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Abatlact

This paper considers further application of norm concepts to the optimization of vector temporal

waveforms radiated from transient antennas with associated pukrs. By representing the radiated far

field as an integral over either the antenna currents, or the fields on an appropriate surface near the

antenna, the usual timeckrivative relationship for the far fields is exhibited, so that norms of the far-field

become norms of the near field on a planar aperture. This leads to the focusing condition as part of the

optimization conditions. Developing the norms of the temporal waveforms as appropriate noms over

the frequency spectrum of the pulse, one can design a pul~radiating system to give a pulse with

desirable spectral properties over some wide frequency band of interest.
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1. Introduction
.

In designing antennas with pulsed sources for radiating transient pukes, one is faced with the @

problem of deciding what it is that one wants. What is it about the far radiated fields that one wishes to

optimize, and what does optimize mean (total energy, peak field, peak spectral content across some band

of frequencies, particular polarization, etc.)? There is ako the question of what constraints one wishes to

impose on the antenna (e.g., physical dimensions) and pulser(s) (e.g., Voltage, energy, pe* and average

power, etc.).

Much has been developed for pulse radiators, primarily in the context of simulators for the

nuclear electromagnetic puke (EMP); this is reviewed in [2, 1.5], In recent years this has led to the class of

puke radiators known as impulse radiating antennas OR%) reviewed in [24, 25]. With this technology

expanding into various types of pulse radiators, it is important to understand which is better for a given

application. There may be various “optimum” soIutions, depending on the problem at hand. Various

example problems have been considered in [7] and the references therein. (See Ao [21].) In [7) norm

concepts are introduced in a systematic way to extend the definitions of antenna gain and radiation

pattern to apply to radiated temporal pulses, By considering reciprocity in the time domain the

definitions are made to apply to both transmission and reception, alIowing for the additional time

derivative in transmission, or equivalently the additional time integral in reception.

The present paper considers further application of norms to characterize the radiated far-field

temporal wavefomns. First, the various integral representations of the fields in terms of currents on the

antenna, and in terms of equivalent electric and magnetic surface current densities on surfaces

surrounding the antenna are developed. For the case that the boundary surface is a plane the integral

expressions simplify, particularly for the far field. Then, using results from the appendims, norms of

vector temporal waveforms are considered in terms of nonrts over the frequency spectrum of the two-

sided-LapIace/Fourier transform of such waveforms. This leads into concepts of comparing waveforms

via norms in the frequency domain which include weighting functions which emphasize portions of the

spectrum of the pulse which are deemed important for the problem at hand.



.
2. Fields From CurTents

* Begin with the Maxwell equations for free space

v x ??(m) = -P* : F?(7, f) - -im(7, f)

v Xiw’,f)= &o~a3(7, f) + 7’(7, f)

(2.1)

where both electric and magnetic cument densities are included for generality and later use in the

equivalence theorem. This is conveniently cast in terms of the combined field as [261

[vx-:l;’@’)=“ ‘o7m(7’)
1

c = [pO&O]–l = speed of light
. . .1

[1

Z*= ti~ = wave impedance
E*

+
Eq(;, f) = ;(;, f) +qj Z. ~(~,f) =

of free space

combined field

v“ jl?, f) = -~ (+ f) v “ Tm(;,f) =~pr, , -: M% f)

Pq(?, f) = p(%) + y pm(lf) , v “ 7q(%f) = ~ q-~p (:, f)
o

(2.2)

‘ L*

q = A 1 = separation index

The aswciated charge densities are given by

(2.3)

While this is cast in terms of free-space parameters, it can be converted to other uniform isotropic media

by a change of the constitutive parameters, although if these are frequency dependent, this is directly

done in frequency domain with subsequent transformation to the time domain. The electric current

density can also be organized to include polarization and conduction current density (say in some

antenna or scatterer), and the magnetic current density can also include the magnetic polarization

associated with permeability different from free space. For present purposes the medium will be

assumed to have frequency independent so and #o with conductivity o = O(i.e., free-space like) so that

the simple forms above are directly applicable to analyzing antenna radiation in time domain.

