with the dipole moments is a cardioid with its maximum along
the boresight and a null in the backward direction.

Gathering various temporal elements of the boresight radiation discussed above,
one arrives at Figure 7 for the far field from a reflector IRA fed by one set of coplanar
plates. The IRA under discussion is illustrated at the top of Figure 7, and the y-
directed far field (normalized) at the bottom. The practical switch at z = —z,
closes at ¢t = ¢; as ﬁentioned earlier, which in effect turns on an ideal source at
t = 0 at the apex. Under this assumption, the feed step for an on-axis observer
starts at ¢t =, = r/c.‘ The feed step is negative, while the impulse 2 is positive.
The feed plate diffraction is negative ( 3a and 3b ) while the rim diffraction 4-is

positive. The results can be expressed as

Ey(7, 1) =Ty By(r, 1)

Ey(r, t) = Ey(r, t) + Eya(r, t) + Bys(r, t) + Eya(r, 1)
<+ low-frequency radiation from dipole
moments resulting in time integral

constraints on entire pulse (21)

17



Coplanar plates in z = 0 plane
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Figure 7. On-axis radiation from a canonical IRA illustrated at the top.
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where

Eyi1(r, t) = feed step = prepulse

>

=TT 3K (m) clot(ﬂg/.?) ["(t - 2) N u<t - Z‘c' - 2?)]

Vo D 1 r r  2F
= Inj, OF [ (t-2) —”(f‘z’ﬂ] (22)

(for narrow plates with width << separation)

Ey(r, t) = Impulse

_K). ha, 5t_i_2_
o 2mcf, ¢ c

Vo D r 2F
T 1 dncf, ‘5<t e —> (23)

for narrow plates with width << separation
p

Eysq(r, t) = plate-edge diffraction

2 s () ) o

u(t—i—E> (24)

c c

(see Appendix A for the approximations in above)

Eys5(r, t) = plate diffraction (round conductor approx.)

2 T mES 3(—% ] 2

see Appendix B for the approximations in above
b
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Ey4(r, t) = diffraction from the circular rim of the reflector

Vo (71') 1 —sin(B4/2) 1

“amr \2 cos(fo/2) mi/4AK(m)

[1—;2; a.rcsinG;‘/\/g)}u(t—%—%lz) (26)

In addition to the prepulse, pulse of main interest and the post pulse listed

above, one also recognizes the constraints on the entire radiated waveform in the
form of time integrals. These constraints were discussed earlier and require that
the first time-integral of the entire pulse be zero and the second time-integral be
proportional to late-time dipole moment of the IRA.

Recall that the radiated field outlined above is for a step function u(t) excita-

tion. In practical situations, one never has an ideal step function and so u(t) may

be replaced by a general f(t) and é(t) in (23) then becomes (0f/0t). Examples of
f(t) are:
a)

A =u(t)[l -] (27)
= fast-rising “step function”
for which the impulse §(t) would be replaced by (9f;/0t)
b)

f2(t) = (e7Pt — e~ () with a>f (28)

= fast-rising, slowly decaying “double-exponential” function

for which the impulse é(t) would be replaced by (9f,/0t).

The leading terms of the time-domain radiated field on axis described above
are useful in the design and evaluation of IRAs of this type. A prototype IRA is
under construction and its measured performance data may be compared with the

expressions in this note, at a later date.
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III. Summary

In this note, the past analyses of the on-axis radiation from reflector IRAs are
extended to include the diffraction from the feed plates as well as the circular rim of
the reflector. Leading terms of these diffracted signals in time-domain are obtained
in closed form, under the assumption of a step function excitation. We recall that
the feed step (or prepulse) is a negative going step with a duration of (2F/¢). The
impulse is of the opposite sign. The amplitude of the feed step and also the area
under the impulse are known from past analyses. In this note, we have obtained
the leading terms for diffractions from the plate edge, plate(s) and the reflector
rim. The diffraction from the plate edge is based on a classical half-plane solution
valid at early times. The diffraction from the plates are obtained by estimating
the diffraction from an equivalent cylindrical conductor. The diffraction from the
circular reflector rim is obtained accurately since the incident field on the rim is
well known from the spherical TEM wave propagating on the feed plates.

