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Abstract

Pulse-radiating biconical antennas have been widely used for nuclear electro-

magnetic pulse (NEMP ) simulation. An early analytical model considered a re-
,.. >

sistively loaded biconical zmtenna. Based on a transmission-like model of such an

antenna, far fields in the working volume are available in closed form for step func-

tion voltage sources. In this note, we extend this analysis to obtain radiated fields

in time-domain for practical capacitive voltage sources whose outputs are nearly

double-exponential. The expressions developed here are useful in quickly estimat-

ing radiated characteristics such as peak field, zero crossing, etc., for a given Marx

type of source.
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L Introduction

Resistively loaded dipoles for NEMP simulation purposes was first considered

by Baum [l]. Theanalysis presented in [l] was based onatransmission-Iine model

of the antenna. The resistive loading of the antenna is similm to what was consid-

ered ear~ier in [2 and 3]. Once, the transmission-line like currents on the antenna

are known, the radiated fields in the working volumes of such simulators are eval-

uated by appropriate integrals of the currents. Baum [I] also obtained closed-form

expressions, both in frequency and time domains, for the radiated fie~ds. This anal-

ysis has led to the design [4], evaluation [5 and 6] and verification [7] of this class of

NEMP simulator. Examples of such simulators are ATHAMAS H [8], EMPRESS

H [9], NAVES 11 [10], and EMISS III [11].

Related studies employing integral equation formulation of the antenna cur-

rents over a finite number of wires were described by Wilton [12 and 13]. In addi-

tion, some external environments outside and away from the working volumes have

been reported by Casey [14 and 15]. A technique for obtaining the near fields from

known far fields was described by Singaraju and Baum [16]. Kohlberg [17] pre-

sented additional theoretical techniques and computational considerations for such o

antennas.

Our present interest is still in the working volume environment of such sim-

ulators and we seek to present closed-form fields, when the antenna is driven by

a practical generator e.g., Marx pulser. Such generators are widely employed in

EMP simulation and can be characterized by double exponential output waveform.

Consequently, we take the step response expressions from [1] and analytically per-

form the convolution integral and present closed-form radiated field expressions.

Using these expressions, one can rapidly estimate the radiated characteristics of

such antenna witbout resort ing to excessive numerical comput ations.

In Section II, we briefly review the step-excited transmission-Iine model of the

antenna and extend in Section 111for practical sources. The note is concluded with

a list of references.
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II. Review of the Step Response

The biconical antenna under considerations shown in Figure 1, along with

rectangular (z, y, .z) and spherical (r, 6, ~) coordinate systems with their origins

at the apex of the bicone. W is the cylindrical distance from the biconical axis.

In the context of EMP simulation by a pulse-radiating dipole, one synthesizes the

problem by seeking ar.optimal impedance loading that produces a desired radiated

waveform. The case of uniform loading (i.e., constant resistance per unit length)

does not optimally shape the radiated waveform after the initial peak. A special

form of non-uniform resistance distribution [1, 2 and 3] leads to a set of optimal

characteristics in the radiated waveform.

With reference to Figure 1, we note that

voltage source at the

unit step function

height of the bicone

apex = VOu(t)

semi-angle of the bicone

characteristic impedance of the bicone

~ in [cot(t+ /2)]

characteristic impedance of free space = 3770

geometric factor = Z~ /ZO

diameter of the bicone at its ends

loading impedance per unit length = R’(z)

[1Z- 1

T
{}
~ I*I

Q/m for (–h < z < h)
.—

h

(1)

We now summarize the results obtained in [1] for the biconical antenna outlined

above. To begin with one can define a retarded time ~~ for convenience,

et—r
Th=—

h
(2)

where c is the speed of light in air. The corresponding normalized Laplace transform
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Figure 1. Geometry ofapulse radiating, resistively loaded bi-conicdmtenna.



variable is
Sh = .fdh with tn = h/C

(3)

s s Laplace transform variable = Q + jw J

~ is used as the axial coordinate for the transmission-line model of the antenna, and

the current distribution for the above case of non-uniform loading is given by [I],

Vi. th

[1

~ {z\ ~–mlzv~
f(z) = Z@ Sh + a.— ——

h

or

Vo 1

[1

~ 121 ~-vlzl_—f(z) = ~ s + (a./h) h

(4)

(5)

(6)

where tilde denotes Laplace transformed quantities and

C’a
o! s capacitance parameter = 1 + —Cg

C= S antenna capacitance = &oh/fg

&o s permitivity of free space = 36m ~ ~OS F/m

~ = (s/c)

Using the above current distribution, the radiated electric field in frequency and

time domains were found to be [1],

[

V. h
15j, (T’,6, s) = — — e-’”’ ?(8)] v/(7n- Hz)

r 2TCfg

sin (0) J 1
p(~) = ~

– COS(6)~ Sh(l– CoS(@)) ‘ ‘]

