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Abstract

Equivalent circuits are considered for electrically-small loops and
idipoles, for which equivalent areas and equivalent lengths are defined as
appropriate sensitivity parameters. The various sensor parameters (sensi-
tivities and admittances) are related to each other. An equivalent volume
for the sensor is considered to relate the energy delivered from the electro-
magnetic fields to a resistive sensor load. A figure of merit is defined

as the ratio of the equivalent volume to an appropriate geometric volume

in which the sensor is placed. This figure of merit may prove useful in
optimizing the design of -electromagnetic sensors for various applicationms.

AL
_11__. A E T,
& - =ZARED SOR B om ma e
: Dalladil s i\ R, 7% N
}3_ ] L#DLJ I ""'i:"—'al‘*:_.\/;i'_

. 92- o3RI

red Y T

. 5 A

3
\
-

[

T A
TR Y

Y

AU
TP

.-..._.,
e L. i LIKE
Ao e



Sensor and Simulation Notes
Note XXXVIII
21 March 1967

Parameters for Some Klectrically - Small
Electromagnetic Sensors
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Abstract

Equivalent circuits are considered for electrically-small loops and
dipoles, for which equivalent areas and equivalent lengths are defined as
appropriate sensitivity parameters. The various sensor parameters (sensi-
tivities and admittances) are related to each other. An equivalent yolume
for the seunsor is considered to relate the energy delivered from the electro-
magnetic fields to a resistive sensor load. A figure of merit is defined
as the ratio of the equivalent volume to an appropriate geometric volume
in which the sensor is placed. This figure of merit may prove useful ih
optimizing the design of -electromagnetic sensors for various applications.




I. Introduction

In measurements of pulsed electromagnetic fields one often uses
electrically-small antennas because of their relatively simple response
characteristics. By an electrically-small antenna is meant that the
‘sensor dimensions are small compared to a radian wavelength or a skin
depth, as appropriate, in the medium where the fields are to be measured.
The sensor consists of good conductors (ideally perfect conductors) in
some geometric configuration plus, perhaps, additional media with omne or
more parameters (permittivity, permeability, and conductivity) differing
from those of the external medium. The radian wavelength or the skin
depth, as appropriate, in these additional media should also be much
larger than an appropriate dimension of the particular medium. One might
use such extra media (e.g., if the externallmidium is conducting) to’
improve some aspect of the semsor response.™? In some cases these
additional media do not necessarily complicate the basic parameters
(to be discussed) of the electrically-small antennas, in which case
such media are not necessarily excluded. An example of such a case
is a loop which is enclosed in an insulator which does not affect its
inductance or basic sensitivity to the magnetic field, as long as it
is electrically small. A counter example is a dipole totally or partially
enclosed in an insulating dielectric; if the external medium is an
insulator, the sensitivity to the electric field and the capacitance are
well behaved. But, if the external medium is conducting, the sensor
capacitance and conductanze are not simply related, which in some cases
complicates the relation of the sensor response to the electric field.
Cases in which the presence of an additional medium cemplicates the
sensor parameters for frequencies of interest are not considered im
this note.

The external medium is presumed to have a permittivity, €, a
permeability, u, and a conductivity, ¢, All of these are assumed to
be scalars and independent of the electromagnetic fields. Where
significant, ¢ is, in addition, taken to be time independent. Various’
other effects, including those peculiar to the nuclear environment in
the source region for the nuclear electromagnetic pulse, are also
ignored in this analysis. .

In this note we consider some of the basic parameters of
electrically-small antennas as used for measuring pulsed electric
or magnetic fields. The two classes of such sensors considered
are loops and dipoles, the former for measuring pulsed magnetic
‘fields and the latter for measuring pulsed electric fields and/or
current densities (conduction plus displacement current densities)..
Effects such as sensitivity to undesired components of eléctric and
magnetic fields are not considered. Each type of sensor is assumed
to be driving a purely resistive load, R, which is independent of

1. Lt Carl E. Baum, Sensor and Simulation Note XIII, Electric Fileld and
Current Density Measurements in Media of Constant Conductivity, Jamn. 1965.
2. Capt Carl E. Baum, Sensor and Simulation Note XXX, The Single-Gap
Cylindrical Loop in Non-Conducting and Conducting Media,lJan. 1967.
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frequency for the frequencies of interest. This is a common approach in
using electrically-small antennas to measure pulsed fields.

