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Abstract

The balantenna combines two asymptotic bicones fed in series via a broadband (transient) balun

(or transfo~er) achieving an impedance increase of 4:1 over the feeding coax. Going from a single-apex

to a double-apex design allows two of the conducting cones that cover the center assembly to become flat

faces. Then special transmission lines through the center assembly (and thereby through the choke) are

used to divide the signal (in parallel) from the feeding coax to the two bicones.
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I. Introduction

A balantenna, as introduced in [5] combines the properties of a balun and an antenna. As a

balun in bansrnission it steps up the voltage as 1:2 and impedance as 1:4 (with the important practical

case of 50 Q : 200 Q). The antenna consists of two conical antennas (each of 100 W characteristic

impedance near the apex) connected in series via the center assembly which contains the choke (ferrite or

similar). Let us refer to this as the single-apex design since both asymptotic bicones share a common

apex. The center assembly has the covering conductors come back together smoothly outside the choke

to preserve current continuity. The remaining two asymptotic cones (the outermost ones from each

bicone) connect to the larger antenna which includes the 50 Q coax bringing the signal to the balantenna,

this coax being “hidden” as part of the wormhole feed [4],

As discussed in [7] one difficulty is associated with the ferrite with conical surfaces based on the

same apex. The ferrite thickness is small near the apex which limits the power handling capability due to

heating of the ferrite, If one could make this ferrite thickness greater this problem could be made smaller,

and the choke impedance (inductive and resistive) could be made larger at the high frequencies of

interest, As is discussed later this is accomplished by making-the two asymptotic bicones have separated

apices, allowing the choke material to have a shape more like a truncated circular cylinder (with a hole

along the axis).
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rr. Feed Connections in Single Apex Design

Calling the two asymptotically conical conductors surrounding the choke material (e.g. ferrite)

faces, then fig, 2.1 illustrates how the feeding coaxial conductors connect to the two faces, here Iabelled A

and B. Note that the coaxial feed cable is itself contained within an asymptotic conical conductor labellcd

feed arm 1 in [5] and there is also a connection through to a similar conductor. labelled antenna arm 2.

In [5] the connections were illustrated as single connections to A and B. Here there are two in

each case which more uniformly distribute the current around the hole through the faces. Note also that

the width of the flaring connections can be adjusted to better match the desired characteristic impedances.

This technique is readily generalized to N connections to each face giving the view in fig. 2.lB with an N-

fold rotation axis (CN symmetry).
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Figure 2.1 Internal Details for Single Apex: Two Electrical Connections Per Face



111, Feed Connections in Double Apex Design

Now consider a double apex design in which the two asymptotic bicones have apices separated

+d. In fig. 3,1 this is illustrated with the convenient case that thealong the axis (z axis as in [5]) at say z = _

two faces are taken as pIanar conducting sheets (perpendicular to the z axis), This allows the magnetic

material to have flat surfaces just inside these faces. Note that this geometry is also appropriate for a

hybrid of magnetic and dielectric sheets as discussed in [61.

With the two apices separated one has the problem of driving the two conical antennas (in

asymptotic sense) with identical signals (adding in series). This can be accomplished by taking the coax

from antenna arm 1 halfway between faces A and Bin a circular hole through the center assembly. Then

special transmission lines take the coax center conductor back to face A and the coax shield to face B. As

illustrated in fig. 3.1 there are again two connections to each face, this being generalizable to N with C~

rotation symmetry, Going back toward A the additional transmission line involves two conductors

outside the coax shield, Going toward B this takes the form of two conductors parallel to the extension of

the coax center conductor. The details of these transmission lines are indicated by the views in B through

F of fig, 3.1, to have twice the characteristic impedance of the coax (1OOQ for a 50 Q coax), thereby

matching to both the coax and asymptotic conical antennas.

Now these open transmission lines going to faces A and C can have the signal propagation

affected by the presence of the ferrite. One may wish to confine the magnetic fieId away from this ferrite

by making the cross sections of these lines (and of the coax) small compared to the hole diameter through

the ferrite. Note that the two transmission Iines and coax can be trimmed to allow for parasitic effects so

that the signals arrive at faces A and B with exactly the same delay, If desired the right transmission line

(connecting to B) can be made to look just like the left by using the shield of a piece of coax as the center

conductor here.