The fields are in turn derivable from the usual potentials as



Defining combined potentials as

++
Aq(Y, t) = Z(%f)+
@q(;, t) = w%f) +

the combined field is given by

q J Z. z?l(tt)
q j Z. d+@, f)

.

(2,4) *

(2.5)

(2.6)

.. ..

With the scalar Green’s function for free space (using complex frequ=q for the two-sid~

L.apIace transform (Appendix A))

+?
-++ e-Y1‘-r [
Go(r, r;s)= ,7=2

J-3 c
(2,7)

e
which satisfies the radiation condition for outgoing waves one can express the potentials in complex

frequency domain as [1, 26]

In time domain we have

(2.9)

which operates on currents and charges as a temporal conwiution. The combined potentials then have

the temporal form
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++

Aq(r, f)=vo J
Go(~,~; f) o ~q(~, t)dV’ , = go J J Go(?,~;t -r) ~q(p, f) d’ dV’

v v-

.

q++) = :J Go(~,~;t) o pq(~,f) W’ , = :
JJ

Go(~,~; f - f’) Pq(;, f’) W W’
v v-

1
J

1

[)

l~_-)1
=—

&o
pq ~, f- ~ dV’

v 47r17-?l
o = convolution with respect to time

(2.10)

and similarly for the other (electric and magnetic) potentials, Note that the temporal convolution reduces
.,

to the evaluation of the currents and charges in retarded time with respect to the obsexwerat ~.

One can go directly from the currents to fields via the free-space dyadic Green’s function which

can also be written in the form of an impedance kernel as [10]

A++ A++
Z(r, r’; s) = s% Go(r, r’; s)

c=yR,?=i~?~+iyiY+iziz -identity

Note the inclusion of the delta function at ~ = ~. This is for use with a small spherical volume about the

source point for defining a principal-value integral [19]. Similar formulas hold for other shapes of the

volume around the source point (including for use in integration over surface current densities) [20]. This

kernel has the form of an impedance (per meter2) as it is used in surface integral equatiors when

operating on the surface current density to give the tangential part of the incident electric field. For the

scattered or radiated electric field a minus sign appears with this kernel.

A related kernel is

‘43++
Zm(r, r’;s) =

=

G-)+
–ZOVX Go(r, r’; s) = – Z. V~o(~, ?;s) XT

%%-2+0-’=

(2.12)
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which is used for the magnetic field (from the electric current density). The two kernels can be combined
.

as [16]

G +4 -A++
.zq( r,r’;s) = Z(r, r’; s) + qj2m(7,7; s)

which can be used to find the combined fie~das

v

(2.14)

v

“G+<
=-

JJ
Zq( r,r ;f-f’)*~q(7,f’) df’dV’

v-
..

—
This formula can be readily decomposed into separate formulas for the ekctric and magnetic fields in

terms of the electric and magnetic current densities. in a form simikw to (2.10) the integral over f’

evaluates the current density in retarded time f - R/c. However, there are additional powers ofs (in y) in

(2.11)and (2.12). These become temporal derivatives and integrals [4, 8], allowing explicit representation

in time domain as an integral over ~.

For present purposes, our primary interest is in the far fields for which we take the leading 1/r

term with {4]

()R=r–~r-?+ Or-l as r+= (2.15)

()7R=7’7+0 r-1 as f-+=

where ~ = ~ is assumed in the region (of finite linear dimensions) with the currents. The kernels then

become

(2.16)

*
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.

so that the electric and magnetic parts are the same except for the factor qj with the rotation by 7c/2about

* 7?. For large r then replace (for fixeds)

.,

~(f) -#-)
Zq (7,7;s) = [)e-Y r

Zq (77;s) + o —~2 as r+=

This gives the fields for large r

3’+ ~(f) ~

Eq(r,s) =
[1

~-r r
Eq (r,s)+ O—r2 as r+-

where the far fields are given by

~(f) Jf)

Eq (?, S) = -~ Zq (?, ~;S) jq(zs) dv’
v

spo

[
]~

-—e-yr ‘Tr+qj7rx7 “
J’7.7+

= 4nr
j ~(r?s) dV’

v

In time domain it is convenient to use retarded time

giving

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

As discussed in [6] one needs to be careful in the interpretation of the far field in time domain since it

includes frequencies extending to infinity, for which the far field is not strictly valid as the 1/r term in the

asymptotic expansion as r + C=Y.In time domain this implies that the above formula applies for temporal

changes that are not too fast, how fast depending on the magnitude of r.