The admittance of an electrically-small loop is basically due to an
inductance. Other admittances, associated with capacitances, conductances,
turn resistance, etc., are assumed unimportant compared to the inductance
and load resistance for frequencies of interest. These extra admittances
could be significant in some cases but are neglected from this analysis.
Ideally an electrically-small loop can be designed for which these extra
admittances are insignificant and for which the inductarce is frequency-
independent for frequencies of interest. The admittanca of an electrically-
small dipole is basically due to a capacitance, and if the conductivity of
the external medium is nonzero there is also a conductance in parallel with
this capacitance. Other admittances are assumed comparatively unimportant.
Again the capacitance and conductance are assumed frequency-independent for
frequencies of interest for the electrically-small dipole.

Electrically-small loops and dipoles are then each assumed to have
simple Thévenin and Norton equivalent circuits. For each type of sensor we
define an equivalent area, Aeg, and an equivalent length, 2., (both assumed
independent of frequency for frequencies of interest) based on the open
circuit voltage and short circuit current from the device, as related to
an appropriate electromagnetic f£ield quantity. There are various conven~-
tions used in rhe literature for some of these parameters, often using the
terms, "effective area'" and "effective height." 4 For a loop the equivalent
area used in this note is the same as the effective area often used in other
references, but the effective area is sometimes used for something quite
different, i.e., the ratio of the power absorbed in an optimum antenna
load to the power per unit area in the incident wave. Likewise, for a dipole,
the equivalent length used in this note is the same as the effective length
or effective height often used in other references. However, the concept
of an effective height for a loop (see ref. 4) as sometimes used is quite
different from ocur concept of an equivalent length for a loop. Rorden uses
effective areas and effective lengths for loops and 'dipoles in much the
same sense that we use equivalent areas and equivalent lengths, except in
the case of a leoop where these definitions differ by a factor of the number
of loop turns.® We think the definitions of equivalent area and equivalent
length used in the present note are more natural definitions for a multi~turn
loop, directly relating the open circuit voltage and short circuit current
to the appropriate field quantities; the number of turns does not enter the
equivalent circuit, but rather is included in the indvztance, equivalent area,
and equivalent length. By using the word, 'equivalent', in connection with
the appropriate electrical parameters for electrically-small loops and dipnles,
we hope to avoid some ambiguity which might arise if we were to use the word,
"effective".0 We hope then to establish a convenient z2nd consistent set of

3. Rationalized MKSA units are used for all quantities.

4, S. Schelkunoff and H. Friis, Antennas: Theory and Practice, Chap. 10,
1952.

5. L. H. Rorden, Stanford Research Institute report, A Study of Low-Noise
Broadband VLF Receiving Techniques, Sept. 1965.

6. We would like to thank W. E. Blair of the Stanford Research Institute for
suggesting to us the use of the word, '"equivalent', in this context to avoid
ambiguity (private communication). ’



parameters to describe simple electrically-small loops and dipoles as
related to the measurement of electromagnetic field components. ’.
Next we define an equivalent volume, V.., based on the relation between
the electromagentic energy demsity associated with a step function of the
field component being measured, and the total energy delivered to the
resistive load. This gives the same result as Rorden's (see ref. 5) which
he defines (for sinusoidal fields) as the ratio of the peak stored energy
in the antenna to the peak energy in the incident field. This equivalent
volume can be related to the geometric volume of the sensor and represents
the degree to which the sensor can extract energy from the electromagnetic
field. To extract more energy omne can make the sensor larger. There may
be various reasons for one to limit the size of the sensor, such as a
physical restriction on the volume in which the semsor must fit, a restric-
tion on the allowable field distortion near the sensor, and just convenience
in handling. Thus, we define a figure of merit, n, as the ratio of the .
equivalent volume of the sensor to the volume of the smallest geometrical™
figure of a given type inside which the sensor can be enclosed. Appropriate ~
geometric figures would include spheres and cylinders and various other
shapes depending on the application intended for the semsor. This figure-of-
merit concept gives one a quantitative standard by which to compare different
sensor designs for a given application. Of course there may be a certain
arbitrariness in the choice of the geometric figure in which the sensor is
inscribed. Nevertheless, the figure of merit should be a useful concept.