The radiated waveform is decomposed into prepulse, main pulse and postpulse.
The postpulse is seen to consist of plate edge diffraction, diffraction from plate
of width << wavelength and the rim diffraction@. The formulas derived for

and can be improved by evaluating integrals over non-uniform E, incidence,
perhaps numerically. The rim diffraction@on the other hand is asymptotically
exact and appears to be complete.

It is noted that at low frequencies one can characterize the radiated field from a
set of electric and magnetic dipole mornents which results in certain constraints on
time integrals of the entire radiated waveform. Essentially, the complete first-time
integral of the radiated waveform must be zero and the second-time integral must
be proportional to the late-time dipole moment. Formally, this analysis completes
all aspects of the radiated fields on axis from reflector IRAs. The results obtained

here are useful in designing and evaluating the performance of this type of IRA.
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APPENDIX A
Plate Edge Diffraction
We start with the Keller and Blank [7] formulation for the diffraction from a
wedge and specialize it to a half plane. With reference to Figure 8, the incident—

field is given by

Zgﬁ(inc) =1, x E‘(inc) =T, x 1, E u(t _ lzc- r) (29)

The rectangular coordinate system (z, y, z) indicated in Figure 8 is for the purposes
of this Appendix only. It should not to be confused with the coordinate system in
Sections I and II. The approach is as follows. For the given incident field, one
finds the diffracted/scattered field everywhere from which the current induced on
the metallic conductors may be found. By integrating these currents, one gets the
radiated field.

Keller and Blank [7] compute the diffracted fields via a computation of the
electric potential function U, also indicated in Figure 8. We can specialize the
potential function {(Equation 16 of [7]) to the case of ¢; = 0 and ¢9 = 0 to get-the
potential function for diffraction from a half-plane. Letting ¢; = 0 and ¢¢ =0, we

have the potential function given by

U=1- —2— arctan (1-p) (30)
T 0,172 (qﬁ—w)
p!* cos 5

The values for the potential u ranges from 0 to 1 and the (arctan) values go from

0 to (7/2). In the above expression,

v —arccosh(ct/¥
Tt (g ¢ e (31)

P

where ¥ is the cylindrical radius. Substituting (31) into (30), the potential function

becomes

R _
U(T, ¢)y=1— -72; arctan v cos™! (é W) (32)
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U=0

A planar wavefront

Figure 8. Diffraction from a wedge(7] (we let ¢; — 0 and g0 — 0)
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with (ct/¥) > 1 and |¢ — 7| < 7.

We now observe that if the incidence were not normal as in Figure 8, but off
normal at an angle 8;, the incident field amplitude in (29) is now Ej sin(6;) in place
of Eqy. For present purposes §; is taken as the leading edge in this edge diffraction
and therefore 8; = 81 and B2 does not enter this formulation. The diffracted electric

and magnetic fields in cartesian coordinates are given by [15]

t
E = —ccot(6;) / [%g i+ % i'y] dt + U sin(6;) 1, (33)
. c [t JoU . OU .
Zo H = jsin((?i) /:_oo [”@ 1, — Bz 14 dt (34)

To find the currents induced the z-component of the magnetic field is the

interesting quantity and, it is given by

0H, ¢ OU
Zo at — sin(6;) dy (35)
or :
ZO 6H:z: c o t
= — = _— 36
sin(6;) < t ) sin§; Oy U(a:, 4 sin(9,-)> (36)
O ——=
sin(6;)
The sheet current J, is given by
Jo=J 1. = 1. [~ Hy lsmo+ + Hul,o-] (37)

Using (32) in (34), the sheet current becomes

= - Eg 4\/§ ct 1/2
= — - — 8
Js =1, 7 n !:(:c sin(Gi)) 1} forz =0 (38)

For a general value of z, we have

¢tz 1/2
4\/§ ;+;COS(9i)_1 . _C_Li
T sin(6;)

—

Jo =1, Z

(39)

Figure 9 shows a strip of constant width ¥y, the angle of incidence 8; and the
direction of current flow along the z-axis. Knowing the sheet current, the far field

1s given by

—

ﬁ I, -7 pol 0 [T - I - F
Ef <r,t+ - ):_aﬂ'—ra: i sin(9;)1, Js{ 2, 2/, t + . dr’  (40)
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NOTE: 6; = B
&
Se
E( i nC) /
Yo -7
~(inc) ’ ] 0; \ o \
J/ / / SN L - T
| 0 sin(8;)
conducting
strip of
constant width T,
Figure 9. Geometry of sheet current flow w.r.t. the incident field.
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Substituting for J, from (38), we have on axis
B, (r t+f) =P g (e 1,2
’ ¢ drr P ot
/ B av2][_et 1 (41)
o |20 = 2’ sin(6;)