A convenient feature of the far field is the relation between the electric and magnetic fields as

+(f) +

~rly’”$17f7’r+-)dv’-~irxi7mkfy+-)dv’}(222)

E (r, f)=-—

(f)
=- Zo ir x ~ (?, f)

7



Thus, for the far field, it is convenient to consider only the electric field since the magnetic field is so

simply reIated to it. If one uses (2.22) for integrating over the ekctric current density on an antenna then
o

only one term is used. Later use, however, will involve integration over equivalent sources on surfaces

away from the antenna, for which both electric and magnetic surface current densities can be present.

8
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3. Fields From Fields on Boundary Surfaces

o Let all the sources be contained in a volume bounded by surface S with outward pointing normal

7S as indicated in fig. 3.1. Then for computing the external fields (outside VUS ) we have the

equivalence principle [3, 5, 26]

(q)
+7,5)=-J fiq(;,;;s)” 7,q (7L s) ds’

s (3.1)

JY
[ 1SQ-~(7,7;s)s is(;~)x;q(?~,s) N

Z.
s

for ?~[VUS]

Note that is is here pointing into the region where the fields are to be computed. While in Section 2 the

magnetic current density on antenms may be neglected in the case of non permeable materials, here on S

both kinds (electric and magnetic) for equivalent surface current density are required.

As a special case, fig. 3.2 shows S replaced by a plane P of infinite extent. As a simple convention

one can take Pas the z = Oplane with

-) +
1P = 1 z (unit- surface normal) (3.2)

and the fields ~q are calculated for z >0 from equivalent surface currents on P. The equivalent currents

on 1?(or more generally on S) can, of course, be calculated in turn from the currents (source) for z <0

using the formulas in Section 2. Note that the choice of z = Ois somewhat arbitrary as long as it is to the

right (in fig. 3.2) of the sources. Thus, one can in principle compute equivalent sources on a plane of

constant z, compute fields to the right, compute new equivalent sources on a plane of larger constant z,

etc., continuing on indefinitely to the right.

For this special case of an equivalent source plane l?, there are alternate forms the equivalent

sources can take, based on constructing fields in a symmetric or antisymmetric sense with respect to 1?

[9, 261. Suppose that ~q is given on P. Let us construct ~~ such that it is symmetric tith respect to P,

i.e.,

9
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~q in V (inside)

Fig. 3.1 Equivalence I?rinaple for Representing Fields Outside a Volume Containing Sources
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Fig. 3.2 Equivalence Principle for Representing Fields on One
Side of a Plane from Sauces on the Other Side
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(3.3)

+

r ~ = ~ . ~ (mirror position or coordinates)

7= (X, y,z), 7’m = (X, y,-z) with 2:>0

[1
100

Y= 010 (reflection dyadic)

00-1

Then tangential ~ is continuous through P, but tangential ~ is discontinuous through P, giving a

surface current density on P as

-@@ +
,.. JS (rs,t) = 2 72x Ws+,f)

(3.4)
+
r s.+ = coordinate just to the right of P

Note that in (3.3) the fields for z >0 are the original fields resulting from sources to the left of P. The

mirror fields at ~m are artificially constructed to give fields symmetric with respect to P. Then

substituting from (3.4) in (3.1) gives
a

<+ ~(sy) ~
Eq(r,s) = -j ~q(~,~s;S) “ Js (r’s,s)ds’

P

- “ “[;zx:(;’+s)lds’=-2j Zq(%,s)

P
forz>O

Thus we have the fields to the right in terms of only the magnetic field on P, but with a factor of 2

appearing.