II. Loop Paregmeters - A . .

Consider first the electrically-small loop. The Thévenin and Nortonm
equivalent circuits are given in figures 1A and 1B, respectively. The various
parameters used in the equivalent circuits are:

B,H Component of incident magnetic field in direction of
maximum sen51t1v1ty of loop

v Qutput voltage

I Qutput current

Aeq Equivalent area-

Leq Equivalent length

L Sensor inductance

R Load resistance

A tilde, v, over one of these quantities indicates the Laplace transform of

the quantity. Replace the Laplace transform variable, s, by jw for a frequency
domain analysis. Define a time constant and a characteristic frequency for

the sensor—-load combination by the relation

1 _
ko =5 =

3 |

(1)

i
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A. Thévenin Equiva‘lent Circuit
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C. Example: N-Turn Cylindrical Loop

Figure 1. ELEGTRICALLY- SMALL LOOP
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The Thévenin equivalent circuit has a respouse given by

. Y]
sBA
V=B -2 = (2) .

eq R+sL T T+st
)

For frequencies of interest limited to W<w this reduces to

Ay A"}
V = sBAgg (3)
or in the time domain

V=BA, | (4)/

. - N\
This is the characteristic of a B loop and is used to define Aeq from the
open circuit voltage.

The Norton equivalent circuit has a response given by

st
o]

Hzeq I+st
o

v A
1= Hle (5

q.

+ |-

= |

i
sL
For frequencles of interest limited to w>>w o, this reduces to

A"
= Hleg © .

or in the time domain

N
I

I= Hzeq _ N

A loop designed to give such a response characteristic might be called an
H loop {and sometimes referred to as a self-integrating loop). Equatiom
(7) is used to define Qeq from the short circuit current.
Relate the parameters of the two equivalent circuits by
V = IR (8)
and

B = uH (9)

where p is the permeability of the external medium. Then combining
equations (2) and (5) gives

uAeq = aeqL ' (10)
which gives a rather simple relationship between the equivalent length
and equivalent area in terms of the inductance and permeability. .
{



Next consider the effectiveness of an electrically-small loop in
extracting energy from a pulsed magnetic field. For convenience let the
magnetic field component of interest be of the form

B = Bou(t) (11)

where u(t) is a unit step function, rising at t = 0, The corresponding
Laplace-transformed magnetic field is

B
& 0
B = " | ‘ (12)
Substituting this into equation (2) gives .
\
%‘ = E_Oi@ﬂ (13)
© l+st
)
which in the time domain (for t > 0) is
t
B A Tt .
y=-22e . ©
t (14)
o
This represents a power into the resistive load (for t > 0) of
2.2 t
p=ﬁ=59_Aﬂ.ezco (15)
R. Lt
o
and a total energy of
> BiAz 7 "ZEO BCZ)AZ
U =\Pdt = -EEZQ- j\ e dt. = _—Eﬁfl (16)
° 0

Note that this total energy delivered to the resistive load is independent
of R, but depends only on zhe magnetic field and the sensor electrical
parameters.

Relate the energy delivered to the resistive load to the energy
associated with the magnetic field component of interest. In a given
equivalent volume, Veq’ the energy associated with B (after t = 0) is

= 2
Un = 20 veq | (17)

We equate Uy to U (equation'(lé)} as the definition of Veq’ giving

2

A,
= —24 (18)

Veq L



Using equation (10) this result can be expanded into several forms as

ua : in
=—2% .4 4 =24 (19)
eq L eq eq )]

Actually the definition of the equivalent volume is somewhat arbitrary,
depending on the pulse shape chosen for the incident magnetic field component.
However, the definition used here is a convenient one with a rather simple
form for the result. Compare this equivalent volume to the geometric
volume of a loop by considering the example of an N-turn cylindrical loop
as illustrated inm figure 1C. The equivalent area is

2

Aeq = N7a : : (20)\x

~.
!

and the inductance is roughly (for 2&>>2a}

2_ 2 "\

\
L = B (21)
which, from equation (10), gives an equivalent.length (for &>>2a) as .
. %
ieq TN (22)

 Using any of the expressions from equation (19) then gives an equivalent
volume as

- 2
Veq = 13" % (23?

Note, however, that nazl is also the geometric volume of the cylinder
approximating the loop shape. Sa, the equivalent volume would seem to
be related to the geometry of the sensor. For other loop shapes the
equivalent and geometrical volumes are not necessarily so simply related.
Another characteristic of this example of a cylindrical loop is that the
number of turns, N, does not appear in the equivalent volume in equation
(23).

