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Abstract

Equivalent circuits are considered for electrically-small loops and
dipoles, for which equivalent areas and equivalent lengths are defined as
appropriate sensitivity parameters. The various sensor parameters (sensi-
tivities and admittances) are related to each other. An equivalent volume
for the sensor is considered to relate the energy delivered from the electro-
magnetic fields to a resistive sensor load. A figure of merit is defined
as the ratio of the equivalent volume to an appropriate geometric volume
in which the sensor is placed. This figure of merit may prove useful in
optimizing the design of -electromagnetic sensors for various applications.
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Abscracc

Equivalent circuits are considered for electrically-small loops and
dipoles, for which equivalent area:;and equivalent lengths are defined,as
appropriate sensitivity parameters< The various sensor parameters (sensi-
tivities and admittances) are relat:edto each other. An equivalent’yolume
for the sensor is considered to relate the energy delivered from the electro-
magnetic fields to a resistive sensor load. A figure of merit is defined
as the ratio of the equivalent volume to an appropriate geometric volume
in which the sensor is placed. This figure of merit may prove useful ih
optimizing the design of “electromagneticsensors for various applications.
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1. Introduction

,.

In measurements of pulsed electromagnetic fields-one often uses
electrically-small antennas because of their relatively simple response
characteristics. By an electrically-small antenna is rneabtthat Ehe
‘sensordimensions are small compared to a radian wavelength or a skin
depth, as appropriate, in the medium where the fields are to be measured.
The sensor consists of good conductors (ideally perfect conductors) in
some geometric configuration plus, perhaps, additional media with one or
more parameters (permictivity, permeability, and conductivity) differing
from those of the external medium. The radian wavelength or the skin
depth, as appropriate, in these additional media should also be much .
larger than an appropriate dimension of ths particular medium. (he might
use such extra media (e.g., if the external m dim is conducting) to ‘
improve some aspect of the sensor response.1,2 In some cases these
additional media do not necessarily complicate the basic parameters
(to be discussed} of the electrically-small antennas, in which case
such media are not necessarily excluded. An example of such a case
is a loop which is enclosed in an insulator which does not affect its
inductance or basic sensitivity to the magnetic field, as Long as it
is electrically small. A counter example is a dipole totally or partially
enclosed in an insulating dielectric; if the external medium is an
insulator, the sensitivity to the”electric field and the capacitance are
well behaved. But, if the external medium is conducting, the sensor
capacitance and conductance are not simply related, which in some cases
complicates the relation of che sensoz response to the electric field.
Cases in which the presence of an additional medium complicates the
sensor parameters for frequencies of interest are not considered in’
this note.

The external medium is presumed to have a permittivity, 6, a
permeability, U, and a conciuctivicy,a, AU of these are assumed to
be scalars and independent of the electromagnetic fields. Where
significant, a is, in addition, taken to be time independent. Various’:
other effects, including those peculiar to the nuclear environment in
the source region for the nuclear electromagnetic pulse, are also
ignored in this analysis.

In this note we consider some of the basic parameters of
electrically-small antennas as used for measuring pulsed elect~ic
or magnetic fields. The two classes of such sensors considered
are loops and dipoles, the former fqr measuring pulsed magnetic
“fields and the latter for measuring pulsed electric fields and/or
current densities (conduction plus ,displacementcurrent densities).
Effects such as sensitivity to undesired components of el&ctric and
magnetic fields are not considered. Each type of sensor is aqs~ed
to be driving a purely resistive load, R, which is independent of

1. Lt Carl E. Baum, Sensor and Simulation Note XIII, Electric Field and

1
.73 ., Current Density Measurements in Media of Constant:,.J,,.-.a~~2. Capt Carl E. Baurn,Sensor and Simulation Note.&
....t+ Cylindrical Loop in Non-Conducting and Conducting,,,:-,:~>-

Conductivity,,Jan. 1965.
XXX, The Single-Gap
Media, Jan. 1967.
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frequency for the frequencies of interest. This is a common approach in
using electrically-small antennas to me~sure pulsed fields.Y

The admittance of an electrically-small loop is basically due to an
inductance. Other admittances, associated with capacitances, conductance,

:,
turn resistance, etc., are assumed unimportant compared to the inductance
and load resistance for frequencies of interest. These extra admittances
could be significant in some cases but are neglected from this analysis.
Ideally an electrically-small loop can be designed for which these extra
admittances are insignificant and for which the inductance is frequency-
independent fo= frequencies of interest, The admittance of an electricaU,y-
small dipole is basically due to a capacitance, and if the conductivity of’
the external medium is nonzero there is aiso a conductance in parallel with
this capacitance. Other admittances are assumed comparatively unimportant.
Again the capacitance and conductance are assumed frequency-independent for
frequencies of interest for the electrically-small dipole.