Another form the fields can take is found by replacing (3.3) by antisymmetric fields as

2>0

Then tangential ~ is continuous through P,

magnetic surface current density on P as [16]

(3.5)

(3.6)

but tangential ? is discontinuous through l?, giving a

*
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~(us)
J,m (%,f) = -2 iz x ;(;S+, f) (3.7)

Again the fields to the right are the original fields, and the fields to the left are constructed to give

antisyrnmetric fields with respct to P. Then substituting from (3.7) in (3.1) gives

‘G ++ ~(as) ~
=)+
Eq(r,s) = - f~ Zq(r, r’;s) ● J5m (r’s, s) dS’

‘P

zti
= Z. J “(7J7;s)”[7zx2(7s+(3.8)

P
forz>O

Thus we have the fields to the right in terms of only the electric field on P, but with a factor of 2 again

appearing. This is the form in [4, 6, 23].
..

Comparing (3.5) and (3.8) for sources on P in-terms of electric and magnetic fields, note that one

can take a linear combination of these integrals for 3’, with coefficientss umming to one, to obtain yet

other valid formulas. In particular with both coefficients equal to 1/2, then the formula with combined

sources (as in (3.1) with S taken as l?) is reproduced. In this special form, however, the formula is valid

for all shapes of S that enclose the sources (and not the observer).

In Section 2, the kernel is evaluated for large r to give far fields. Here the same applies to

integration over equivalent sources. Thus (3.1) becomes

- (f) - (f) - (s’)
~q (:,s)=-J ~ (~,~s; S)” ~5q (?s, S) dS’

s

.Q -JY
[ 1

q(?,~;s)” is(~s)x~q(~s, s) dS’
Z.

s

(3.9)

- (f) . [1i?q(7,i)=-&[?r+qj~r x?].-$J is(~s)x=q~s,fr+;r”;sds’
c

s

As mentioned previously, one must use such expressions in time domain with care due to the inclusion of

frequencies for s + ~,

Similarly (3.5) becomes

13



P

= ‘(f) “Iizxa(;s+rs)lds-2/ Zq (7,7s; s)

P

and (3.8) becomes

- (f) - (f)
... , ~q (?,s)=-#j ?q (?s,?s;S)”7:(%,’) d$

*P

‘- ‘(f)++”“F’zx2(7s4ds’2qj w

J Zq (r, rs, s)Z.
P

{

’71” 7ZX J
~7i’r ‘7s ~(p~, s) dS’

1

– y Iirx Y–qj T
27rr

P

(3.10)

-)
lr =7z

+) -+-)
lr=7z =7- lZIZ =7X7X

Note that the plane 1?extends to * cuin both x and y directions which violates the condition of finite ~s

in deriving the far fields as in (2.15). However, if the fields of interest on P extend over a finite-

dimensioned portion (“aperture”) of P, this difficulty is avoided. This is a common approximation in

antenna theory,

For the special case of the observer on the z axis (bcmsight) we have

The domain of integration on P is assumed

discussed above. Then (3.9) becomes

(3.12)

centered on ~ = ~ and is assumed of finite extent as

14
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(f)

[
]1l’q (?,s)=+e-yr ‘7.+qj~zx ~z “ ~q(~sts)ds’

P
~(f)
E q (7,S)

[
]J

=& 7z+qjizx7z ●$
+?
Eq(rs, tr)ds’

P

Similarly (3.10) becomes

and (3.11) becomes
.. . . .

(f)

[
]JZ?q (7,s)=& 7Z +qj 72 x~z “ ~(:s+,s)ffs’

P
~(f)
Eq (;, f)=&

[

H

]~
lz+qjizx7z “$ ;(:s+, fr) dS’

P

Definin~ for the far field,

_Jf) + +(f) + ~(f) + ~(f) +
Vq (lr, fr)= rEq (r, f) = v (lr,fr)+ vm(ly~fr)
:(f) * ~(f)

e–yr V~ (lr,S) =– r Eq (?, S)

we have

+(f) +, ~(f) +
Vm(17, fr)=irxv (lr, fr)
_Jf) +

[

w 1
~(f) +,

Vq (lr, t~) = lr+qji7 x7’ “ V (Ir,tr)

Thus, we have the common factor

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

15



,

e
(3.18)

which is expressible in terms of the tangential electric or magnetic field on P (or a linear combimtion of

the two). For the special case of boresight we have

+(f) + ~M7z”F-’’)d1=1=PzxV (r,t)=— —

which is rather simple in form.