,Sh+ct) I [
~-Sh(l+ccJs(8))

+1
+ 1 + (:.s(6’)) Sh(l + CoS(@))

Vo 1
Ej, (r, 0, t) = — — (’(0)

r 2xfg

(7a)

(7b)

(8a)



[

e‘~Th 1 _ e–~rh

1 – CoS(d) – a(l - Cos(e)y 1

tl(Th)

+ 1 1 – ~-+h-o–cos(e))]
—

a’ (1 - CoS(e))’
u(r~ -[1 - cm(e)])

1[+ 1 + Cos(q – a(l + CoS(@))’ ] ‘(Th)

[-

+ 1 ~ – e-~[~h–(l+cd@))]

a (1+ Cos(f-?)y
u(T~-[1+ ,0s(6)])

(8b)

We thus conclude summarizing the results in terms of the radiated electric

field (frequency and time domains) for the case of step-function excited biconical

antenna that is resistively loaded in a special non-uniform way.
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III. Closed-Form Radiated Fields for Double-Exponential

Pulser Excitation

In the past, researchers have used the results of Section II for the case of a

practical pulser excitation by employing numerical convolution procedures. The

convolution procedure may be illustrated using the following notations in terms of

linear system theory.

The “input” is considered to be the pulser voltage V(t) and the “output” is taken to

be the radiated electric field Ef, (r, 8, t). We already know that for V(t) = V. u(t),

the output 17f@(r, 0, t) is given by (8). This implies for a double-exponential pulse

excitation of the form,

Vp(t) = V~(–e-’t + e-bt)u(t)

the “output” or the radiated 6-component of the electric

lution integral

(9)

field is given by a convo-

Sf@(r, 6, t) ~ far field with a double exponential excitation

1

/[

‘d
‘F. 1

~ V’p(t – d) E~8(r, 0, t’)dt’ (lo)

where E~@(r, 0, t) is the step response given by (8). We also observe that, for a fast-

rising and slow-decaying double exponential a >> b > 0, and the various risetimes

of the pulser are given by [18]

-t.(e-fold rise)= (l/a)

Vmax
tmr ~ maximum rate of rise = 8VI (11)

11=— *—
a–b–a

Substituting (8) and (9) in (10), the integral in (10) can be analytically performed

resulting in the following closed form expression
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*

v* 1
&f, (7’, e, t) = — — sin(6)

r Zrfg

I
{Ale ‘mtf-tr)i~ – A2e-b(t-tr) + A3e-a(t-fr] }U(i ‘i,)

{
– Ble

}
‘a(t-t+)ir –Bze–b~t-t+) +Bse-’~t-t+J U(t –-t+) (12)

{
– Cle ‘a(t-t-)/T – Cze-b(t-t-) + Cse-u(t-t-) }u(~-~-),

where

(r, 6) = observer location in the far zone

Vp(t) = VO(–e-=t +e–bt)u(t) -excitation

a = 1 + (c=/cg)E capacitance factor

c. = antenna capacitance

C9 - generator capacitance

T = h~c

function

h s height of the antenna above the ground plane

c s speed of light in air = 3 x 108 m/s

tr = rjc

t+ = t. + [1 + Cos((?)]r

t- = -t. + p - COS(6)]T

Al =
r(b – a)[l + cos2(6) + ct sin2(0)]

sin4(6)(a – a~)[a – lw)

Az =
1 + COS2(6)+ br sin2(6)

sin4(6)(a – b~)

A3 =
1 + cos2(@) + ar sin2(6)

sin4(@)(a – cm)

Bl =
~(b – a)

2[1 + COS(6)]Z(CY– a~)(a – br) 1

z?~= 1
2[1 + cos(6)]2(a – br)

B3 =
I

2[1 + Cos(d)]z(a – ar)

(13)

(14)

(15)
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J

c1=
T(b – a)

2[1 – COS(6)]2[a – br][a – a~]

c~ =
1

2[1 – Cos(q]z(a – k) I
(16)

C3 =
1

2[1 – cos(6)]2(a – a~) J

The general shape of the far field ~f, (r, 6, 2’) may be depicted as in Figure 2.

In figure 2, we observe that

a) the area under the curve must vanish

b) the low-frequency radiation is proportional to ~(m) and fi(m) which are

the late-time electric and magnetic dipole moments respectively; note also

that this particular antenna has no magnetic dipole moment.

The constraints on the radiated field if may be summarized as follows [19 and

r/tI?f(r,+)dt’ dt =
[

i.