Electrically-small loops and iiipolesare then each assumed to have
simple Th&enin and Norton equivalent circuits. For each type of sensor we
define an equivalent area, A , and an equivalent length, ieq, (both assumed
independent of frequency fore?requencies of interest) based on the open
circuit voltage and short circuit current from the device, as related to

3 There are various conven- .an appropriate electromagnetic field quantity.
tions used in rhe literature for some of these parameters, often using the
terms, “effective area” and “effective height.” 4 For a loop the equivalent
area used in this note is the same as the effective area often used in other
references, but the effective area is sometimes used for something quite
different, i.e., the ratio of the power absorbed in an optimum antenna
load to the power per unit area in t:heincident wave, Likewise, for a dipole,
the equivalent length used in this note is the same as the effective length
or effective height often used in other references. Bowever, the concept
of an effective height for a loop (see ref. 4) as sometimes used is quite
different from our concept of an equivalent length for a loop. Rorden uses
effeceive areas and effective lengths for loops and’dipoles in much the
same sense that we use equivalent areas and equi%-alentlengths, except in
the case of a loop where these definitions differ by a factor of the number
of loop turns.5 We think the definitions of equivalent &ea and equivalent
length used in the present note are more natural definitions for a multi-turn
loop, directly relating the open circuit voltage and short circuit current
to the appropriate field quantities; the number of turns does not enter the
equivalent circuit, but rather is in,cludedin the indcczance, equivalent area,
and equivalent length. By using the word, “equivalent”, in connection with
the appropriate electrical parameters for electrically-small loops and dipoles,
we hope to avoid some ambiguity which might arise if we were to use the word,
ueffectivPr1,6 We hope then to establish a convenient and consistent set of

3. Rationalized LMKSAunits are used for all quantities,
4. S. Schelkunoff and H. Friis, Antennas: Theory and Practice, Chap. 10,
1952.
5. L, H. Rorden, Stanford Research Institute report, A Study of Low-Noise
Broadband VLF Receiving Techniques, Sept. 1965.
6. We would like to thank W. E. Blair of the Stanford Research Institute for
suggesting to us the use of the word, “equivalent”, in this context to avoid
ambiguity (private communication). “
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parameters to describe simple electrically-small loops and dipoles as
rela~ed to the measurement of electromagnetic field componen~s.

e/

Next we define an equivalent volume, Veq, based on the relation between
the electromagentic energy density associated with a step function of the
field component being measured, and the total energy delivered to the
resistive load. This gives the same result as Rorden~s (see ref. 5) which
he defines (for sinusoidal fields) as the ratio of the peak stored energy
in the antenna to the peak energy in the incident field. This equivalent -
volume can be related to the geometric volume of the sensor and represents
the degree to which the sensor can extract energy from the electromagnetic
field. To extract more energy one can make the sensor larger. There may
be various reasons for one to iimit the size of the sensor, such as a
physical restriction on the volume in which the sensor must fit, a“restric-
tion on the allowable field distortion near the sensor, and just convenien~e
in handling. Thus, we define a figure of merit, n, as the ratio of the
equivalent volume of the sensor to the volume of the smallest geomecrica~~,
figure of a given type inside which the sensor can be enclosed. Appropria~e -
geometric figures would include spheres and cylinders and various other
shapes depending on the application intended for the sensor. This figure-of:
merit concept gives one a quantitative standard by which to compare different
sensor designs for a given application. Of course there may be a certain
arbitrariness in the choice of the geometric figure in which the sensor is
inscribed. Nevertheless, the figure of merit should be a useful concept.