This factor has dimension volts and directly gives

~(p 1 +(f) +
E (?, f) = –V (r, tr)

r
~(f) ~(f) ~(f)
H (?,f) = ‘_ir X V (T, fr) =~rx E (~,t)

r

(3.19)

(3.20)

so that we only need consider the far ekctric field, the far nwgnetic field being simply related to it.

16



3

4, Maximizing the Far Field

*
Define

so that

~(f)

--yrx{Tzxa(Trrs))V (?y,S)-

,. . ~(f) ~
V (lr, f)=-

7’XPZXB(7’S)}

(4.1)

(4.2)

and note that only the tangential components of the electric field on P contribute. The above equations

are titten in terms of the electric field on P, but the similar ones in terms of the magnetic field on P could

o be used as well with the same results,

If one wishes to maximize the far field in some sense, then this can be done in terms of the

representations in (4.1) and (4.2). For a given direction to the obsemer Zr let us rearrange (4.2) as

~(f) ~
77 x V (lr, f) =

7’”{7ZX;(7”)}
(4.3)

~(f) --) ~(f)
Since V has only components transverse to 1‘ then maximizing ~r x V is equivalent to

~(f)
maximizing V , this applying in both frequency and time domains. For a given 72 x U one can rotate

the field distribution on P such that when dotted with ?r a maximum is achieved (say in the sense of

vector magnitude). In time domain ~Z x ~ is a real-valued vector parallel to l?, so it can be rotated such

that

H+
1’. 1 z x ;(l’r,f) = 72 x i’(~y,f)

-)

[

-)
1’ . 112 xti(ir, f) = O

(4,4)

17



i.e., such that the full magnitude of ~z x fi is achieved. Now ~(~r, t) can rotate (parallel to 1?)as a

function of time. So one may wish to constrain the polarization as in (4.4), thereby giving a linear
+

polarization provided 1 r # ~z. In frequency domain 7Z x ~ is a complex-valued vector parallel to P,

so the form in (4.4) is not immediately applicable. However, if ~ is expressible as a complex scalar times

a real vector for frequencies of interest, then (4.4) applies in frequency domain as weIL Such is the case,

for example, if ~ has a constant linear polarization for all time, so that U is also linearly polarized for all

frequencies, If we consider multiple obsener directions ~r, then maximization conditions vary as a

function of ;r as is seen in the polarization condition (4,4). If one considers ~r near ;z (boresight)

then this polarization effect is not significant.

More important is the phasing (in frequen~ domain) or timing (in time domain) of the fields on

l?. The traditional concept (with good reason) is that the aperture fields should be focused on the..
observer (at 00 in the ~r direction). To see this, consider now the tangential electric field on P as

containal in ; in (4.1). Let there be a region of area A of finite linear dimensions (centered on the z axis)

where the tangential electric field is non zero. Then we can write, first in frequency domain,

(4.5)

Consider the two orthogona~ vector components separately. Considering the x component for

frequenaes on the ,jo axis we have

b

o

@

This can be bounded as

(4.6)

(4.7)

18
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with equality provided

9

[

‘ki,. 7$~x(p~, ~a)arg e)
)

= constant over all of A (4.8)

* function of ?.

i.e., with each litile portion of the aperture having the same phase relative to the observer in the Ir

direction. Note the local field magnitudes I~x(?’, jco) I are assumed constant while one is varying the

phase to maximize Ifix 1. The same conditions apply to the y component. Taking the magnitude of ~,

this is then maximized by setting

{

O over all of A
= or

n over all of A

(4.9)

Of course, one can also vary the orientation of the electric field parallel to P (i.e., relative magnitudes of

@

~x and ~y ) for a given I~z . ~ I at each ~s, resulting in a uniform polarization over the array to
G

maximize I U 1. While the above derivation is fors = j~, more generals throughout the complex plane

can be used in (4.5) with the same conclusions.