Consider the relationship of the equivalent volume to the sensitivity
and frequency response characteristics of the loop. Rewrite equation (19),
substituting from equation (1), as
2
B2 R zeg
= § (Ao gu)) = (24)

[
o

v
eq
For a fixed R, the equivalent volume then combines sensitivity and band-
width together. For the case of B loop, w_ is the upper frequency response
and Ae is the sensitivity; the equivalent volume is proportional to
sensitgvity'squared times upper frequency response. For the case of an
H loop (or self-integrating loop), w, is the lower frequency response



(which one would like to make small) and L,q is the sensitivity; the equivalent
volume is now proportional to sensitivity squared divided by lower frequerncy
response: The equivalent volume then combines sensitivity and bandwidth in

a form sensitivity squared times bandwidth, For a given equivalent volume one
can increase sensitivity, but at the expense of bandwidth, and vice versa.

As an example again consider the N~turn cylindrical loop in figure 1C, main-
taining R and the dimensions constant and verying N; if one doubles N, Aeq is
doubled but L is quadrupled, thereby quartering Wy e '

The response characteristics of an electrically-small loop can then be
improved by increasing the equivalent volume which one can do just by making
the loop larger. Suppose, however, that the size of the sensor is constrained
in some way by necessity, practicality, convenience, etc. Then a usefu;
question is how to best design the sensor to fit in a specified geometric
volume. One way to quantitatively consider this question is to. try to maximize
the equivalent volume. A useful number to consider is then the ratio of -the
equivalent volume to the specified geometric volume; this ratio is one measure
of the efficiency of a given sensor design for a given application and we
define the ratio as a figure of merit, n. .

There are various choices for the geometric volume on which to base a
figure of merit. If for the N~turn cylindrical loop of figure 1C, one took
the geometric volume of the sensor, wazl, then " would be about one. However,
it would seem appropriate to specify a geometric volume first and then evaluate
various sensor designs for their figures of merit. One such geometric volume

would be a sphere of radius, r,, and corresponding volume, é_ﬁr3 » for which

. . . 3
case we define ng as the figure of merit. A sphere has the maggmum volume

for a fixed maximum linear dimension. As such the sphere may be an appropriate,

but arbitrary, shape for figures of merit fcr conveniently handleable sensors.
Fitting the N-turn cylindrical loop into 2 sphere with the smallest possible r,
still makes Veq (as in equation (23)) somewhat less than the volume of the
sphere so that ng is less than one for this type of loop. One might even try
to find a length-to-diameter ratic for an N-turn cylindrical loop (using a
more accurate form for the inductance than equation (21)) which gives the
largest ng. Another geometric volume one might consider is a circular cylinder
of given radius, r,, length, 2z,, and volume, Tro2,; this geometric shape

might be appropriate for considering sensors which must fit into a sounding-
rocket body, a circular hole in the ground, etc. However, a circular cylinder
does not have the same symmetry as a sphere, so that thare are two cases of
interest: the magnetic field of interest parallel to the cylinder axis fox
which we use n as the figure of merit, and the magnetic field of interest
normal (perpendicular) to the cylinder axis for which we use n., as the

figure of merit. There are undoubtedly many other gecmetric shapes on which
one can base a figuré of merit; the sphere and circular cylinder may have

wide application. In some cases we may be interested in measuring fields

near a conducting plane with sensors utilizing the conducting plane as a
symmetry plane. It may then be appropriate to use geometric shapes like
hemispheres and hemicylinders for the figure of merit and we can use the

same notation for the figure of merit as for spheres and cylinders.



ITI. Dipole Parameters

Consider second the electrically-small dipole. The Thévenin and Norton
equivalent circuits are given in figures 2A and 2B, respectively. The various
parameters used in the equivalent circuits are:

E Component of incident electric field in direction of maximum
sensitivity of dipole
Jt Component of total current density (conduction plus displacement)

in direction of maximum sensitivity of dipole
Qutput voltage
Qutput current
Equivalent length
Equivalent area
Sensor capacitance 3
Sensor conductance
Load resistance

eq
eq

HQ O woH<

The component of interest of the total current demsity is given by

J_=|o+ e—-E-)E (25)

t at

The sensor conductance and capacitance are assumed related as

& | C
o £ (26)

If G and o are nonzero (and significant), the above relation is necessary for
le and A, to be frequency independent, and thereby giving simple equivalent
c§Bcuits. ‘One way to achieve this relation between G and C is to have the
dipole consist of good (ideally perfect) conductors in the external medium
with no other media included. Then G and C both come from the same solution
of Laplace's equation, since ¢ and £ are both assumed independent of the
electric field, and sinhce boundary layer or plasma sheath problems are
assumed negligible. Again define a time comstant and a characteristic
frequency for the sensor-load combination as