11: Loop Parameters

Consider first the electrically-small loop. The Th~venin and Norton
equivalent circuits are given in figures IA and lB, respectively. The various
parameters used in the equivalent circuits are:

B,H Component of incident magnetic field in direction of
maximum sensitivi~y of loop

v Outpu~ vol~age ““
I Output current

‘eq Equivalent area

Leq Equivalent length
L Sensor inductance
R Load resistance

A tilde, ~, over one of these quantities indicates the Laplace transform of
the quantity. Replace the Laplace transform variable, s, by ju for a frequency
domain analysis. Define a time conskant and a characteristic frequency for
the sensor-load combination by the relation

(1)
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S6n30f ~ Load
I

A. Th6venin Equivalent Circuit

Sensor ~ Load
I

B. Norton Equivalent Circuit

G. Example: N-Turn Cylindrical Loop

Figure 1. ELECTRICALLY- SMALL LOOP
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The Th&enin equivalent circuit has a response given by

Al

?=
R

s%A —=%
eq R+sL l+st

o
.,

For frequencies of interest limited to w~<uo, this reduces to

t = sheq

(2)

(3)

or in the time domain

V=iA
eq

(4)
,

This is the characteristic of a ~ loop and is used to define Aea fr~m the
open circuit voltage.

.

The Norton equivalent circuit has a response given by

J-
% R Sto
I = tileq,l =i~—

~+~
eq l+sto

For frequencies of interest limited to U>>uo, this reduces to

I=ib
eq

or in the time domain

I = HReq

A loop designed to give such a
H loop (and sometimes referred
(7) is used to define Req from

Relate the parameters of

V=_IR

response characteristic might be
to as a self-integrating loop).
the short circuit current.

the two equivalent circuits by

(6)

(7]

called an
Equation

(8)

and

where v is the’permeability of the external medium. Then combining
equations (2) and (5) gives

LIAeq= LeqL ‘ (lo)

which gives a rather simple relationship between the equivalent length,
and equivalent area in terms of the inductance and permeability.

. 6
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Next consider the effectiveness of an electrically-small loop in
extracting energy from a pulsed magnetic field. For convenience let the
magnetic field component of interest be of the form

B = Bou(t) (11)

where u(t) is a unit step function, rising at t = O. The corresponding
Laplace-transformed magnetic field is

B
%=: (12)

Substituting this into equation (2) gives .\

which in the time domain
+

_&
t

~ ~ ‘oAeq e .0
t
o

This represents a power

(13)

(for t > O) is

(14)
.

into the resistive load (for t > O) of

v’
~2A2 -2~

p. —-&e.&e to
R,

o

and a total energy of

(15)

(16)

Note that this total energy deliverec[to the resistive load is independent
of R, but depends only on the magnetic field and the sensor electrical
parameters.

Relate the energy delivered to the resistive load to the energy
associated with the magnetic field ccmponent of interest. In a given
equivalent volume, Veq, the energy associated with B (after t = O) is

.
B:

u =—
m 2U ‘eq

(17)

We equate Urnto U (equation’) as the definition of V
eq’

giving

UA2
v .3

L
(18)

eq

,.,
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Using equation (10) this result can be expanded into several forms as

BA2 2

v= -#.A E .4
eq eq eq P

(19)

.

Actually the definition of the equivalent volume is somewhat arbitrary,
depending on the pulse shape chosen for the incident magnetic field componenc.
However, the defini~ion used here is a convenient one with a rather simple
form for the result. Compare this equivalent volume to the geometric
volume of a loop by considering the example of an N-turn cylindrical loop
as illustrated in figure lC. The equivalent area is

A
2

= NTra
eq

and the inductance is roughly (for L>~2a)

~N2=a2
L= ~

(20),
---\

which, from equation (10), gives an equivalent.length (for @>2a) as

-Using any of the expressions from equation (19) then gives an equivalent
volume as

V = ra2R
eq

(23)

Note, however, that na2k is also the geometric volume of the cylinder
approximating the loop shape. So, the equivalent volume would seem to
be related to the geometry of Che sensor. Fox other 100P shapes the
equivalent and geometrical volumes are
Another characteristic of this example
number of turns, N, does not appear in
(23).

Consider the relationship of the
and frequency response characteristics
substituting from equation (1), as

not necessarily so simply related.
of a cylindrical loop is that the
the equivalent volume in equation

equivalent volume to the sensitivity
of the loop. Rewrite equation (19),

(24)

.