In time domain one can consider a tangential electric field on P of the form (as in TEM plane

waves on the aperture [6])

4+
Ef(r’5) = spatial distribution with x and y components

(4.10)

f(t) = waveform

Then (4.1) gives

19
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.

tkir,f) = & -$ j ;@J j(f) dS’
P

1 [1J++d f(f)= -.
2?T

E(/s)dS’ ~
P

(4.11)

.

which is a vector wave of constant polarization. If the temporal part of (4.10) varied differently over the

aperture, then one would have a smaller peak of Z as

++
1 z “ws,f) = “(:s){f-~r~+’(v’)l

++ +-+
U( ?’Srf) = &

~ EAr’s)-&f(H7s))dS’

P
-.

Maximizing this over all time, one can consider the x component for which

sup
f

(4.12)

(4.13)

provided & has the same sign over all A, with equality occurring if z is independent of ~s. The same

applies to the x component and thereby to the maximum of I~(~r, f) 1. Applying various orders of

temporal differentiation or integration to ~ (or convolving with more generaI temporal functions), and

then maximizing over f the same generaI result occurs with ~independent of ~S. With this constraint the

general result in (4.11) describes the far field as a function of time. Note the consistency of the

maximization constraint in time domain (4.10) and frequency domain (phase as in (4.8) and (4.9)). This is

an example of how norm concepts as in Appendix A can be applied in frequency domain for temporal

quantities, and conversely.
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,

5. Comparing Waveforms

* Suppose that it is desired to have an antenna driven by a temporal source give some far field
_Jf) +
VI ( I r, t), I’M might even k some kind of specification. It might apply for Some particular observer

direction (e.g., ir = ~Z ) or over some range (solid angle) of ir. Suppose also that one has another far
~(f) +

field V2 ( 1 ~,t) which characterizes some antenna/source combination (whether from calculation or

+(f) +(f)
measurement). How should we compare these two? Should we ask if V2 is larger than VI and, if W,

in what sense? There are issues of time, frequency, and polarization to consider.

+(f) +(f)
Another approach is to determine if V2 - VI is small in some sense. In terms of norms this

would often be done as a relative error of the form

~(f) + ~(f) +
IIV2 (Ir,f)-vl (17,011

(f) (5.1)

Illwr,f)ll

which is ideally small compared to unity. Note that the norms in the numerator and denominator should

o be in the same sense, making q dimensionless.

~(f) ~(f)
Suppose, however, that V2 is exactly like VI , but twice as large (for all times) with the same

_Jf)
polarization. Should such a result be deemed unacceptable, or should we multiply V2 by some real

~(f)
scalar z which gives a best fit to VI in the sense of smallest V2 in (5.1)? One should also shift time by

~(f)
some real z in V2 since the definition of t = Ois arbitrary anpvay. What about polarization? For a

~(f)
given ?Y one could rotate the antema around this axis and thereby rotate V2 at the observer for a

_Jf)
better fit to VI . If, however, one is interested in the performance over some range of ~r there are

limitations on the rotation of the antenm to rotations about at most two axes ( O: group) which can be
H+

represented by an orthogonal dyadic Q (proper rotations, i.e., no reflections). This is in effect a rotation

of the coordinates as

-) +++ -)
rz=a “rl

I;2 I = ITI I with both coordinate sets right handed .

det(;’) = 1

(5.2)

21



Thus one might define

.

_Jf) +
V3 (Ir,t)=zs+

‘“;w+=”i’ f-’)
~(f) + J) +

IIV3 (Ir,f)-vl (b,f)ll
V3 =

~(f) +
Ilvl (lr,f)ll

(53)

H+
where r, z, and Q are adjusted to minimize V3. One might also require that x be greater than some

positive number such as.9 or 1.

