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Abstract

Pulse-radiating biconical antennas have been widely used for nuclear electro-
magnetic pulse (NEMP) simulation. An early analytical model considered a re-
sistively loaded biconical antenna. Based on a transmission-like model of such an
antenna, far fields in the working volume are available in closed form for step func-
tion voltage sources. In this note, we extend this analysis to obtain radiated fields
in time-domain for practical capacitive voltage sources whose outputs are nearly
double-exponential. The expressions developed here are useful in quickly estimat-

ing radiated characteristics such as peak field, zero crossing, etc., for a given Marx

type of source.
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I. Introduction

Resistively loaded dipoles for NEMP simulation purposes was first considered
by Baum [1]. The analysis presented in [1] was based on a transmission-line model
of the antenna. The resistive loading of the antenna is similar to what was consid-
ered earlier in [2 and 3]. Once, the transmission-line like currents on the antenna
are known, the radiated fields in the working volumes of such simulators are eval-
uated by appropriate integrals of the currents. Baum [1] also obtained closed-form
expressions, both in frequency and time domains, for the radiated fields. This anal-
ysis has led to the design [4], evaluation [5 and 6] and verification [7] of this class of
NEMP simulator. Examples of such simulators are ATHAMAS II [8], EMPRESS
II [9], NAVES II [10], and EMISS III [11].

Related studies employing integral equation formulation of the antenna cur-
rents over a finite number of wires were described by Wilton {12 and 13]. In addi-
tion, some external environments outside and away from the working volumes have
been reported by Casey [14 and 15]. A technique for obtaining the near fields from
known far fields was described by Singaraju and Baum [16]. Kohlberg [17] pre-
sented additional theoretical techniques and computational considerations for such
antennas.

Our present interest is still in the working volume environment of such sim-
ulators and we seek to present closed-form fields, when the antenna is driven by
a practical generator e.g., Marx pulser. Such generators are widely employed in
EMP simulation and can be characterized by double exponential output waveform.
Consequently, we take the step response expressions from [1} and analytically per-
form the convolution integral and present closed-form radiated field expressions.
Using these expressions, one can rapidly estimate the radiated characteristics of
such antenna without resorting to excessive numerical computations.

In Section II, we briefly review the step-excited transmission-line model of the
antenna and extend in Section III for practical sources. The note is concluded with

a list of references.



II. Review of the Step Response

- The biconical antenna under consideration is shown in Figure 1, along with
rectangular (z, y, z) and spherical (r, 8, ¢) coordinate éystems with their origins
at the apex of the bicone. ¥ is the cylindrical distance from the biconical axis.
In the context of EMP simulation by a pulse-radiating dipole, one synthesizes the
problem by seeking an optimal impedance loading that produces a desired radiated
waveform. The case of uniform loading (i.e., constant resistance per unit length)
doeé not optimally shape the radiated waveform after the initial peak. A special
form of non-uniform resistance distribution [1, 2 and 3] leads to a set of optimal
characteristics in the radiated waveform.

With reference to Figure 1, we note that
V(t) = voltage source at the apex = Vyu(t)
u(t) = unit step function
2h = height of the bicone
6: = semi-angle of the bicone

Z s = characteristic impedance of the bicone

% In [cot(61/2)]

Zy = characteristic impedance of free space ~ 377Q
fg = geometric factor = Z, /2 (1)
2a = diameter of the bicone at its ends

Z'(z) = loading impedance per unit length = R'(2)

")

- We now summarize the results obtained in [1] for the biconical antenna outlined

Q/m for (-h<z<h)

above. To begin with one can define a retarded time 7, for convenience,

ct—r
h =~ (2)

where c is the speed of light in air. The corresponding normalized Laplace transform
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Figure 1. Geometry of a pulse radiating, resistively loaded bi-conical antenna.



variable is

Sp = Sty with tn, = h/C
(3)

s = Laplace transform variable = () + jw

¢ is used as the axial coordinate for the transmission-line model of the antenna, and

the current distribution for the above case of non-uniform loading is given by [1],