Using (p0/Zo) = ¢t and dr' = dz'/ sin(6;),

ct—r

— (r,t-{—rc-):—Eoe 42 1 i [ Ty

E
d drr ™ (/sin(6;) P

1, = polarization of the e-field

]1/2 ulct—1)  (42)

o (43)
£=1b ; Ey ~ — on average
2b;
while Ug is a position dependent plate width with minimum and maximum values
of 0 and 2a respectively, the average value of +/¥; in above is given by

1/‘ y 2 8a
== 2 (Z) dy=%V2a=4/— (44)
average L Jo (e) 3 9

VT

So, to a first order

Vo 1

B (D) =% mm
7, <\/%7r2) @) (et = 1) (45)

This expression is asymptotically valid for a time less than (¥o/c) or (a/c) after

diffraction process is initiated at ¢ = [t, + (2F/c)], noting that an average value of
Ty is a. As noted earlier, we can use §; = f; [see (2b)] for numerical computa-
tions. Substituting a more accurate y-dependent expression for the incident field

(Eq replaced by Egmc) (y)) could lead to more accurate results in the future.
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APPENDIX B
Diffraction from the Plates of Finite Width (<< Wavelength)

The diffraction from the plates may be modelled by considering an equivalent
problem of diffraction from a cylinder. The cylinder has an effective radius a, which
can be approximated to be (1/4) of plate width [16]. The maximum plate width is
2a so that the maximum value of a, = (a/2). The geometry of the model problem
is shown in Figure 10. Once again, the rectangular coordinate system (z, y, z)
indicated in Figure 10 is for the purposes of this Appendix only. It should not be
confused with the coordinate system in Sections I and II. We follow the analysis of

[8] and define @ normalized time

ct
e 46
1 [ae sin(6;) + 1} (46)
So that the induced current is zero for negative values of ¢*. Note that the incidence

angle 6; is well approximated by By of (2b). Let us denote the incident field by

gline) — g, 1, u(t b r) (47)

c

Using the results of [8] which is for an impulse excitation, for our step-function

excitation, we have

T 9ra. o
I(t) =/ 7 Ey F(g%)dq (48)
—0 0
or .
8I(t) 1 2wa.
—- = — —— Fy F(¢* 49
5 — 1z, Do F@) (49)
where
Qe sin(6;)
- c
" 1
F(¢") = —75 (50)
tn| 2
(%)
I, =1.7810... = exponential of Euler’s constant
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\ NOTE: ei - ‘6’0

—hz(inc)

'I‘_’i(inc) "1'
i

Qe Sin(ei) /c

ct
I

|
rt
i

time waves first touch the
cylinder on z=0 plane

ae sin(6;) ____p.

Figure 10. Geometry of diffraction from a cylindrical conductor.
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We can now evaluate the far field from the knowledge of the current flow as follows

- Tl - o 0 - . / r
E t = —— ; I{t—~-)dl
f(r, TR ) o at{lp(mn( D fogn T ¢5)

-~ OIt

Substituting for (01/0t) from (49), we have

Ef(r, t) = 'Ez?'?%%‘)" on? [ri {2—(9:;1%;—)) + 1}] (52)

Once again, an average value of Eq ~ V;/(2b;) and £ ~ b;, which reduces (52) to

Ei(rs 8) = ~ 4r sin(6;) tn [I‘e {ae sin(6;) tleit (53)

As we remarked earlier, the incidence angle 6; in above may be replaced by
Bo found in (2b). Once again as in the previous appendix, using more accurate,
position dependent incident field Eglnc)(y, t) in (48) could lead to more accurate

results in the future.
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APPENDIX C
Diffraction from the Reflector Rim
[Evaluation of &, in (17)]
Equation (17) is reproduced below

¢, = }{ By cos(¢)dt = ¢ B, db= j{ 2F, dt (54)
Cs Ch Chr

This applies to contour Cy on the circle of radius b with the incident electric field

parallel to Cy (= Cr U Cy;). These contours are shown in Figure 11. In general

f = E’de = fx Tz + Ey fy or f = Edl = E: "‘jéy (55)