One might use various norms in (5.3). As discussed in Appendix A, these could be norms over

time, or over frequency using the two-sided-Laplace/Fourier transforms of the vector temporal

w.aveform.s. One can minimize V3 for some particular observer direction ~r or for some range of ~r.

In general one then also defines the norm to appropriately range over ir on the unit sphere (some range

of ( t?,@)). Various weights can also be included in the norm over space (the unit sphere).

As discussed in Appendix B, one can have weighted frequency-domain norms of temporal

waveforms. Suppose that one has some important range of radian frequencies O s 04 < @ < oh. Then

one might define wme filter function ~(s), e.g.,

which attenuates the spectrum outside the desired range of frequencies. This approach could be

appropriate if spectral content and smoothness through the frequency band were important, as in the case

of waveforms for target identification [14, 22].
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6.0 Concluding Remarks

* In order to compare radiated vector temporal waveforms it is necessary to reduce the infinite

dimensional problem (the points on the time axis) to a manageable (preferably small) number of

parameters. Norms are quite suitable for the purpose, giving a single non-negative real number.

However, there are various ~ssible norms, such as for peak (*norm) and for square root of energy

(2-norm). These need to be chosen for their appropriateness to the particular antenna and pulser design

problem under consideration, For cases in which the spectral properties of the radiated pulse are

important, one can use weighted norms of the two-sided-Laplace/Fourier transform of the pulse, this also

being an acceptable temporal norm. This leads to ways of specifying antenna/pulser performance so that

one can quantitatively compare various designs to each other and to some desired ideal performance.

..
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Appendix A,

I

Frequency-Domain Norms of Temporal Waveforms
,

Consider some suitably well behaved temporal vector waveform ~(f).’ It haS ValiOUSkinds of e

norms which are all defined to have the properties [12, 171

{

11%)11 ‘o 4A = +O or has zero “m-sure” per the particular norm
> Clotherwise

IIa F(f) ll=[al IIF(f)ll , a = a complex scalar

Il;l(f) + F2(t)ll < G(f)ll + ll;2(f) II

(Al)

Note that scalar waveforms are just vectors with one component. While here we indicate the vwtors as 3-

vectors in the usual 3-dirnensioml space, the concepts apply to more general N-component vectors.

.-. . .. . . The most commonly used norm is fhe porm defined by

(A.2)

=11Il;(f)llw IIF = II lwf)llp Ilp

where the subscript “t” (for temporal) refers to the temporal integration, and the subscript “v” (for vector)

refers to the summation over vector components. Commordy used are the 2-norm

{J

“-)
F(f)

1-0s J

and =-norm (or peak)

II;(f) 11=~= sup pn(f]
t,?l

In [13] there is introduced the m-norm (with “m” symbolizing maximum magnitude) as

11%) llm~ = II H;(f) ll~v II-t = sup
t

1

(A.3)

(A.4)

(A5)

{

= H;(f) “ ;*(f)lL,t Iz
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*

For vector functions this gives the peak of the vector magnitude over all time. Note the use of conjugate

e
(*); for cases of real-valued vectors this is not required. Furthermore f (time) is taken as real valued.

With the two-sided Laplace (or Fourier) transform

“+
7(s)= J F(f) e-tidf (transform)

~
?(f) = J- F(f) esfds (inverse hlnsforrn)

tij
Br

(A.6)

s = Q + j~ = Iaplace - transform variable or complex frequency

Br = Bromwich contour in strip of convergence

we can describe ~(f) by ~(s) and consider norms of ~(s). Of course, let us then restrict ~(t) such that

.-. . its @nsform exists and has a strip of convergence for defining the inverse transform. This is part of what

is meant by “suitably behaved”. Note also that isolated pints of ~(t) which are discontinuous on both

sides are assumed not to exist since their temporal integrals are zero and thereby contribute zero to the

transform.