(22)

For a fixed R, the equivalent vol~me then combines sensitivity and band-
width together. For the case of B loop, U. is the upper frequency response
and A is the sensitivity; the equivalent volume is proportional to
sensi%ity squared times upper frequency response. For the case of an
H 100p (or self-integrating loop), U. iS the lower frequency resPonse

8
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(which one would like to make small) and ~eq is the sensitivity; the equil’alent
volume is now proportional to sensitivity squared divided by lower frequency
response: The equivalent volume then combines sensitivity and bandwidth in
a foim sensitivity squared times bandwidth, For a given equivalent volume one
can increase sensi~ivity, but at the expense of bandwidth, and vice versa.
As an example again consider the N-turn cylindrical loop in figure IC, main-
taining R and the dimensions constant and verying N; if one doubles N, Aeq is
doubled but L is quadrupled, thereby quartering Wo,

The response characteristics of an electrically-small loop can then be
improved by increasing the equivalent volume which one can do just by making
the loop larger. Suppose, however, that the size of the sensor is constrained
in some way by necessity, practicality, convenience, etc. Then a useful
question is how to best design the sensor to fit in a specified geometric
volume. One way to quantitatively consider this question is to.try ’t?maximize
the equivalent volume. A useful number to consider is then the ratio of-the
equivalent volume to the specified geometric volume; this ratio is one measure
of the efficiency of a given sensor design for a given application and we
define the ratio as a figure of merit, n, ●

There are various chQices for the geometric volume on which to base a ~
figure of merit, If for the N-turn cylindrical loop of figure lC, one took
the geometric volume of the sensor,

0 ‘

~a2g, then ~ would be about one. However,
it would seem appropriate to specify a geometric volume first and then evaluate
various sensor designs for their figu~es of merit. One such geometric volume
would “bea sphere ofradius, ro, and’corresponding volsme, ~ ~r3 , for which

,,,
,’ case we define ns as the figure of merit. YA sphere has the3max mum volume

for a fixed maximum linear dimension. As such the sphere may be an appropriate,
but arbitrary, shape for figures of merit for conveniently handleable sensors.
Fitting the N-turn cylindrical loop into a sphere with the smallest possible r.
still makes Veq (as in equation (23)) somewhat less than the volume of the
sphere so chat ns is less than one for this type of loop. One might even try
to find a length-to-diameter ratio for an N-turn cylindrical loop (using a
more accurate form for the inductance than equaEion <21)) which gives the
largest ris, Another geometric volume one might2consider is a circular cylinder
of given radius, ro, length, Zo, and volume, ?’rrozo;this geometric shape
might be appropriate for considering sensors which must fit into a sounding-
rocket body, a circular hole in the ground, etc. However, a circular cylinder
does not have the same symmetry as a sphere, so that there are two cases of
interest: the magnetic field of interest parallel to the cylinder axis for
which we use iI as the figure of merit, and the magnetic field of interest
normal (perpen%cular) to the cylinder axis for which we use,rlcnas the
figure of merit. There are undoubtedly many other gecmetric shapes on which
one can base a figure of merit; the sphere and circular cylinder may have
wide application. In some cases we may be interested in measuring fields
near a conducting plane with sensors utilizing the conducing plane as a
symmetry plane. It may then be appropriate to use geometric shapes like

0

hemispheres and hemicylinders for the figure of merit and we can use the
same notation for the figure of merit as for spheres and cylinders.
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111. Di~ole ParameC~
,

Consider second the electrically-small dipole. The Th6venin and Norton
equivalent circuics are given in figures 2A and 213,respectively. eThe various ,

parameters used in che equivalent circuits are:

Jt

v
I
!2
Aeq

ceq

G
R

Component of incidene eiectric field in direction of maximum
sensitivity of dipole

Component of total current densiCy (conduction plus displacement)
in direction of maximum sensitivity of dipole

Output voltage
Output cur’rent
Equivalent length
Equivalent area
Sensor capacitance
Sensor conductance
Load resistance

The component of interest of the total current density is given by

Jt =
II

3
‘+%E

The sensor conductance and capacitance are assumed related as

(25)

(26)