Cs cb

Substituting

_ Vo dw(f)

E_Ez—JEy—_E; —?‘5—', (56)
2Vo dw(§)
e=2[ EBa=-20 / 2wte) g
Chr Au Chr d€
. 2% /W/Z dw —jé

=} — - € d 57
Tau ) at Y &7

Integrating by parts,

. 2% —jé wf2 . /ﬂ-ﬂ L —jd
E=7 A {we I—';r/Z +7 o we 77 do (58)
. _eaam/2 . . . . . . -
Noting |we "‘sl_/?,/z = uy(—j) ~u—(=7) + jv(=j) — jo(j) = ~K(m1)
A4 /2 )
= —— / we™%d¢ + F K (m (59
R A (ma1) )
Using w = u + jv and considering
/2 : 1 s wf2
f ve l¥dp = —o K(mi)je |, = —K(m) (60)
—x/2
So,
2oWo [P s 2l /
- _ =4,22 2 de* 61
‘ Au/_m”e W=IRu 5 ), (61
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SNSRI B

%
b2
u=0
B g V=K(1l-m) > X
circular rim
Z of reflector
%
4
7
% -K(m)
A LF
Contour Cy our C
Cont bL Contour %m
Cp = Gr VU G
C
D c D
H[G
Contour C, ' Contour C,
3

E 0 > E

Figure 11. Geometry of the problem showing the integration paths.
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The y-component of £ reduces to

2V 1
=R E/Cbru‘fm

Au

ftudx——-j(’vdy (63)

or
4V 1 4V 1 1
A V- = d
& Aubﬁf,”dy gbAvjiuvy
Vol ) 4
—_r? Y = —— 64
fgbha” with [hy AL j{:; vdy} (64)

The above integral is performed in [11] and is given by

he, = 322 m—/* b {1 _2 arcsin (E—’———@i)} (65)

by

¥ x’(ml) v my

where ,
m = (b1/b2)?, mi=(1~m)
_ K(m)
fg - K(ml)
Using (51) and (50) in (49), we get

7 mTY/4 2 . [1—ym
&y =~V 3 m [1 - - arcsin (m)} (67)

(66)

which is the desired result.
Asymptotic forms of h,, and ¢, for narrow and wide plates may be derived as
follows.

a) narrow plates [11] (plate width << plate separation)

b
— 1 ; 1
(bz> - T (68)



27 2
Consequently,
Vol Vo
T em——— — ha 2 —
YETE B T,
b) wide plates (plate width >> plate separation)
' L i — ; m — 0
b )
my — 1 ; fg—0

We can expand K(m) and the arcsin( ) in (67) as follows,
K(m) =7 [1 + % + 0(m2)] (for m — 0)

Using

arcsin(l — z) = g - V2z [1 + % + O(:z:)] (for z — 0)

we have

. (1=ym . 2/m
arcsin <1 T \/ﬁi> = arcsin (1 ~ 1 T \/ﬁ>

= g ~2m* [1 4 0(v/m)] (for m — 0)

Using (72) and (74) in (67), we get

N /A L —
=g T (14 0(m)]

2
=—L—l;:3 [1+0(vm)] (for m — 0)

=1/ [1_g<g_2m1/4{1+0(\/ﬂ_%)}>}

T

Consequently,

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)



For wide coplanar plates considered above, one can also derive the asymptotic
forms of £, and h,, from the known electric field. One observes that for wide

coplanar plates, the potential @ is only a function of azimuthal angle ¢ given by

@(¢)=%— (—WE{/)-Q—)zzjr—q—s for —w/2<¢<w[2 (77)

The electric field in the right half plane (—~7/2 < ¢ < 7/2) is given by

D

d 1

E——g——altﬁ————;rp—lfp (78)
then
¢ = Edl = 2/ E bdo
Cy —1?/2
Ve [™* - 2Ve [*? -
__% / Tydg = —220 1, cos(¢)dé
e ~x/2 ™ —nf2
. w/2 4 . '
] 1, sin(¢) L 1y (79)
i —n)2 o
resulting in
4V 4b
£, = ——ﬁ—” and ha, = (;- fg) (80)

for the wide plates (m — 0 or f, — 0). (80) is in agreement with (75) and (76).
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