£ =i = ge 27)
(o} UJO )

The Thévenin equivalent circuit has a response given by

GR+st
Yy =¥ —R_ % 0O
Vo= Ezeq : Eleq Trartst (28)
R + —t - °
G+sC
For R>>1/G, and/or frequencies of interest limited to w>>w , this
reduces to '
V= Fe 2
= EL . (29)

10

.
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A. Thévenin Eiquivolent Circuit
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+
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|
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B. Norton Equivolent Circuit

C. Example: Parallel-Plate Dipole

Figure 2. ELECTRICALLY- SMALL DIPOLE

11



or in the time domain

V=Bl ' (30) .

A dipole designed to give this response might be called an E dipole.
Equation (30) is used to define £eq from the open circuit voltage.

The Norton equivalent circuit has a response given by

L I a
v R t eq .
I=JA = (31)
£7eq L o, o  L¥GREst,

R

For R<<1/G, and frequencies of interest limited to w<<w,, this reduces to

AY
ja") "] .
I=Jeag | (32)\\\\ i

or in the time domain

I=JA (33)

eq
A dipole designed to give this response might be called a total-current-

density dipole. Equation (33) is used to defime Aeq from the short

circuit current. ‘ .
i

Relate the parameters of the two equivalent circuits using equations
(8) and (25). Then combining equations (28) and (31) gives

(GR+sty) L, = (o+se) A R (34)

q q

or

{G+sC) zeq = (otsg) Aeq

If one desires that both g4 'and A,, be independent of frequency for
frequencies of interest, then equation (35) requires that

(35)

eAeq = zeq C (38)

and

cAeq = Zeq G (37)
These last two equations can be combined to give the restriction of equation
(26) relating G and C through ¢ and e, showing that this restriction is
necessary for 1,  and Ae to be both independent of frequency. Note that
the simple relations betwWeen the equivalent area and equivalent length
for an electrically-small dipole (in equations (36) and (37)) are of the
same form as that for an electrically-small loop (in equation (10)). .

12



Next consider the effectiveness of an electrically-~small dipole in
extracting energy from a pulsed electric field. For this calculation
(leading to an equivalent volume) we assume that the conductivity, o, is
zero; otherwise the total energy delivered to the dipole load could be
infinite. For convenience let the electric field component of interest
be of the form

E = Eju(t) | | (38)

The corresponding Laplace~transformed electric field is
i . Eo ‘
E = P (39)

Substituting this into equation (28) gives

E2 ¢t .
V=290 . ¢40)
l+st ‘ "\ .
which in the time domain (for t > 0) is
-t ~
V=E2 % (41)
0 eq
This represents a power into the resistive load (for t > 0) of
2,2 =2t |
V2 Eozn ty
P=x= —J—R' e : (42)
and a total energy of
t
Egli 'Zco Eilz c
U= 1 pdt = -—E{Jl e dt = ———ES-~ (43)
) o

As with the loop, the total energy delivered to the resistive load is
independent of R, but depends only on the electric field and the dipole
electrical parameters.

In a given equivalent volume; Ve » the energy associated with E
(after £t = 0) is q

€E2

= —2
U, = 3 Veq (44)

We' equate U and U to define V as
e eq

czez
v = —=9 (45)

eq €

Using equation (36) we have

ea’ c2?
= =y g =20 (46)
eq c eq eq €

13



Note the similarity in the results for the equivalent volumes for the ,..
electrically-small dipole and the electrically-small loop (equation (19)). !

Consider the example of a parallel-plate dipole as illustrated in
figure 2C for comparing the equivalent and geometrical volumes. The
equivalent length is )

zeq.= h 47)

" the capacitance is roughly (for a>>h)

2
. £7a ~
C = 5 (48)

and the equivalent area is roughly (for a>>h)

. 2
eq © ma (49)

The equivalent volume (from equation (46)) is then
. a2 '
eq * ma“h (50)

which is also the geometric volume of the cylinder approximating the
dipole shape. As with the loop, the dipole equivalent volume seems to .
be related to the geometry of the sensor.