An alternate configuration for these two transmission lines is to use a coaxial conductor as

illustrated in fig. 3.2, effectively taking the limit as N -+ =. This has the added advantage of confining

the transmission-line mode interior to this coaxial shield. The ferrite Men cannot affect the propagatiomof

this mode. The characteristic impedance (double that of the feeding coax) and equal propagation times to

the two faces are the important parameters of these transmission lines.
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Iv. Comparison of Antenna Characteristics

The single-apex design has some limitation on the high-frequency performance based on the

thickness of the center assembly, 2dl in fig, 4.1. Here let us take a simplified description. Instead of a

smooth curved intersection with a plane of constant @ in a cylindrical (Y?,@,z) coordinate system,

approximate the arcs by straight lines as indicated, The conical faces extend out to Y = VI and from

there taper back to where they meet at V = Y2 on the z = O plane. For convenience the antenna-arm

portions are not included here, being described in previous illustrations.

Consider two rays going toward C=near the z = O plane (8= z / 2) labelled PI and P{. The

thickness of the center assembly makes Pltravel an extra distance (to go around the center assembly) of

‘1= F’+dbf

1 for
()

dl
;–(31 = arctan — +0

= 2Y* Yl

(4.1)

This can be made small by decreasing dl (for a given 91) but this limits the choke inductance. There is

another extra distance for the P{ path over the PI path of

A;= [[Y2-W2+ @ - P’2-’J’1I

d;
for!P2-Y1+cu

= 2[Y2 - Y*]

(4.2)

This contribution can be made quite small by increasing Y2. This last “dispersion distance” [1] is

associated with diffraction at (Y, z) = (Y2, O) and gives a significant effect for radian wavelengths of

order A~ or less. The former dispersion distance is associated with diffraction at (Y, z) = (Yl, dl ), which

is limited by the angle 01.

The double-apex design has its rays to a near the z = Oplane illustrated on fig. 4.2. Correspond-

ing to Al for the first portion of the ray, Since face A is now parallel to the z = O plane, there is no extra
.

distance A2 for the wave to travel (for 0< Y < YI ) giving

A2=0 (4.3) ‘

For Y > Y1 the P; path has an extra distance compared to the P2 path as
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Afi = [[y2-%r+@ - [%-W

d;
for Y2-Y1+w

= 2[Y, - v,]

(4.4)

which has the same form as A{. Note, however, that d2 can be smaller than dl and still have a large

choke impedance due to the greater thickness of the ferrite near the z axis (where this thickness counts

even more due to the small Y for the hole radius through the ferrite), Noting also that Y2 can be made

large enough that A~ can be made quite small, the high-frequency performance of the double apex design

is better than that for the single apex design, except possibly for the transmission-line performance

discussed in Section HI.

Note that the radius Y2 of the center assembly is quite important. For simplicity consider the

case of two joined bicones as in fig. 4,3 in which the observer has a direct line of sight to both apices. If

Y2 is small compared to d2, then for a large variation of (3 (limited basically by an angle of the antenna

arms) the observer has a line-of-sight view of both apices. When the differential distance for the two rays

as in fig. 4.3 is

d,,l =

a=

c=

2d2 COS(8) = ;

; = ‘avelength‘
[PO Co]-+ = speed

f = ~ ‘ frequencY

of light

(4.5)

the signals arrive at the observer 180° out of phase, giving a null. Calling 6JI(and z – 01) some smallest

angle of interest one can define a frequency for which a null first occurs within z - @l<6’<01 as

(4.6)

Now if 81 is constrained for our design this gives an expression for fmx, ourbandwidthas fl. For .

there is no null. Now a bound on I cos (01) I is clearly 1, this providing a lower bound on fl as
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(4.8)

For a given dl, then how does one get fm,x > c/(4d1 ), assuming this is desired? One technique

is, of course, that of restricting 01 to regions away from O, i.e., by keeping the range of O near 7r/2, the

symmetry plane. Suppose, however, some larger 61 is desired, say based on some test volume to be

covered, with the volume at some finite specified distance from the source. men 61 is a given, implying

the result of (4.6). Is there still some way to raise fmaxabove this? To do this change the problem

geometry.