= Voo ta 121 —snizi/n
- 0 _ = sniz 4
i =g S [- 4 @
or
7 Vo 1 E1 R~
- _ = z 5
Iz) Zoo s+ (ac/h) [1 h } ¢ (5)
where tilde denotes Laplace transformed quantities and
. C.
a = capacitance parameter = 1 + ol
g
C, = antenna capacitance = &h/ f, (6)
1

&y = permitivity of free space =

v =(s/c)

e x10e L™

Using the above current distribution, the radiated electric field in frequency and

time domains were found to be [1],

Bu(r6,0)= |2 o e ®)| vim - #:) (72)

1 e—sh(l—cos(e)) -1 .
sin (9) 1 — cos(6) [ sr(1l — cos(6)) t }

CO = S e 1 [e—sh(wcos(e» . 1} (7o)
14 (cos(8)) | sr(1 + cos(h))
Eqln 0,0)= 2 5 €0) (52)



( e—aTh 1— e
[1 —cos(f) ol - cos(G))z} u(h)
1 1 — e—clra—(T—cos(6))]
sin (9) < + a (1 — cos(6))? >
2 e~ Th 1—e=om
[1 +cos(8) ol + cos(9))2] w(7s)

1 1 — e—olrn—(14cos(8))] . 0
|t e T O g Uk [T cos(@)])

) u(Tp — [1 — cos(8))])
£'(6) =

(8b)

We thus conclude summarizing the results in terms of the radiated electric
field (frequency and time domains) for the case of step-function excited biconical

antenna that is resistively loaded in a special non-uniform way.



II1. Closed-Form Radiated Fields for Double-Exponential
Pulser Excitation .

In the past, researchers have used the results of Section II for the case of a
practical pulser excitation by employing numerical convolution procedures. The
convolution procedure may be illustrated using the following notations in terms of
linear system theory.

The “input” is considered to be the pulser voltage V' (¢) and the “output” is taken to
be the radiated electric field Ey, (r, 6, t). We already know that for V(¢) = V; u(2),
the output Ey,(r, 6, t) is given by (8). This implies for a double-exponential pulse

excitation of the form,
Volt) = Vo(—e™* + e u(t) (9)

the “output” or the radiated §-component of the electric field is given by a convo-

lution integral

&5y (r, 6, t) = far field with a double exponential excitation
1 ¢ d ! ! 1

= — — - t 1
7 [ 5 e B 0.0 (10)
where Ey, (r, 6, t) is the step response given by (8). We also observe that, for a fast-
rising and slow-decaying double exponential a > b > 0, and the various risetimes

of the pulser are given by [18]

tr(e-fold rise) ~ (1/a)
t10—90 jnd 1n(9)/a s 22/0,

Vm ax

tmr = maximum rate of rise = V- (11)
Ot |max
11
T a-b" @

Substituting (8) and (9) in (10), the integral in (10) can be analytically performed

resulting in the following closed form expression



Vo 1
gfl(r1 6? t) = —;0- 27rf
g

- {Al e—a(t=tr) /T _ Aze—-b(t—t,.) + Ase—a(t—t,.)} u(t —t,)

sin(9)

— { Bye—o(t=ta)/T _ B o—blt=ts) 4 Bse-a<t-f+)} u(t—t4) | (12)

_ {Cle—a(t—t_)/‘r _ Cze—b(t—t_) + Cse—a(t—t_)} u(t _ t_)

where

(r, 8) = observer location in the far zone
Vp(t) = Vo(—e™% + e7P)u(t) = excitation function
a=1+(C./C,) = capacitance factor
C. = antenna capacitance
Cy = generator capacitance
r="h/c
h = height of the antenna above the ground plane
¢ = speed of light in air ~ 3 x 10® m/s (13)
tr=r/c
ty =t + [1 + cos(8)}r
t- =i, +[1 — cos(f)]7

7(b — a)[1 + cos?(6) + « sin%(4)] )

41 = sin(6)(a — ar)(a — b7)
_ 1+ cos?(6) +br sin?(6)
A= T e =) | (1)
Al = 1+ cos?(8) + ar sin2(9)
3T sin*(8)(a — ar) )
_ 7(b— a) )
B = 2[1 + cos(0))?(a — at)(a — br)
1
B = S oo (e — o) > (15)
1
Ba = 2{1 + cos(6)}2(a — ar) )
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r(b—a) )