If G and u are nonzero (and significant),the above relation is necessary for

::?c%s:e~
to be frequency independent, and thereby giving simple equivalent
One way to achieve this relation between G and C is to have Ehe

dipole consist of good (ideally perfect) conductors in the external medium
with no ocher media intiluded. Then G and C both come from the same solution
of Laplacefs equation, since a and & ars both assumed independent of the
electtic field, and since boundary layer or plasma sheath problems are
assumed negligible. Again define a time constant and a characteristic
frequency for the sensor-load combination 4s

t
1=— = RC

o ‘o

The Th&enin equivalent circuit has a

GR+sto
$ = 2E

R
eq , = iLeq l~R+st

R++
o

G+sc

(27)

response given by

For R>~l/G, and/or frequencies of interest limited to U>>uo, this
reduces to

; = i~’
eq

(28)

(29) e
(’
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A. Th6ven’

Sensor Load

n Eyivaient Circuit

IE
G

Sensor / Load

I

B. Norton Equivalent Circuit

Figure 2

Example: Parallel-Plate Dipole

* ELECTR CALLY- SMALL D POLE
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or in the time domain

V=E2 eq

A dipole designed to give this response%ight be called an E dipole.
Equation (30) is used to define geq from the open circuit voltage.

The Norton equivalent circuit has a response given by

~
?tAe

?= ?tAeq
R

*+G+SC = l+GR+sto

For R<~l/G, and frequencies of interest limited to UC<UO, this
.,

or in the time domain
:.,

I = JtAeq

(30)

reduces to
‘\,

(d’_N\ -

(33)

A dipole designed to give this response might be called a total-current-
density dipole. Equation (33) is used to define Aeq from the short
circuit current.

Relate the parameters of the two equivalent circuits using equations
(8) and (25). Then combiniag equations ‘<28)and (31) gives

(GR+sto) -teq= (C+SE) AeqR (34)

or

(G+sc)

If one desires
frequencies of

CA=eq

and

aA =eq

These last two

!?/eq = (a+ss) Aeq (35)

chat both Eeq’and A be independent of frequency for
interest, then equa%!on (35) requires Chat

kceq (36)

gGeq (37)

equations can be combined to give the restriction of equation
(26) relating G &d C through a and c, showing that this restriction is
necessary for E and Ae to be both independent of frequency. Note that
the simple rela%ons betfleenthe equivalent area and equivalent length
for an electrically-small dipole (in equations (36) and (37)) are of the
same form asthat for an electrically-small loop (in equation (10)).

12
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Next consider the effectiveness of an electrically-small dipole in
extracting energy from a pulsed electric field. For this calculation
(leading to an equivalent volume) we assume that the conductivity, cr,is
zero; otherwise the total energy delivered to the dipole load could be
infinite. For convenience let the electric field component of interest
be of the form

E = Eou(t) (38)

The corresponding Laplace-transformed electric field is

(39)

Substituting this into equation (28) gives

Eole to
$=

l+sto

which in the time domain

t-—

v= EoEeqe ‘o

‘(40)
\.

(for t > O) is

(41)

This represents a power into the
&

resistive load (for t > O) of

2
~222 -2:

P:fi= OReq e 0 (42)

and a total energy of

(43)

As with the loop, the total energy delivered to the resistive load is
independent of R, but depends only on the electric field and the dipole
electrical parameters.

In a given equivalent volume, V the energy associated with E
(after t = O) is eq’

2
SE

Ue = -&
eq (44)

We equate Ue and U to define V as
eq

(45)

U!singequation (36) we have

(46)

13



Note the similarity in the results for the equivalent volumes for the
electrically-small dipole and the electrically-small loop (equation (19)}.

:,

Consider the example of a parallel-plate dipole as illustrated in
figure 2C for comparing the equivalent and geometrical volumes. The
equivalent lengtliis

E -h=
eq

the capacitance is roughly (for a>~h)
,

2
““\

C=? C48)

and the equivalent area is roughly (for a>>h)

A = 7a2
eq

(49)

The equivalent volume (from equation (46)) is then

v=
eq

which is also
dipole shape.
be related to

Rewrite

ma2h
.

(50)

the geometric volume of the cylinder approximating the
As with the loop, the dipole equivalent volume seems to
the geometry of the sensor. m

equation (46) for the equivalent volume in the form (substitut-
ing from equation (22’))

()

i?2
v
eq

= sR(A~quo) = < &
o

(51)

For a fixed R the equivalent volume then is proportional to sensitivity
squared times baqdwidth for both the total current density dipole and
the E dipole. This is the same result as in the case of the loop. Note
that these results for the dipole apply only to the assumed case of
a = 0. For a # O the bandwidqh of the two types of dipole change some-
what.