Consider now the norm of ~(s) and its use as a norm of ~(f). For a norm of ~(s) the properties

in (Al) must apply with t replaced bys. A subscript “s” or “Was appropriate will be used to distinguish

such norms. Suppose there is such a norm with

II ;(s) 11~

.{:

= Ojfj;(s) = F
> 0 otherwise

II a ;(s) 11, = lrzl II F(s) 11,, a = a complex scalar

11;1(s) + 22(s)11s s 11:1(s)11s + 1122(s)11s

(A.7)

Within our “suitably behaved” requirement 3(s) = d is equivalent to ~(f) = ~, so the first property in

(A.7) is equivalent to the first property in (Al). The second property is also equivalent in frequency and

time due to the linearity of the LapIace/Founer transform. Consider the third property of (A.7) and note

that if the frequencydomain norm satisfies this, and the frequencydomain norm is used to dqfine the

temporal norm, then the third property in (Al) is automatically satisfied (by definition). Therefore,

norms of the transforms are norms of the temporal functions (and conversely).

In a symbolic way this result of frequencydomain norms applying to temporal waveforms can be

stated as
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(A.8)
m

with this defining the temporal norm by a frequency~omain norm. One can also define a frequency-

domain norm by

(A.9)

as a dual procedure.

This relation between norms in time and frequency domains is illustrated by the 2-norm.

Considering real vector-valued functions we have [12, 17]

.-. - -.. .

Ill(f) ll~t =
{f

“+
F(f) “ h

t-

. (A.1O)

showing that the Z-norm is the same in time and frequen~ domains except for a multiplicative constant.

Note the requirement that ~(s) and ~(-s)have a common strip of convergence which includes the j.co

axis.

The above can be generalized to complex temporal vector functions, such as the combined field in

Section 2, from [11] as

1
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.!

*

This is a generalization of the well-known Parseval theorem to complex vector functions,

(All)

...
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Appendix B. Weighted Frequency-Domain Norms of Temporal Waveforms

Similar to the form in [18], let us define a weighted norm in frequency domain by use of a 0

weighting function jj(s), so that (A.7) is applied to ~s) ~(s) and thereby to g(f) o ?(t) where o denotes

convolution with respect to time. Here g(f) is a scalar, but vector and dyadic forms are also possible.

Considering the first proprty in (A.7), let us restrict ~s) such that fis) has only isolated zeros and

in the sense previously discussed. Physically, we can think of ~(s) as some kind of filter which

emphasizes certain frequencies in ~(s) at our discretion. Thus, one may wish to restrict ~(s) such that

g(f) k real valued and g(f)o is a causal operator, corresponciing to a physical filter... . .

SymbolicaEy we can define

I12(S) ll~j = II ~(s) 2(s) 11~

II;(t)Ilfg = It g(t) 0 =(f) L

(B.2)

as weighted norms in frequency domain, and their equivalents in time domain.

In [71 the D- and I-norms (temporal) are introduced, whereby these are meant for our vector

waveform

(B.3)

-

These are norms of ~(f) provided appropriate restrictions are placed on the waveform. For the D-norm

the derivative needs to be suitably bounded. For the l-norm, the integral similarly needs to be bounded

and this implies that ~(t) + ~ as f -+ – M in some suitable fashion, such as being identically zero before

In frequency domain we have

28
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So in frequency domain we haves and 1/s as weighting functions to take the place of ~(s) in (B.2). In

“timedomain g(f) takes the forms

~ d(f) (derivative of a delta function)
‘+dt

: + u(f) (step function)
s

a(t)= $ u(f)

The delta function and its derivative should be understood in an appropriate limiting sense.

So we define norms of ~(f) symbolically via

ll;(f)ll~ = 11s%)11s

e
ll;(f)ll~~ = 11;%)11,

(B.5)

(B.6)

where the particular form of temporal norm is defined by the form chosen in frequency domain. Note

that if we choose a particular form of frequency-domain norm, such as 2-norm, then (.4.8) gives

(B.7)

which is not the D2-norm (2-norm of the derivative) in time domain, but a constant times it. Similarly we

have

(B.8)

So the norms on the two sides of the equations in (B.6) have, in general, different senses.
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