¢ = 2[1 - cos(#))?[a — br}[a — aT]
1

O = S o) (a = b7) $ (16)
1

Ca= 2[1 — cos(8)]?(a — aT) y

The general shape of the far field £, (r, 6, T) may be depicted as in Figure 2.
In figure 2, we observe that
" a) the area under the curve must vanish
b) the low-frequency radiation is proportional to p{cc) and r(cc) which are
the late-time electric and magnetic dipole moments respectively; note also
that this particular antenna has no magnetic dipole moment.
The constraints on the radiated field E s may be summarized as follows {19 and
20].
m —
/ By(r, t)dt = 0 (17a)
—00

/_00 /; Ef(r, t")dt' dt = —-4#% [ﬁ‘(oo) - 1—: X r?z(oo)} (17b)

The second integral (17b) also vanishes in the present case because the late-time
dipole moments go to zero. This also implies that the far field has at least two zero

crossings in the time domain.

c) there are two times where one has slope discontinuities ¢4 and t_ given by

Ty = (t4 —tr) = [1 + cos(8)](k/c)
T- = (t- —t-) = [1 = cos(8)](h/c)
d) t+ and t_ become equal to ¢, + (h/c) along the ground plane where 6 =
(/2)
e) all of the early-time characteristics including the first zero crossing may

be derived by considering the first term in (12).

Item (e) above leads to

Vo 1
£ ,60,1) = —
fa(r ) - 277fg

sin(6) [Ale""”/h — AgeP 4+ Aze™%| u(t)

for t<t <t (18)
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Figure 2. General shape of the radiated waveform
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where we have set t, = 0 without any loss of generality. If the risetime, peak
amplitude, time at which peak occufs, zero crossing time are of interest, they can
- be derived from a consideration of (18) only. We establish the accuracy of (12) by
evaluating the far field £, from numerically evaluating the convolution integral of
(10) and comparing it with an evaluation of the analytical closed form expression
of (12) for the following set of assumed parameters.

Input parameters
h=28m
6, = 40.4° = fo= ;1; ~ 0.318
Zo =~ 120Q (full bicone)

Zoo (half) ~ 602 (monocone)
C

a=1+-——2~1 (Ce x Cy)
Va(t) = Vo (=™ + e Ju(t)
Vo =1 Volt
a=5x 10%/sec (a>b)

b=4x10°%/sec
t10-90 ~ In(9)/a = 4.4 ns
(r, 6) = (300 m, 90°), (301.5 m, 84.29°)
and (305.94 m, 78.69°)

The above input parameters and the observer locations are also illustrated in Figure
3. The electric fields &y, (r, 6, t)at the three observer locations computed from a
numerical convolution process in (10) are shown in Figure 4. The electric flelds at
the same locations computed from the closed form expression of (12) are shown in
Figure 5. Several observations are in order

a) The results from (10) and (12) are almost indistinguishable establishing

the accuracy of the closed form result of (12)
b) The risetimes can be seen in the curves on left
c¢) The quantities plotted are £;,(r, 6, t) in J#m for 1 volt double exponential

excitation of the antenna. For a MV pulser, multiply the result by a factor
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Figure 5. Same fields as in Figure 4, calculated from closed form expression (12)
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of 108,
. d) The two instants of time with slope discontinuities ¢4+ = [1 & cos(8)](k/c)
are clearly seen in the two lower figures. When 6 = 90°, ¢, and ¢_ become

equal as seen in the top portion of Figures 4 and 5.
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IV. Summary

In this note, we have extended ﬁhe past analysis of a pulse radiating biconical
antenna that is resistively loaded. The analysis was based on a transmission-line
model of the antenna and obtained the far fields for a step function generator.
In this note, a more realistic double-exponential generator function is used and the
analytical convolution has been performed. The far fields are now available in closed
form for this excitation function consisting of a fast rise and slow decay.

The expressions of far field will be directly useful in future designs of such

pulse-radiating antennas.
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