The response characteristics of an electrically-small dipole can
then be improved by increasing the equivalent volume, which can be done
by making the dipole larger. As for the loop we define a figure of
merit$ ri,for the dipole as the ratio of the equivalent volume to a
specified geometric yokme into which the dipole should fit. Such
geometric volumes migh~ include spheres and circular cylinders (and,
in some cases, hemispheres or hemicylinders) and various other appropriate
shapes. For.a given type of geometric volume on& might then try to
maximize the dipole figure of merit.

.
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Actually for some cases of interest G and C need not be related as in
equation (26). For the case of IJ= O and G = O, then there can even be
additional insulating dielectric media in the immediate vicinity of the sensor;
such media may affect Aeq and/or ~e but these twoparameters will still be
independent of frequency (consisten? with the electrically-small restriction).
If one appropriately restxiccs the frequency range of interest he can make
the effect of the conductance or the capacitance negligible (compared to the
effect of the other). As an example consider the total current density
dipole for u~wo and for GR~~l; the capacitance is relatively unimportant
and G may even be reduced through’the addition of insulators, giving a
frequency response as in equation (33) without making Aeq frequency dependent.7
Thus, there may be advantage in some cases in not restricting the relation ._
of G and C, particularly in cases where one of the two is of dominant
concern.

Iv. summary

An electrically-small loop or &Lpole (under some restrictions) has an
equivalent circuit with an equivalent area or equivalent length as a sensitivity
to the appropriate electromagnetic quantity, The loop admittance is due to an
inductance; the dipole admittance is due to a capacitance, possible in parallel
with a conductance, One can use either a Th&enin or NorCon form of the
equivalent circuit; the Th&enin equivalent is more convenient if the desired
response is based on the open circuit voltage, whi~e the Norton equivaknt’is
more convenient if the desired response is based on the short circuit current.

We define an equti~alentvolume for the sensor based on the amount of
energy delivered from a step function field to a resistive load. This equiva-
lent volume is related to the geometric volume of the sensor; it combines
the electrical parameters of the sensor in a form which, for ,afrequency-
independent resistive load, is proportional to sensitivity squ,aredtimes
bandwidth, For convenience we include the following table of some of the
parameters for electrically-small antennas.

loop

I

Open circuit voltage I iAeq

Short circuit current
r

H8
eq

Time constant, to= ~

‘--

~
R

0

Equivalent volume, V
eq

L A2
L eq

AL
eq eq

I

dipole

E%eq

3A
t eq

RC

Table 1. ‘Parameters for Electrically-small Loops and Dipoles

5 A2
C eq

A!Z
eq eq

C2;L
eq

ER (A:quo)

H

~2
~~
ER IAI

o

7* Capt Carl E. Baum, Sensor and Simulation Note XXXIII, Two Types of
Vertical Current Density Sensors, Feb. 1967.



A significant feature of the equivalent volume, as indicated in the
last forms of V

#
in Table 1, is that for fixed Ye and fixed R it expresses

a trade off bet%en ’sensitivityand bandwidth. Se~sitivity can be increased,
but at the expense of bandwidth, and vice versa. Note, however, that the

@equivalent volume is somewhat arbitrary, in that we have defined it in terms
of Ehe energy delivered &o a resistive load by a step function incident field.
If the pulse shape of the incident field is changed a different equivalen~
volume can be defined. Using the step function incident field gives Veq a
simple form which is ‘convenientlyindependent of R. In the case of the
dipole we have assumed a = O for the equivalent volume calculation, other-
wise the energy delivered to R, as well as the bandwidth, can be quite
different.

As part of & efficient”sensor design, one might then desire to maximize
the equivalent volume. Since the equivalent volume of the sensor is related
to its geometric valume, one can then increase the geometric volume of the .
sensor in order to increase the equivalent volume. For one reason or aaother,
however, one may wish to limit the physical size of the sensor. We find it
then convenient to define a figure of merit, n, as the ratio of the 4quivalent
volume to the volume of a chosen geometric figure, inside of which the sensor
is placed. The figure of merit is then one quantitative measure of the
efficiency with which the sensor utilizes o~ “fills’!a particular chosen w
geometric volume. The figure-~f-uteritconcept may then be a useful.tool
in electromagnetic sensor design.
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