Rewrite equation (46) for the equivalent volume in the form (substitut-
ing from equation (27))

2
1 zeg
Veq = ER(A qw ) = =R o (51)

For a fixed R the equivalent volume then is proportiomal to sensitivity
squared times bandwidth for both the total current demsity dipole and
the E dipole. This is the same result as in the case of the loop. Note
that these results for the dipole apply only to the assumed case of

= (0. For ¢ # 0 the bandwidth of the two types of dipole change some-
what. ‘

The respomnse characteristics of an electrically-small dipole can
then be improved by increasing the equivalent volume, which can be done
by making the dipole larger. As for the locp we define a figure of
merit, n, for the dipole as the ratioc of the equivalent volume to a
specified geometric volume into which the dipole should fit. Such
geometric volumes might include spheres and circular cylinders (and,
in some cases, hemispheres or hemicylinders) and various other appropriate
shapes. For a given type of geometric volume oné might then try to
maximize the dipole figure of merit. .

14



Actually for some cases of interest G and C need not be related as in
equation (26). For the case of 0 = 0 and G = 0, then there can even be
additional insulating dielectric media in the immediate vicinity of the sensor;
' ‘. such media may affect A,, and/or %, but these two parameters will still be

independent of frequency (con31sten§ with the electrically-small restriction).

If one appropriately restricts the frequency range of interest he can make
the effect of the conductance or the capacitance negligible (compared to the
effect of the other). As an example consider the total current density

*  dipole for ws<wy and for GR<<1l; the capacitance is relatively unimportant
and G may even be reduced through the addition of insulators, giving a
frequency response as in equation (33) without making A,, frequency dependent.7
Thus, there may be advantage in some cases in not restricting the relation
of G and C, particularly in cases where one of the two is of dominant
concern., : ,,

Iv. Summary . )

An electrically-small loop or dipole (under some restrictions) has an
equivalent circuit with an equivalent area or equivalent length as a sensitivity
to the appropriate electromagnetic quantity. The loop admittance is due to an
inductance; the dipole admittance is due to a capacitance, possible in parallel
with a conductance. One can use either a Thévenin or Norton form of the
equivalent circuit; the Thévenin equivalent is more convenient if the desired
response is based on the open circuit voltage, while the Norten equivalent is
more convenient if the desired response is based on the short circuit current.

We define an equivalent volume for the sensor based on the amount of
energy delivered from a step function field to a resistive load. This equiva-
" lent volume is related to the geometric volume of the sensor; it combines
the electrical parameters of the sensor imn a form which, for a frequency-
independent resistive load, is prpportional to sensitivity squared times
N bandwidth. For convenience we include the following table of some of the
parameters for electrically-small antennas.

loop dipole
Open circuit voltage BAeq Eleq
Short circuit current HL ' J A
eq t eq
; =L L
Time constant, to— ® R RC
o
. u 2 £ ,2
Equivalent volume, Ve L A.eq C Aeq
o A A L
. eq eq eq eq
L ,2 € ;2
b eq € eq
E a2
" R (Aeq o’ : eR (Aeqw )
' R [*eq 1l ea
L u wo ER wo

Table I. -Parameters for Electrically-small Loops and Dipoles

7. Capt Carl E. Baum, Sensor and Simulation Note XXXIII, Two Types of
Vertical Current Density Sensors, Feb. 1967.



. A significant feature of the equivalent volume, as indicated in the
last forms of V_ in Table I, is thdt for fixed V.  and fixed R it expresses
a trade off betwaen sensitivity and bandwidth. Segsitivity can be increased,
but at the expense of bandwidth, and vice versa. Note, however, that the
equivalent volume is somewhat arbitrary, in that we have defined it in terms
of the energy delivered fo a resistive load by a step function imcident field.
If the pulse shape of the incident field is changed a different equivalent
volume can be defined. Using the step function incident field gives Va eq 2
simple form which is conveniently independent of R. In the case of the
dipole we have assumed g = 0 for the equivalent volume calculation, other-
wise the energy delivered to R, as well as the bandwidth, can be quite
different.

As part of an efficient sensor design, one might then desire to maximize
the equivalent volume. Since the equivalent volume of the sensor is related
to its geometric volume, one can then increase the geometric volume of the _
sensor in order to increase the equivalent volume. For one reason or another,
however, one may wish to limit the physical size of the semsor. We find it
then convenient to define a figure of merit, n, as the ratio of the equivalent
volume to the volume of a chosen geometric figure, inside of which the sensor
is placed. The figure of merit is then one quantitative measure of the
efficiency with which the sensor utilizes or "fills" a particular chosen .
geometric volume. The figure-of-merit comcept may then be a useful tool
in electromagnetic sensor design.
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