Approximate the double-apex design by the double bicone in fig. 4.4. For simplicity let the two

cones forming the center assembly be circular with half angle z/2 -02 where

82 ()d2
= arctan —

Y2
(4.9)

can be a small angle. Comparing to fig. 4.2 note that for sufficiently large Y2 / dz the faces of the center

assembly are almost flat and can be approximated (or even constructed) by the circular cones in fig. 4.4.

Using the techniques in [5, 8] one can readily calculate the characteristic impedance of the two bicones

(equal by symmeh-y), including for non-zero 02.

Now suppose that 0< @e Z/ 2-02 (or equivalently z > Os z / 2 + 192). There is a direct ray

(ray 1) from apex 1. There are two diffracted rays, 2a from apex 1 and 2b from apex 2, becoming ray 2

after joining at (Y, z) = (Y?2,O), the edge of the center assembly. For k much less than Y2 this diffraction
1

coefficient is proportional to )-~ which can be neglected for sufficiently high frequency. For small 02

this gets better and better, tending to zero as f?z+ O due to the center assembly tending to be merely

part of the symmetry plane. This says that there is no null in the O direction under the above conditions.

Note that frequencies of interest are ordy for f > A for which X. <e Y2 provided f?2is smaIl enough.

Then we only need to consider cases that have I n/2 -0 I < (32 for which we have direct rays

from both apices. In this case we can use the previous results with 01 replaced by z/2 -02. So now

define

f2 =$. c c

() = 4d sin(ez)
(4.10)

4d COS ; - (32
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On the direct-ray basis there is no null for

osf<f~

and note that

f..*wasQ~*O

so f2can be made arbitrarily large.

(4.11)

(4.12)

A related concept concerns the length of the input conical section of a guided-wave (e.g., parallel-

plate) simulator [1]. As the length is made larger and larger the mode matching is better and better, in the

limit giving an infinite bandwidth.

Consider the special case of f3 = z/2 for which there are two direct rays (parallel to the

symmetry plane) to the observer, one from each apex. The diffracted rays, 2a and 2b in fig, 4.4 give a

combined diffracted ray along the z = O plane to the observer. This diffracted ray takes a path with a

length longer than the direct rays of amount (a dispersion distance)

.

‘3= [’~+y~~-‘2= ‘Jcsc(ez)-cotw

()9* (3*
=d2tan F =d2T

(4.13)

which can be compared to the similar expression in (4.2). For R>> A3 the rays add in phase. As f32+ O

the frequency where an interference can occur has f + CO.Since the symmetry plane can be taken as a

perfectly conducting plane for our analysis, one can look at this problem as a small interior bend in a

ground plane [2, 31. In this latter case account should be taken of the spherical nature of the incident

wave.

.
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v. Impedance of Each Bicone

The results of [5] are directly applicable to the present case with flat faces for the center assembly

(fig. 4.2). In the notation of [5] we have

*=;. 01 (in fig, 4.1)

o.- angle between z axis and axis of antenna
arm 2 (a circular cone) (fig. 4.4)

~ - half angle of each antenna arm (angle between
axis and surface of circular cone) (fig. 4.4)

The characteristic impedance of each bicone (noting two in series) is

—

z, !&_=Zofg, zo= ~
o

fg = & arccosh(cos(cx) - sin(~) cos(/3)

cos(~) sin (j3) )

where < has been replaced in terms of x in [5].

Now considering our case of interest with flat faces for the center assembly we have

~ = O (flat face)

()

Cos(a)fg = & arccoshw

This is readily inverted as

(5.1)

(5.2)

(5.3)

(5.4)

from which for a given fg(say for 100 Q) one can readily find acceptable choices (pairs) of czand ). This
.

result is plotted in fig. 5.1 for various choices of this bicone impedance.
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VI. Concluding Remarks

This paper gives some design options for the balantenna. From an antenna standpoint the double

apex is better than a single apex. One may be concerned about the fact that there are two “phase centers”

and how one interprets this

are trying to approximate a

double-apex design should

lines passing through the

performance.

in terms of a spherical wave. However, if we take the point of view that we

plane wave, then this characteristic is not significant. This advantage of the

be contrasted with the added complexity associated with the transmission

center assembly. So some trade off is called for to achieve optimum
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