*

–.& Mm) – y x ?-ii(m)
1

(17b)
-w -m

The second integral (17b) also vanishes in the present case because the late-time

dipole moments go to zero. This also implies that the far field has at least two zero

crossings in the time domain.

c) there are two times where one has slope discontinuities -t+ and t– given by

T+ = (t+ – t,) = p + cos(~)l(~/c)

T-= (t_ - t,) = [1 – cos(q](~/c)

d) t+ and t_ become equal to t. + (h/c) along the ground plane where O =

(T/2)

e) all of the early-time characteristics including the first zero crossing may

be derived by considering the first term in (12).

Item (e) above leads to

v~ 1
&f, (7’, 6, t) = — — sin(~) [A1e-acti~ – AZe-bt + Ase-at] u(t)

r 2Tfg

*
for t<t<_t _ (18)



first zero crossing second zero cross iri~

T = (t-t=)
*

o

Figure 2. General shape of theradiated waveform
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where’ we have set tr =

o

0 without any loss of generality. If the risetime, peak

amplitude, time at which peak occurs, zero crossing time are of interest, they can

be derived horn a consideration of (18) only. We establish the accuracy of (12) by

evaluating the far field Sf@ from numerically evaluating the convolution integral of

(10) and comparing it with an evaluation of the analytical closed form expression

of (12) for the following set of assumed parameters.

Input pammeiers

.

h=28m

o~ = 40.4° * ~, = : = 0.318

Z- E lzo Q (full bicone)

Zm (half) = 60 Q (monotone)

a =1+$=1 (c. < c,)
~

VP(t) = V~ (–e-”’ + e-bt)u(t)

Vo = 1 volt

a = 5 x 108/sec

b = 4 x 10c/sec

tIo_90s in(9)/a= 4.4ns

(T, 6)= (300 m, 900), (301.5 m, 84.29°)

and (305.94 m, 78.69°)

The above input paraineters and the observer locations are also illustrated in Figure

3. The electric fields &f, (~, 8, t) at the three observer locations computed from a

numerical convolution process in (10) are shown in Figure 4. The electric fields at

the same locations computed from the closed form expression of (12) are shown in

Figure 5. Several observations are in order

a)

b)

c)

The results from (10) and (12) are almost indistinguishable establishing

the accuracy of the closed form result of (12)

The risetimes can be seen in the curves on left

The quantities plotted are Sf, (~, 8, t) in ~’m for 1 volt double exponential

excitation of the antenna. For a MV pulser, multiply the result by a factor
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Antenna Plllscr Observers
h=28m ~,(i) = VO(–e-Ut – e-L1)~(i) , @ (7’2,I%)= (300m, 90°)

o~ = 40.4° v“ = 1 volt @ (7’3, &) = (301.5m, 84.29°)

ffl = (l/n) R 0.318 a ==G x 108/s @ (?’1, 64)= (305.94111,78.69°)
Zm = 120 !2 full I!J= 4 x 106/$

c. < Cg (L>>6
a’= 1+(ca/cg)m1 i,~_~~&4.4 n~

/. 300 m

Figure 3. Geometry of an illustrative example prol)lem

O . “-



.

t [m]

.Caool!l!! 1

051’01520

E3(r,

f [m]

.0010-

e,t).

.0005 -

/

moo !
o ; 10 15 20

I

t [ns]

.0010

.ocn5 -

.OoOO

I ! 1,, ,! 1,,,,-,0035 L
-.0 ‘ .1 .2 .3 .4

I @]

~\~’’’:
1’

,,

h = 2Sm; 120i? (full) ]
.CQIO

r = 301.50m -j
J

0 = 84.29° j
.CC05 T’- =M.04ns J

j
T+ = 102.62ns

1
T- T+ -1

.ooa --— :, J
.’ J1,’

J.’,’
!!, 11, ,, ,,

-.0 .1 .2 .3’’ .:’

( @s] .

~ ~~~~~

1“” ,!
J

.0010
h.=2Sm; 120fl (full) 1
~ = 30~.94m ~

O = 7S.69°

.rlx)5 T_ = ‘i5.03ns

T+ = 111.63ns

T- T+
.0000

. .. .

.:
., ,, ,,

0 .1 7-. .; .4.-

Figure 4. Far fields from a numerical convolution procedure [see (10)]
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Figure 5. Same fields as in Figure 4, calculated from closed form expression (12)



of 106.

d) The two instants of time with slope discontinuities t+ = [I & cos(f3)](h/c)

are clearly seen in the two lower figures. When 6 = 90°, t+ and t_ become

equaI as seen in the top portion of Figures 4 and 5.

—

.
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IV. Summary

In this note, we have extended the past analysis of a pulse radiating biconicaI

antenna that is resistively loaded. The analysis was based on a transmission-line

model of the antenna and obtained the far fields for a step function generator.

In this note, a more realistic double-exponential generator function is used and the

analytical convolution has been performed. The far fields are now available in closed

form for this excitation function consisting of a fast rise and slow decay.

The expressions of far field will be directly useful in future designs of such

pulse-radiating antennas.
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